JPH0128828B2 - - Google Patents

Info

Publication number
JPH0128828B2
JPH0128828B2 JP17448382A JP17448382A JPH0128828B2 JP H0128828 B2 JPH0128828 B2 JP H0128828B2 JP 17448382 A JP17448382 A JP 17448382A JP 17448382 A JP17448382 A JP 17448382A JP H0128828 B2 JPH0128828 B2 JP H0128828B2
Authority
JP
Japan
Prior art keywords
metal
powder
particles
ceramic
thermal spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17448382A
Other languages
Japanese (ja)
Other versions
JPS5964766A (en
Inventor
Takashi Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP17448382A priority Critical patent/JPS5964766A/en
Publication of JPS5964766A publication Critical patent/JPS5964766A/en
Publication of JPH0128828B2 publication Critical patent/JPH0128828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属とセラミツクからなる複合溶射材
の製造方法に関するものである。 金属酸化物、金属炭化物、金属窒化物、金属硅
化物、金属硼化物などのセラミツクは一般に高融
点材料で硬度の高いものが多く、耐熱性、耐食
性、耐酸化性、耐摩耗性にすぐれた物質として知
られている。溶射技術を利用して素材の表面また
は一部分に上記セラミツクをコーテイングし、素
材の材質を著しく改善する方法が普及しつつあ
る。セラミツクを金属材料の素地に溶射する場
合、素地と異種物質であるセラミツクは付着力が
弱く強固な被膜が得るのがむずかしい。溶射被膜
に強い付着力を与えるためには素地表面を粗面化
したり、付着力の優れた物質を下地溶射したり、
あるいは素地と合金化しやすい金属を結合剤とし
て使用する方法が試みられている。 金属を結合剤として使用する方法には、セラミ
ツク粒子面に金属をメツキしたり、あるいは物理
蒸着法、電気泳動法、スラリー法等を利用して金
属をコーテイングする方法がある。また、セラミ
ツク粉末と金属粉末を混合成形したものを焼結し
たり、あるいはバインダーを使用して複合粒子を
得る方法が提案されている。しかしながら湿式処
理を経たものは変質してセラミツク本来の特性が
失われやすく、金属コーテイングの付着力も弱い
ので溶射工程で脱落してしまい、結合剤の役割を
充分果すことができない。また物理蒸着法等の乾
式処理による場合は充分な量の金属をコーテイン
グするのは困難である。 セラミツク粉末と金属粉末の混合成形物を焼結
する場合も、溶射に適するような微粉末で強固に
焼結した粒子を得ることは困難である。また、バ
インダーを使用した複合粉末では溶射に際してC.
P.S等の素材金属にとつて有害な元素が混入する
ので使用範囲が制約されたり、溶射中にセラミツ
ク粒子と金属とが分離してしまうので均質で強固
な溶射皮膜が得られないという重大な欠点があ
る。 本発明はこれらの欠点を解消し、均質で強固な
溶射皮膜を得るための、セラミツク粒子の表面に
金属が強固に結合した粒子からなる複合溶射材
と、それらの粒子の造粒体からなる複合溶射材を
提供するものである。 本発明の方法による複合溶射材は、個々のセラ
ミツク粒子の表面に金属が機械的に噛合つて一体
結合をなしていわゆるメカニカルアロイ状の構造
を呈していることを特徴とする。本発明の溶射材
を使用すれば目的とする金属以外の不純物の混入
が少く、しかも溶射中でもセラミツクと金属とが
強固な一体結合を維持しているので、セラミツク
特有の優れた性質を具備した溶射皮膜を、基材素
地の表面に均質で強固に形成させることが可能と
なる。 本発明の複合溶射材は、前記複合溶射材の造粒
体にして使用しても良い。造粒体からなる複合溶
射材によれば、溶射材の粒度分布を広範囲に調節
することが可能となり、溶射作業中の溶射材の飛
散ロスを減じ、均質で強固な皮膜を得る溶射材を
得ることが可能となる。 本発明で使用するセラミツクは硬度が高く、粉
砕操作によつて容易に微粉末とならないものが対
象となる。たとえば、アルミナ、チタニア、ジル
コニアなどの酸化物、炭化硅素、炭化モリブデ
ン、炭化タングステン、炭化ジルコニウム、炭化
クロム、炭化チタンなどの炭化物、窒化チタン、
窒化ジルコニウムなどの窒化物、硅化クロム、硅
化タングステンなどの硅化物、硼化クローム、硼
化ジルコニウムなどの硼化物がある。 金属としてはアルミニウム、ニツケル、銅、亜
鉛、鉄、コバルト、チタン、クロム、モリブデン
およびこれらを主成分とする合金がある。これら
の金属はセラミツクと同様、耐食性、耐酸化性、
耐熱性、耐摩耗性を助長するものであり、基材の
種類と目的とする溶射皮膜特性にもとずき適宜選
択し得るものである。上記合金には目的に応じて
バナジウム、ジルコニウム、イツトリウム、タン
グステン等の成分を含むものであつてもよい。セ
ラミツクと金属との割合は、セラミツクに対し重
量比で金属が0.1〜1.0倍(90:10〜50:50)が適
当である。 本発明による複合溶射材の粒子をミクロ的に観
察すると硬度の高いセラミツクス粒子と上記金属
との結合状態は、セラミツク粒子表面に金属が突
刺さつており、展性のある金属の場合はさらに金
属が個々のセラミツク粒子を包含するごとく鍛圧
結合をなしている。 本発明の複合溶射材はセラミツク粉末と金属粉
末をボールミル中で混合撹拌し強い衝撃力を与え
るいわゆるメカニカルアロイ法によつて得られ
る。メカニカルアロイ法については、例えば特公
昭50−37631号公報に記載されている。セラミツ
クと金属とをあらかじめ70μm以下の粉末にして
混合したものをボールミル中に装入し、ボールを
介して強い衝撃力を与えると粉末粒子同志が圧着
する。 セラミツク粒子は硬いので破壊されることなく
第1図に示すごとく表面の一部に金属が結合した
粒子が得られる。金属が比較的軟かく展性に富ん
でいる場合、さらに衝撃力を与えていくとセラミ
ツク粒子の表面に付着した金属と新たな金属粉と
が鍛圧接合して成長し、第2図に示すごとく金属
がセラミツク粒子を包含した複合粒子が得られ
る。本発明の方法による複合溶射材では、セラミ
ツク粒子が硬いので、メカニカルアロイのような
粒子全体に異種物質が噛み合つた構造にはなら
ず、表面のみに金属が噛み合つたメカニカルアロ
イ状の構造を呈した粒子となる。粉末粒子断面を
EPMAで観察すると、内部がセラミクで表面部
にのみ金属成分が存在しているのが分かる。 このようにして得られた複合粉末を溶射目的や
使用装置に合わせた粒度範囲に分級し粒度調整す
れば、ガス溶射やプラズマ溶射などの粉末溶射用
材料として広く利用することができる。またこの
複合粉末の微粉を再造粒して適度な粒度分布に調
整して使用することも可能である。 本発明による複合溶射材を使用すれば、セラミ
ツクと金属のみからなり、他の不純物を含まない
溶射被膜が得られ、しかも多量の金属をボンドと
して使用するので、基材表面にセラミツクを強固
に被膜することが可能となる。また炭化硼素のご
とく酸素が過剰に存在する高温雰囲気中で分解す
るようなセラミツクでは表面金属がセラミツクを
保護する機能を有するものとなる。 次に造粒体からなる複合溶射材の粉末粒子をミ
クロ的に観察すると第3図に示すごとく、セラミ
ツクと金属との複合粒子の進合体をなしている。
これはセラミツク粒子と金属粒子の集合体からな
る第4図に示すような従来の複合溶射材と比較す
ると、その構成を著しく異にする新規な複合溶射
材である。 本発明によれば、たとえ溶射過程で溶射材が
個々の粒子に解離した場合でも、なおセラミツク
と金属が強固な一体結合を維持しているので、得
られた溶射皮膜は均質で強固なものとなる。従来
の複合溶射材では溶射皮膜はセラミツクの部分と
金属の部分に分かれてしまうので、強固なものと
はならなかつた。 造粒体からなる複合溶射材は本発明によつて得
られた複合溶射材を通常の方法で造粒して得られ
るものである。 原料とする粉末は、本発明による複合材料その
ままでも良く、あるいは分級して取得した細粒の
み使用しても良い。 造粒方法としては有機質や無機質のバインダー
を使用して噴霧造粒、撹拌造粒、流動造粒等の手
段が利用できる。造粒粒度は粉末溶射に適するよ
う5〜120μmとするのが適当である。造粒後の粉
末は乾燥又は焼結処理をした後、溶射条件に沿つ
た粒度巾に分級して溶射材とする。 本発明による複合溶射材を使用すれば、溶射過
程でセラミツクと金属が分離することがないの
で、均質で強固な溶射皮膜を得ることができる。
また適正な粒度範囲の溶射材を使用できるので溶
射材の歩留が向上する効果をもたらすものであ
る。 次に実施例をあげて本発明を説明する。 実施例 1 粒子の大きさが44μm以下の安定化ジルコニア
粉末と、粒子の大きさが44μm以下のNi(80%)−
Cr(20%)合金のアトマイズ粉末を重量比で50部
づつ混合し、竪型ボールミル(アトライター)に
装入し、アルゴン雰囲気中で混合撹拌した。撹拌
翼の回転数は500rpmとして約4時間撹拌し、混
合、粉砕、結合、分散をおこなわせた。得られた
粒子の大きさは平均10μmであり、粒子の表面を
観察したところいずれの粒子も表面に金属が噛合
つて一体結合をなしていた。 次にこの粉末にバインダーとしてワニスを用
い、撹拌造粒法により最大粒径75μm程度まで成
長させた後、120℃で10分間乾燥した。得られた
粉末を10〜44μmに分級し溶射材を得た。 この溶射材を使用して、SUS304(4mmt×38
mmW×50mml)母材上に下地溶射としてNi−Cr
(80−20)合金を厚さ100μm溶射したのち、プラ
ズマ溶射法にて厚さ200μmに溶射した。 溶射条件は次のとおりであつた。 溶射装置 プラズマダイン SG100ガン アルゴンガス流量 35l/min 電 流 750A 電 圧 30V 粉末供給量 58g/min 得られた溶射皮膜の耐スポーリング性を調らべ
るため、溶射した試験片を所定温度に加熱し15分
間保持した後、水中冷却した。 この熱処理操作を5回くり返し、皮膜の剥離状
態を観察した。 また比較のため、粒径10〜20μmの安定化ジル
コニア粉末とNi(80)−Cr(20)合金のアトマイズ
粉末とを混合し、バインダーとしてワニスを用い
て撹拌造粒した後、乾燥造粒して10〜44μmに分
級し溶射材としたもの、および10〜44μmの安定
化ジルコニア粉末とNi−Cr合金アトマイズ粉末
との単なる混合粉とを溶射材として同様の試験を
した。これらの結果を表1に示す。
The present invention relates to a method for manufacturing a composite thermal spray material made of metal and ceramic. Ceramics such as metal oxides, metal carbides, metal nitrides, metal silicides, and metal borides are generally high melting point materials with high hardness, and are substances with excellent heat resistance, corrosion resistance, oxidation resistance, and wear resistance. known as. A method of coating the surface or a portion of a material with the above-mentioned ceramic using thermal spraying technology to significantly improve the material quality of the material is becoming popular. When spraying ceramic onto a metal base, it is difficult to obtain a strong coating because the ceramic is a different material from the base and has weak adhesion. In order to give strong adhesion to the sprayed coating, it is necessary to roughen the base surface, spray a material with excellent adhesion on the base,
