JP2640234B2 - Oxide spray material - Google Patents

Oxide spray material

Info

Publication number
JP2640234B2
JP2640234B2 JP62259042A JP25904287A JP2640234B2 JP 2640234 B2 JP2640234 B2 JP 2640234B2 JP 62259042 A JP62259042 A JP 62259042A JP 25904287 A JP25904287 A JP 25904287A JP 2640234 B2 JP2640234 B2 JP 2640234B2
Authority
JP
Japan
Prior art keywords
powder
particles
oxide
thermal spray
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62259042A
Other languages
Japanese (ja)
Other versions
JPH01104756A (en
Inventor
祐治 福田
将人 公文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62259042A priority Critical patent/JP2640234B2/en
Publication of JPH01104756A publication Critical patent/JPH01104756A/en
Application granted granted Critical
Publication of JP2640234B2 publication Critical patent/JP2640234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物を原料とした酸化物系溶射材料に関す
る。
Description: TECHNICAL FIELD The present invention relates to an oxide spray material using an oxide as a raw material.

〔従来の技術〕[Conventional technology]

材料の耐熱性、耐食性や耐摩耗性を向上させる方法と
して、材料の表面にこれらに優れた性能を有する材料を
溶射する方法が知られている。特に、石炭焚ボイラの伝
熱管、バーナインペラ、ガスタービン部品は約500〜100
0℃の高温で使用され、更に腐食や摩耗も問題になるこ
とから、アルミナ、ジルコニア等の高融点材料である酸
化物系粉末が溶射材料として広く用いられている。一
方、これらの酸化物系粉末の溶射手段としては熱プラズ
マアークを利用するプラズマ溶射法またはガスの燃焼ま
たは爆発エネルギーを利用する高エネルギーガス溶射法
が用いられている。これらの溶射法により強固な被膜を
得るためには、溶射粉末を溶融状態で材料表面に付着さ
せる必要がある。しかし酸化物系材料は融点が2000℃以
上と高融点であるため、上記溶射法、特に高エネルギー
ガス溶射法によりこの材料を溶射することは困難であ
る。すなわち、高エネルギーガス溶射法では、ガス温度
が最高でも約3000℃程度で比較的低く、かつガス流速が
マッハ2と高速であるため、高融点の酸化物系材料を溶
射した時、この酸化物系粉末が、被溶射材の表面に到達
するまでにすべて溶融するのは困難である。そのため、
一部の粉末は未溶融のままで被溶射材表面に付着すると
になる。その結果、溶射被膜中の酸化物粒子同士の結合
力は弱くなり、被膜中に多数の気孔が発生するととも
に、被溶射材表面への付着力も低下し強固な被膜が得ら
れないという欠陥があった。
As a method for improving the heat resistance, corrosion resistance, and wear resistance of a material, a method of spraying a material having excellent performance on the surface of the material is known. In particular, heat transfer tubes, burner impellers and gas turbine parts for coal-fired boilers
Since it is used at a high temperature of 0 ° C. and further causes corrosion and abrasion, oxide powders, which are high melting point materials such as alumina and zirconia, are widely used as thermal spraying materials. On the other hand, as a means for spraying these oxide powders, a plasma spraying method using a thermal plasma arc or a high energy gas spraying method using gas combustion or explosion energy is used. In order to obtain a strong coating by these spraying methods, it is necessary to adhere the sprayed powder to the material surface in a molten state. However, since the oxide-based material has a high melting point of 2000 ° C. or higher, it is difficult to spray this material by the above-mentioned thermal spraying method, particularly, the high energy gas thermal spraying method. That is, in the high-energy gas spraying method, the gas temperature is relatively low at about 3000 ° C. at the maximum, and the gas flow rate is as high as Mach 2; It is difficult for the entire system powder to melt before reaching the surface of the material to be sprayed. for that reason,
Some of the powder adheres to the surface of the material to be sprayed without melting. As a result, the bond strength between the oxide particles in the sprayed coating becomes weaker, many pores are generated in the coating, and the adhesion to the surface of the material to be sprayed is reduced, resulting in a defect that a strong coating cannot be obtained. there were.