Alternatively, attempts have been made to use a metal that is easily alloyed with the base material as a binder. Methods of using metal as a binder include plating the surface of ceramic particles with metal, or coating with metal using physical vapor deposition, electrophoresis, slurry method, etc. Furthermore, methods have been proposed in which composite particles are obtained by sintering a mixture of ceramic powder and metal powder, or by using a binder. However, ceramics that have undergone wet processing tend to change in quality and lose their original properties, and the metal coating has weak adhesion and falls off during the thermal spraying process, making it unable to fulfill its role as a binder. Further, when dry processing such as physical vapor deposition is used, it is difficult to coat a sufficient amount of metal. Even when sintering a molded mixture of ceramic powder and metal powder, it is difficult to obtain tightly sintered fine powder particles suitable for thermal spraying. In addition, composite powder using a binder has C.
Significant drawbacks include the mixing of elements harmful to raw metals such as PS, which limits the range of use, and the inability to obtain a homogeneous and strong sprayed coating because the ceramic particles and metal separate during thermal spraying. There is. The present invention aims to eliminate these drawbacks and to obtain a homogeneous and strong thermal sprayed coating.The present invention aims to solve these drawbacks and to obtain a homogeneous and strong thermal sprayed coating. It provides thermal spray materials. The composite thermal spray material produced by the method of the present invention is characterized in that metal is mechanically interlocked with the surfaces of individual ceramic particles to form an integral bond, thereby exhibiting a so-called mechanical alloy-like structure. When the thermal spraying material of the present invention is used, there is little contamination of impurities other than the target metal, and the ceramic and metal maintain a strong integral bond even during thermal spraying, so the thermal spraying material has the excellent properties unique to ceramics. It becomes possible to form a uniform and strong film on the surface of the base material. The composite thermal sprayed material of the present invention may be used in the form of granules of the composite thermal sprayed material. According to a composite thermal spray material made of granules, it is possible to adjust the particle size distribution of the thermal spray material over a wide range, reduce the scattering loss of the thermal spray material during thermal spraying work, and obtain a thermal spray material that provides a homogeneous and strong coating. becomes possible. The ceramic used in the present invention has high hardness and cannot be easily turned into fine powder by pulverization. For example, oxides such as alumina, titania, and zirconia, carbides such as silicon carbide, molybdenum carbide, tungsten carbide, zirconium carbide, chromium carbide, and titanium carbide, titanium nitride,
There are nitrides such as zirconium nitride, silicides such as chromium silicide and tungsten silicide, and borides such as chromium boride and zirconium boride. Metals include aluminum, nickel, copper, zinc, iron, cobalt, titanium, chromium, molybdenum, and alloys containing these as main components. These metals, like ceramics, have corrosion resistance, oxidation resistance,
It promotes heat resistance and abrasion resistance, and can be selected as appropriate depending on the type of substrate and the desired properties of the thermal sprayed coating. The above alloy may contain components such as vanadium, zirconium, yttrium, and tungsten depending on the purpose. The appropriate ratio of ceramic to metal is 0.1 to 1.0 times the metal by weight (90:10 to 50:50). Microscopic observation of the particles of the composite thermal spray material according to the present invention shows that the bond between the highly hard ceramic particles and the above-mentioned metal is such that the metal is stuck to the surface of the ceramic particle, and in the case of malleable metal, the metal is further bonded to the surface of the ceramic particle. It forms a forging bond that encompasses individual ceramic particles. The composite thermal spray material of the present invention is obtained by a so-called mechanical alloying method in which ceramic powder and metal powder are mixed and stirred in a ball mill and a strong impact force is applied. The mechanical alloying method is described, for example, in Japanese Patent Publication No. 37631/1983. Ceramic and metal are mixed in advance into powders of 70 μm or less and charged into a ball mill, and when a strong impact force is applied through the balls, the powder particles are pressed together. Since ceramic particles are hard, they do not break and particles with metal bonded to part of their surfaces can be obtained as shown in FIG. If the metal is relatively soft and malleable, if further impact force is applied, the metal adhering to the surface of the ceramic particle and new metal powder will form a forging bond and grow, as shown in Figure 2. Composite particles containing metal and ceramic particles are obtained. In the composite thermal sprayed material produced by the method of the present invention, since the ceramic particles are hard, they do not have a structure like a mechanical alloy in which dissimilar materials are interlocked with the entire particle, but a mechanical alloy-like structure in which metal is interlocked only on the surface. The particles become Powder particle cross section
When observed with EPMA, it can be seen that the interior is made of ceramic and metal components exist only on the surface. If the composite powder thus obtained is classified and adjusted to a particle size range suitable for the purpose of thermal spraying and the equipment used, it can be widely used as a material for powder thermal spraying such as gas thermal spraying and plasma thermal spraying. It is also possible to re-granulate the fine powder of this composite powder and adjust it to an appropriate particle size distribution before use. If the composite thermal spraying material of the present invention is used, a thermal sprayed coating consisting only of ceramic and metal and containing no other impurities can be obtained, and since a large amount of metal is used as a bond, it is possible to form a strong coating of ceramic on the surface of the base material. It becomes possible to do so. Furthermore, in the case of a ceramic such as boron carbide, which decomposes in a high temperature atmosphere where oxygen is present in excess, the surface metal has the function of protecting the ceramic. Next, when the powder particles of the composite thermal spray material made of granules are observed microscopically, as shown in FIG. 3, they form an amalgamation of composite particles of ceramic and metal.
This is a new composite thermal sprayed material whose composition is significantly different from that of the conventional composite thermal sprayed material shown in FIG. 4, which is composed of an aggregate of ceramic particles and metal particles. According to the present invention, even if the spray material dissociates into individual particles during the spraying process, the ceramic and metal still maintain a strong integral bond, so the resulting spray coating is homogeneous and strong. Become. With conventional composite sprayed materials, the sprayed coating was separated into a ceramic part and a metal part, so it was not strong. The composite thermal sprayed material consisting of granules is obtained by granulating the composite thermal sprayed material obtained according to the present invention by a conventional method. The powder used as a raw material may be the composite material according to the present invention as it is, or only fine particles obtained by classification may be used. As a granulation method, methods such as spray granulation, agitation granulation, and fluidized granulation using an organic or inorganic binder can be used. The granulation size is suitably 5 to 120 μm to suit powder spraying. After the granulated powder is dried or sintered, it is classified into a particle size range that meets the thermal spraying conditions and is used as a thermal spray material. If the composite thermal spray material according to the present invention is used, the ceramic and metal will not separate during the thermal spraying process, so a homogeneous and strong thermal spray coating can be obtained.
Further, since thermal spraying material having an appropriate particle size range can be used, the yield of thermal spraying material can be improved. Next, the present invention will be explained with reference to Examples. Example 1 Stabilized zirconia powder with a particle size of 44 μm or less and Ni (80%) with a particle size of 44 μm or less
Atomized powder of Cr (20%) alloy was mixed in an amount of 50 parts by weight, charged into a vertical ball mill (attritor), and mixed and stirred in an argon atmosphere. The rotation speed of the stirring blade was set to 500 rpm, and the mixture was stirred for about 4 hours to perform mixing, pulverization, binding, and dispersion. The average size of the obtained particles was 10 μm, and when the surfaces of the particles were observed, it was found that the metal was interlocked with the surface of each particle to form an integral bond. Next, using varnish as a binder, this powder was grown to a maximum particle size of about 75 μm by stirring granulation, and then dried at 120° C. for 10 minutes. The obtained powder was classified to 10 to 44 μm to obtain a thermal spray material. Using this thermal spray material, SUS304 (4mmt×38
mmW×50mml) Ni-Cr as a base thermal spray on the base material
The (80-20) alloy was sprayed to a thickness of 100 μm, and then sprayed to a thickness of 200 μm using a plasma spraying method. The thermal spraying conditions were as follows. Thermal spraying equipment Plasmadyne SG100 gun Argon gas flow rate 35l/min Current 750A Voltage 30V Powder supply rate 58g/min To examine the spalling resistance of the resulting thermal sprayed coating, the thermally sprayed test piece was heated to a specified temperature. After holding for 15 minutes, it was cooled in water. This heat treatment operation was repeated five times, and the state of peeling of the film was observed. For comparison, stabilized zirconia powder with a particle size of 10 to 20 μm and atomized Ni(80)-Cr(20) alloy powder were mixed, stirred and granulated using varnish as a binder, and then dried and granulated. A similar test was conducted using a thermal spray material classified into 10-44 μm particles and a simple mixed powder of 10-44 μm stabilized zirconia powder and Ni-Cr alloy atomized powder as a thermal spray material. These results are shown in Table 1.