これを改善する方法としては酸化物粒子をサブミクロ
ン以下に微細化する方法がある。
As a method of improving this, there is a method of reducing oxide particles to submicron or less.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このサブミクロン粒子の粉末を溶射材料として使用す
れば溶融性は向上するが、粉末の輸送中の流動性が非常
に悪くなる。この流動性の悪くなる理由は、粒子が細か
くなる程粒子同志が凝集し易くなり、湿気が高い場合は
特にその傾向が顕著になるからである。その結果、粉末
輸送管内に付着し易くなるため安定した粉末供給ができ
なかったり、目づまりを起こす恐れがある。また、微粒
子は重量が小さいため、溶射ガン内部で飛散し易くなる
ので、溶射ガン内部に付着して凝集しそれが未溶融のま
ま被膜中に混入し欠陥になる恐れもあるという問題があ
った。
When the powder of the submicron particles is used as a thermal spray material, the meltability is improved, but the fluidity of the powder during transportation is extremely deteriorated. The reason for the poor fluidity is that the finer the particles, the easier it is for the particles to agglomerate, especially when the humidity is high. As a result, the powder easily adheres to the inside of the powder transport tube, so that stable powder supply cannot be performed or clogging may occur. In addition, since the fine particles are small in weight and easily scattered inside the spray gun, there is a problem that the fine particles may adhere to the inside of the spray gun and agglomerate, mix with the unmelted state in the coating, and become a defect. .

本発明の目的は、上記の問題点を解決し、緻密で強固
な溶射被膜を得ることができる酸化物溶射材料を提供す
ることにある。
An object of the present invention is to solve the above problems and to provide an oxide spray material capable of obtaining a dense and strong spray coating.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の目的は、1μm以下の平均粒径からなる酸化
物の微粒子を結合して粉末粒子を形成し、該粉末粒子の
中が空洞であることを特徴とする酸化物系溶射材料を提
供することにより達成される。
An object of the present invention is to provide an oxide spray material characterized in that powder particles are formed by bonding oxide particles having an average particle diameter of 1 μm or less to form powder particles, and the inside of the powder particles is hollow. This is achieved by:

〔作用〕[Action]

溶射材料の粉末粒子は、平均粒径1μm以下の多数の
酸化物微粒子を結合して表層部を形成し内部に空洞を有
する大径の球状粒子であるので、溶射時には、粉末粒子
の表層部に熱が十分に伝達して、粉末粒子は容易に溶融
する。さらに、中空球状の粉末粒子が被溶射材表面に到
達する迄に分散しながら溶融し、被溶射材表面に衝突す
るので、溶融した酸化物微粒子が該表面に十分圧着され
る。
The powder particles of the thermal spray material are large-diameter spherical particles having a surface layer formed by bonding a large number of oxide fine particles having an average particle diameter of 1 μm or less to form a surface layer. The heat is sufficiently transferred and the powder particles melt easily. Further, the hollow spherical powder particles are melted while being dispersed until they reach the surface of the material to be sprayed, and collide with the surface of the material to be sprayed, so that the molten oxide fine particles are sufficiently pressed against the surface.

酸化物微粒子の平均粒径については、1μmを超える
と、溶射熱が十分微粒子内に伝達できなくて十分溶融し
ないまま被溶射表面に付着し圧着しにくくなるので好ま
しくない。
If the average particle diameter of the oxide fine particles exceeds 1 μm, it is not preferable because the spraying heat cannot be sufficiently transmitted into the fine particles and adheres to the surface to be sprayed without being sufficiently melted, thereby making it difficult to perform pressure bonding.

〔実施例〕〔Example〕

本発明の実施例について、第1図〜第3図により説明
する。
An embodiment of the present invention will be described with reference to FIGS.

第1図は本発明による酸化物系溶射材料である粉末粒
子の構成を示す説明図である。1個の粉末粒子は複数個
の酸化物微粒子1から構成されており、その粉末粒子の
内部は空洞2となっている。
FIG. 1 is an explanatory view showing the structure of powder particles as an oxide spray material according to the present invention. One powder particle is composed of a plurality of oxide fine particles 1, and the inside of the powder particle is a cavity 2.

本粉末粒子の製造手順の例を第2図に示す。この製造
方法は既に確立された微小中空球体化法の一方法であっ
て、数10μmの粒径を有する球状の母粒子3の表面に1
μm以下の酸化物微粒子1を平均厚さ数μmから10μm
で付着させ、次いで、母粒子3を熱処理または溶解等の
方法で除去する。微粒子の平均付着厚さは、おおよそ1
〜20μmの範囲、好ましくは5〜10μmが良好であっ
て、平均付着厚さが小さ過ぎると粉末輸送中にこわれ易
く、大き過ぎると溶射熱による溶融が十分でなくなる。
FIG. 2 shows an example of the procedure for producing the present powder particles. This production method is one of the established methods of forming a fine hollow sphere, in which the surface of a spherical mother particle 3 having a particle diameter of several tens of μm is applied to the surface.
The oxide fine particles 1 having a thickness of not more than μm have an average thickness of several μm to 10 μm.
Then, the base particles 3 are removed by a method such as heat treatment or dissolution. The average thickness of the particles is approximately 1
The average thickness is preferably in the range of 20 to 20 μm, preferably 5 to 10 μm. If the average adhesion thickness is too small, the powder tends to break during transportation, and if it is too large, melting by spraying heat is not sufficient.