【表】 結果から明らかなように本発明による複合溶射
材を使用した場合強固な皮膜となることが判か
る。 実施例 2 粒子の大きさが20μm以下のアルミナ粉末と、
粒子径が10μm以下のカルボニルニツケル粉末お
よび金属ボロン粉末とを、重量比でアルミナ90
部、ニツケル粉末5部、ボロン粉末5部を混合
し、実施例1と同様の方法に従つて混合撹拌し
た。得られた粉末粒子の大きさは10〜53μmであ
り、粒子の表面を観察したところ、いずれの粒子
もアルミナ粒子の表面に、ニツケルとボロンがま
ざり合つた金属が噛合つて一体結合をなしてい
た。 次にこの粉末を溶射材料として、下地溶射に
Ni(95)−Al(5)合金を使用した以外は実施例1と
全く同様の方法で溶射し、得られた溶射皮膜の接
着強度と耐スポーリング性を調らべた。 接着強度は皮膜部について引張試験をおこな
い、耐スポーリングテストは実施例1と同様の方
法によりおこなつた。 比較のため粒径10〜44μmのアルミナとカルボ
ニツケルとボロンの粉末を同一重量比で混合した
粉末を使用して溶射し、同一の試験をおこなつ
た。これらの結果を表2に示す。
[Table] As is clear from the results, it can be seen that a strong film is formed when the composite sprayed material according to the present invention is used. Example 2 Alumina powder with a particle size of 20 μm or less,
Carbonyl nickel powder and metallic boron powder with a particle size of 10 μm or less are mixed into alumina 90% by weight.
1 part, 5 parts of nickel powder, and 5 parts of boron powder were mixed and stirred in the same manner as in Example 1. The size of the obtained powder particles was 10 to 53 μm, and when the surfaces of the particles were observed, it was found that each particle had a metal mixture of nickel and boron interlocked with the surface of the alumina particles, forming an integral bond. . Next, use this powder as a thermal spraying material for base thermal spraying.
Thermal spraying was carried out in exactly the same manner as in Example 1, except that Ni(95)-Al(5) alloy was used, and the adhesive strength and spalling resistance of the obtained thermal sprayed coating were examined. The adhesive strength was determined by a tensile test on the film, and the spalling resistance test was performed in the same manner as in Example 1. For comparison, the same test was conducted using a mixture of alumina, carbonite, and boron powders with a particle size of 10 to 44 μm in the same weight ratio. These results are shown in Table 2.

【表】 結果から明らかなように本発明による複合溶射
材を使用した場合は強固な溶射皮膜が得られる。 実施例 3 粒子径が44μm以下の炭化硼素粉末とアルミニ
ウムアトマイズ粉末とを重量比で1:1の割合で
混合し、実施例1と同様にして混拌混合した。得
られた粉末の粒径は平均10μmであり、粒子の表
面を観察したところいずれの粒子も炭化硼素の表
面をアルミニウムが包むようにして一体結合をな
していた。 次にこの粉末を用いて実施例1と同様にして最
大粒径90μm位にまで成長させた後乾燥させ、最
終粒度を10〜90μmに分級して溶射材として使用
し、実施例1と同様の条件で溶射皮膜を得た。 得られた溶射皮膜の表面状態を観察し、引張試
験により皮膜の接着強度を測定した。結果を表3
に示す。 比較のため10μm以下の炭化硼素粉末と44μm以
下のアルミニウム粉末を単に混合した粉末と、前
記混合粉末をバインダーにワニスを用いて造粒し
て乾燥後10〜90μmに分級したものを使用して同
様の試験をした。これらの結果を表3に併記す
る。
[Table] As is clear from the results, a strong thermal sprayed coating can be obtained when the composite thermal sprayed material according to the present invention is used. Example 3 Boron carbide powder having a particle size of 44 μm or less and aluminum atomized powder were mixed at a weight ratio of 1:1, and mixed in the same manner as in Example 1. The average particle size of the obtained powder was 10 μm, and when the surfaces of the particles were observed, it was found that each particle was integrally bonded with aluminum surrounding the surface of boron carbide. Next, this powder was grown to a maximum particle size of about 90 μm in the same manner as in Example 1, dried, classified to a final particle size of 10 to 90 μm, used as a thermal spray material, and grown in the same manner as in Example 1. A thermal sprayed coating was obtained under these conditions. The surface condition of the obtained thermal sprayed coating was observed, and the adhesive strength of the coating was measured by a tensile test. Table 3 shows the results.
Shown below. For comparison, a powder obtained by simply mixing boron carbide powder of 10 μm or less and aluminum powder of 44 μm or less, and a powder obtained by granulating the mixed powder using varnish as a binder, drying, and classifying it into 10 to 90 μm were used. I took the test. These results are also listed in Table 3.