この際、母粒子3の材質としては、比較的低温で燃焼
し炭酸ガスとなるカーボン、又はケトン、アセトン、エ
ーテル等の有機溶媒中で容易に溶解する有機粉末が好適
である。また、母粒子の粒径としては、流動性及び溶融
性を考慮すると200μm以下、好ましくは数10μmから2
00μm程度にするのが良い。
At this time, as a material of the base particles 3, carbon which is burned at a relatively low temperature to become carbon dioxide gas, or an organic powder which is easily dissolved in an organic solvent such as ketone, acetone and ether is preferable. The particle diameter of the base particles is 200 μm or less, preferably several tens μm to 2 μm in consideration of fluidity and meltability.
The thickness is preferably about 00 μm.

母粒子の粒径が200μmを超えると粉末粒子がつぶれ
易くなるので母粒子に付着させる微粒子層を厚くする必
要があり、そのため溶射時に熱が粉末粒子内を完全に伝
達することが困難になって粉末粒子が十分溶融しないま
ま被溶射材に付着して強度の弱い溶射被膜となる。一
方、母粒子の粒径が小さくなる程造粒しにくくなり、粉
末輸送中の流動性も次第に低下するが、母粒子の粒径が
数10μm以上では十分良好な結果が得られた。
When the particle size of the base particles exceeds 200 μm, the powder particles are easily crushed, so it is necessary to thicken the fine particle layer adhered to the base particles, so that it is difficult for heat to completely transfer inside the powder particles during thermal spraying. The powder particles are not sufficiently melted and adhere to the material to be sprayed to form a sprayed coating having low strength. On the other hand, as the particle size of the base particles becomes smaller, granulation becomes more difficult, and the fluidity during powder transportation gradually decreases. However, when the particle size of the base particles is several tens μm or more, sufficiently good results were obtained.

この粉末粒子の形成方法として、母粒子3がカーボン
の場合は、カーボンを含む結合剤で酸化物微粒子をカー
ボンの表面に付着させた後カーボンが燃焼する温度以上
(1000℃前後)で加熱する。この時母粒子のカーボンは
燃焼して炭酸ガスとなり、外層が酸化物微粒子で内部が
空洞である粉末粒子を形成することができる。
As a method for forming the powder particles, when the base particles 3 are carbon, the oxide fine particles are attached to the surface of the carbon with a binder containing carbon, and then heated at a temperature not lower than the temperature at which the carbon is burned (around 1000 ° C.). At this time, the carbon of the base particles is burned to form carbon dioxide gas, and powder particles having an outer layer of oxide fine particles and a hollow inside can be formed.

一方、母粒子が有機系粉末の場合は有機系バインダー
により酸化物微粒子を有機系粉末の表面に付着させた
後、有機系粉末が容易に溶解する溶媒中に浸せきさせる
ことによって本発明の粉末粒子を作製することができ
る。この際、得られた粉末を800℃から1000℃の温度で
熱処理することにより、粉末が焼結されて、微粒子同志
の結合力が大きくなって粉末粒子の強度を向上させるこ
とが出来る。粉末粒子の強度については、管内輸送中に
粉末粒子が破壊するのを防止するためにある程度の強度
が必要である。
On the other hand, when the base particles are organic powder, the powder particles of the present invention are obtained by attaching oxide fine particles to the surface of the organic powder with an organic binder and then immersing the particles in a solvent in which the organic powder is easily dissolved. Can be produced. At this time, by heating the obtained powder at a temperature of 800 ° C. to 1000 ° C., the powder is sintered, the bonding force between the fine particles is increased, and the strength of the powder particles can be improved. Regarding the strength of the powder particles, a certain degree of strength is required to prevent the powder particles from being broken during transportation in the pipe.

以下に、本発明の実施例の詳細について説明する。 Hereinafter, the embodiment of the present invention will be described in detail.