【表】 結果から明らかなように単なる混合粉末では溶
射不可能なものでも、本発明による複合溶射材と
すれば強固な溶射皮膜が得られる。 実施例 4 粒子径が25μm以下の炭化硅素粉末と、粒子径
が10μm以下のコバルト微粉とを重量比で65対35
の割合で混合し、実施例1と同様の方法で混合撹
拌した。得られた粉末粒子の粒径は平均10μmで
あり、炭化硅素粒子の表面にコバルトが噛合つて
一体結合をなしていた。 この粉末を用いて実施例1と同様な方法で造粒
し、乾燥したのち10〜44μmに分級して溶射材と
した。 次にこの溶射材を使用して実施例1と同様な条
件で溶射皮膜を造り、得られた皮膜の状態と接着
強度を調らべた。 比較のため10〜44μmの炭化硅素粉末とコバル
ト粉末を単に混合した粉末、および炭化硅素表面
に塩析法を使用してコバルトを約5wt%コーテイ
ングした粉末を使用して同様の試験を実施した。
これらの結果を表4に示す。
[Table] As is clear from the results, a strong thermal sprayed coating can be obtained by using the composite thermal spraying material of the present invention even if it cannot be thermally sprayed with a simple mixed powder. Example 4 Silicon carbide powder with a particle size of 25 μm or less and cobalt fine powder with a particle size of 10 μm or less in a weight ratio of 65:35
The mixture was mixed and stirred in the same manner as in Example 1. The average particle size of the obtained powder particles was 10 μm, and the cobalt was interlocked with the surface of the silicon carbide particles to form an integral bond. This powder was granulated in the same manner as in Example 1, dried, and then classified into particles of 10 to 44 μm to obtain a thermal spray material. Next, a thermal sprayed coating was made using this thermal spraying material under the same conditions as in Example 1, and the condition and adhesive strength of the obtained coating were examined. For comparison, similar tests were conducted using a powder obtained by simply mixing 10 to 44 μm silicon carbide powder and cobalt powder, and a powder obtained by coating the silicon carbide surface with about 5 wt % of cobalt using a salting-out method.
These results are shown in Table 4.

【表】 単なる混合粉末を溶射したのではボロボロにな
り溶射皮膜としては使用に耐えないものである。
本発明による複合溶射材を使用すれば、コーテイ
ング粉末を使用した場合に比較して溶射効率も著
しく向上し、緻密で強固な溶射皮膜が得られる。 実施例 5 粒子径が25μm以下の炭化チタン粉末と、粒子
径が10μm以下のコバルト微粉とを重量比で65対
35の割合で混合し、実施例1と同様の方法で混合
撹拌した。得られた粉末粒子の平均粒径は10μm
であり、炭化チタン粒子の表面にコバルトが噛合
つて一体結合をなしていた。 この粉末を用いて実施例1と同様の方法で造粒
し、乾燥したのち20〜44μmに分級して溶射材と
した。 次にこの溶射材を使用して実施例1と同様な条
件で溶射皮膜を造り、得られた皮膜の状態と接着
強度を調らべた。 比較のため10〜44μmの炭化チタン粉末とコバ
ルト粉末を単に混合した粉末、および塩析法にて
炭化チタン表面にコバルトを約5wt%コーテイン
グした粉末を使用して同様の試験を実施した。こ
れらの結果を表5に示す。
[Table] If a simple mixed powder is thermally sprayed, it will crumble and become unusable as a thermally sprayed coating.
If the composite thermal spray material according to the present invention is used, the thermal spraying efficiency will be significantly improved compared to the case where a coating powder is used, and a dense and strong thermal sprayed coating can be obtained. Example 5 Titanium carbide powder with a particle size of 25 μm or less and cobalt fine powder with a particle size of 10 μm or less in a weight ratio of 65:
35 parts, and mixed and stirred in the same manner as in Example 1. The average particle size of the obtained powder particles is 10μm
The cobalt meshed with the surface of the titanium carbide particles to form an integral bond. This powder was granulated in the same manner as in Example 1, dried, and then classified into particles of 20 to 44 μm to obtain a thermal spray material. Next, a thermal sprayed coating was made using this thermal spraying material under the same conditions as in Example 1, and the condition and adhesive strength of the obtained coating were examined. For comparison, similar tests were conducted using a powder obtained by simply mixing 10 to 44 μm titanium carbide powder and cobalt powder, and a powder obtained by coating the titanium carbide surface with about 5 wt % of cobalt using a salting-out method. These results are shown in Table 5.

【表】 単なる混合粉末を溶射したものは母材への付着
が悪い。 コーテイング粉末を使用したものはバインダー
としてのコバルト量が少ないので充分な接着強度
が得られない。これに対して本発明による複合溶
射材を使用した場合は緻密で強固な溶射皮膜が得
られる。
[Table] A simple thermal sprayed mixed powder has poor adhesion to the base material. Those using coating powder do not have sufficient adhesive strength because the amount of cobalt as a binder is small. On the other hand, when the composite sprayed material according to the present invention is used, a dense and strong sprayed coating can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明による複合溶射材
のセラミツク粒子と金属との結合状態を説明する
図。第3図は本発明による複合溶射材の粉末粒子
を示す図、第4図は従来の複合溶射材の粉末粒子
を示す図である。 1……セラミツク粒子、2……金属、3……バ
インダー。
FIGS. 1 and 2 are diagrams illustrating the bonding state of ceramic particles and metal in the composite thermal spray material according to the present invention. FIG. 3 is a diagram showing powder particles of a composite thermal spray material according to the present invention, and FIG. 4 is a diagram showing powder particles of a conventional composite thermal spray material. 1...ceramic particles, 2...metal, 3...binder.

Claims (1)

【特許請求の範囲】 1 金属の酸化物、炭化物、硼化物、窒化物、の
うちから選ばれたセラミツク粒子と、該セラミツ
ク粒子に対して重量比で0.1〜1.0倍の金属とを混
合し、該混合粉末に高エネルギーを与えて撹拌混
合して、セラミツクと金属とが機械的に噛合して
一体結合したメカニカルアロイ状の粒子とするこ
とを特徴とする複合溶射材の製造方法。 2 セラミツク粒子が安定化ジルコニアであり、
金属がニツケルとクロムを主成分とする合金であ
ることを特徴とする特許請求の範囲第1項に記載
の複合溶射材の製造方法。 3 セラミツク粒子がアルミナであり、金属がニ
ツケルと硼素とを主成分とする合金であることを
特徴とする特許請求の範囲第1項に記載の複合溶
射材の製造方法。 4 セラミツク粒子が炭化硼素であり、金属がニ
ツケル、アルミニウムまたはニツケルとアルミニ
ウムとを主成分とする合金のうちの1種であるこ
とを特徴とする特許請求の範囲第1項に記載の複
合溶射材の製造方法。 5 セラミツク粒子が炭化硅素であり、金属がコ
バルトであることを特徴とする特許請求の範囲第
1項に記載の複合溶射材の製造方法。 6 セラミツク粒子が炭化チタンであり、金属が
コバルトであることを特徴とする特許請求の範囲
第1項に記載の複合溶射材の製造方法。
[Claims] 1. Mixing ceramic particles selected from metal oxides, carbides, borides, and nitrides and a metal in a weight ratio of 0.1 to 1.0 times the weight of the ceramic particles, A method for producing a composite thermal spray material, characterized in that the mixed powder is stirred and mixed by applying high energy to form mechanical alloy-like particles in which ceramic and metal are mechanically interlocked and integrally bonded. 2 The ceramic particles are stabilized zirconia,
2. The method for producing a composite thermal spray material according to claim 1, wherein the metal is an alloy containing nickel and chromium as main components. 3. The method for producing a composite thermal spray material according to claim 1, wherein the ceramic particles are alumina and the metal is an alloy containing nickel and boron as main components. 4. The composite thermal spray material according to claim 1, wherein the ceramic particles are boron carbide, and the metal is nickel, aluminum, or one of alloys containing nickel and aluminum as main components. manufacturing method. 5. The method for producing a composite thermal spray material according to claim 1, wherein the ceramic particles are silicon carbide and the metal is cobalt. 6. The method for producing a composite thermal spray material according to claim 1, wherein the ceramic particles are titanium carbide and the metal is cobalt.
JP17448382A 1982-10-06 1982-10-06 Composite plasma spraying material Granted JPS5964766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17448382A JPS5964766A (en) 1982-10-06 1982-10-06 Composite plasma spraying material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17448382A JPS5964766A (en) 1982-10-06 1982-10-06 Composite plasma spraying material

Publications (2)

Publication Number Publication Date
JPS5964766A JPS5964766A (en) 1984-04-12
JPH0128828B2 true JPH0128828B2 (en) 1989-06-06

Family

ID=15979267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17448382A Granted JPS5964766A (en) 1982-10-06 1982-10-06 Composite plasma spraying material

Country Status (1)

Country Link
JP (1) JPS5964766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151622A (en) * 2014-02-19 2015-08-24 株式会社東芝 Powder for flame spray, production method of powder for flame spray, and production method of sprayed coating

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725508A (en) * 1986-10-23 1988-02-16 The Perkin-Elmer Corporation Composite hard chromium compounds for thermal spraying
JPS63133026A (en) * 1986-11-25 1988-06-04 Meiyou Denki Kk Protection tube for heat/wear resistant temperature sensor
JPH01230759A (en) * 1987-12-29 1989-09-14 Showa Denko Kk Composite powder for thermal spraying
US7799111B2 (en) 2005-03-28 2010-09-21 Sulzer Metco Venture Llc Thermal spray feedstock composition
WO2007108793A1 (en) 2006-03-20 2007-09-27 Sulzer Metco Venture, Llc Method for forming a ceramic containing composite structure
US7799388B2 (en) 2006-05-26 2010-09-21 Sulzer Metco Venture, Llc Mechanical seals and method of manufacture
JP5875072B2 (en) * 2012-07-02 2016-03-02 関西電力株式会社 Thermal spray material sintered body and method for producing thermal spray material
CN107287592B (en) * 2017-08-14 2019-03-19 燕山大学 A kind of fine copper surface laser cladding prepares zirconium dioxide-boron carbide enhancing cladding layer method
CN111876716B (en) * 2020-07-10 2022-05-10 江苏科环新材料有限公司 Fiber-reinforced composite coating of explosion-proof tube for heating surface of tube for boiler and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151622A (en) * 2014-02-19 2015-08-24 株式会社東芝 Powder for flame spray, production method of powder for flame spray, and production method of sprayed coating

Also Published As

Publication number Publication date
JPS5964766A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
JP3112697B2 (en) Thermal spray powder mixture
EP0559229B1 (en) Method for preparing binder-free clad powders
TW527439B (en) Spray powder, thermal spraying process using it, and sprayed coating
KR20020062855A (en) Spray powder and method for its production
CN100476014C (en) Thermal spraying powder and method of forming thermal sprayed coating using same
JP2004510050A (en) Thermal coating of piston rings for mechanically alloyed powders.
JPS6119583B2 (en)
WO2004035852A1 (en) Piston ring and thermal sprayed coating for use therein, and method for manufacture thereof
JPH04231450A (en) Improved method for processing spray coating nickel alloy and molybdenum powder
CN110016601A (en) A kind of nickel chromium triangle-diamond alloy composite powder and its preparation method and application
JPH0128828B2 (en)
CN110073028A (en) The manufacturing method and glass handling roller of the forming method of intermetallic compound sputtered films of bismuth, the sputtered films of bismuth, metal product with the sputtered films of bismuth
JP2988281B2 (en) Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
JPS6089557A (en) Powdered material for thermal spray and its manufacture
JP3091690B2 (en) Method for producing TiB2-based coating
JPS6033187B2 (en) Surface hardening treatment method
JP4119667B2 (en) Composite cermet powder and method for producing the same
US3960545A (en) Cermet plasma flame spray powder, method for producing same and articles produced therefrom
JPH0128829B2 (en)
JPH0317899B2 (en)
JPS6299449A (en) Chromium carbide-base powder for thermal spraying
JP2770968B2 (en) Chromium carbide-metal composite powder for high energy spraying
JPS58113369A (en) Powder material for melt-spraying and its production
JP3134767B2 (en) Boride cermet spraying powder
JPS61104036A (en) Manufacture of composite sintered body consisting of ceramic and metal