平均粒径1μm以下の微粒子の酸化物をジルコニア+
8%イットリアとし、母粒子をカーボンとした方法で中
が空洞である溶射粉末を前述の方法で作製し、高エネル
ギーガス溶射法の1種である爆発溶射法により鋼板表面
に0.3mmの厚さに溶射した。溶射条件は次のとおりであ
る。
The oxide of fine particles having an average particle diameter of 1 μm or less is converted to zirconia +
Sprayed powder with 8% yttria and hollow inside was prepared by the above method using carbon as the base particle, and 0.3 mm thick on the steel sheet surface by the explosive spraying method, which is a kind of high energy gas spraying method. Sprayed. The thermal spraying conditions are as follows.

酸素流量:70/min アセチレン流量:40/min 粉末供給量:10mg/sec 次に、得られた溶射被膜についてマイクロビッカース
硬度の測定(荷重:300g)及び断面の気孔率の測定を行
った。比較材として、市販の安定化ジルコニア粉末(粒
径10〜40μm)、及び特願昭62−73532号明細書に記載
された安定化ジルコニア粉末(粒径10〜40μm)とアル
ミナ粉末(粒径10〜40μm)とを96:4の割合で混合し造
粒した粉末を使用して同様な試料を作製し同様な測定を
行った。これらの結果を第1表に示す。
Oxygen flow rate: 70 / min Acetylene flow rate: 40 / min Powder supply rate: 10 mg / sec Next, the resulting sprayed coating was measured for micro Vickers hardness (load: 300 g) and the porosity of the cross section. As comparative materials, commercially available stabilized zirconia powder (particle size: 10 to 40 μm), stabilized zirconia powder (particle size: 10 to 40 μm) described in Japanese Patent Application No. 62-73532, and alumina powder (particle size: 10 to 40 μm) were used. 4040 μm) was mixed at a ratio of 96: 4, and a similar sample was prepared using the granulated powder, and the same measurement was performed. Table 1 shows the results.

この結果から明らかな様に、本発明による酸化物系粉
末材料を使用した溶射被膜は従来の溶射粉末を使用した
場合に比べて溶射被膜断面の硬度と気孔率に優れた強固
な被膜が得られることが分かる。
As is clear from these results, the thermal spray coating using the oxide-based powder material according to the present invention can provide a strong coating excellent in the hardness and porosity of the thermal spray coating cross section as compared with the case where the conventional thermal spray powder is used. You can see that.

また、本実施例で得られた溶射被膜の拡大図を第3図
に示す。本発明の酸化物系溶射材料による溶射被膜は第
3図(a)に示すように、微細な酸化物粒子5の間に形
成された気孔4は微細でかつ被膜中に均一に分布するの
に対し、比較例に示した従来の溶射材料である市販の安
定化ジルコニア粉末による溶射被膜は、第3図(b)に
示すように粒サイズの大きい酸化物粒子5の間に、大き
な気孔4が介在している。
FIG. 3 shows an enlarged view of the thermal spray coating obtained in this example. As shown in FIG. 3 (a), the thermal spray coating of the oxide thermal spray material of the present invention is such that the pores 4 formed between the fine oxide particles 5 are fine and uniformly distributed in the coating. On the other hand, as shown in FIG. 3 (b), the thermal spray coating made of a commercially available stabilized zirconia powder, which is a conventional thermal spray material shown in the comparative example, has large pores 4 between oxide particles 5 having a large particle size. Intervening.

以上の実施例に示したように、本発明による酸化物系
溶射材料を用いて溶射した被膜が優れた特性を示す理由
は、以下の通りである。
As shown in the above examples, the reason why a film sprayed using the oxide spray material according to the present invention exhibits excellent characteristics is as follows.

爆発溶射法により本粉末を溶射した場合、溶射の熱が
粉末粒子の表層部を形成する高融点の酸化物微粒子に十
分に伝達されるので粉末粒子は比較的低い温度でも容易
に溶融するとともに、粉末粒子が被溶射材表面に到達す
る迄に分散しながら十分溶融して被溶射材表面に衝突す
るので十分圧着される。このため溶射被膜中に個々の酸
化物粒子の間に形成される気孔は微細でかつ被膜中に均
一に分布するようになるので、緻密な被膜となる。
When this powder is sprayed by the explosive spraying method, the heat of the spraying is sufficiently transmitted to the high melting point oxide fine particles forming the surface layer of the powder particles, so that the powder particles are easily melted even at a relatively low temperature, The powder particles are sufficiently melted and dispersed until reaching the surface of the material to be sprayed and collide with the surface of the material to be sprayed. For this reason, the pores formed between the individual oxide particles in the thermal spray coating are fine and uniformly distributed in the coating, resulting in a dense coating.

〔発明の効果〕〔The invention's effect〕

本発明の構成によれば、酸化物系溶射材料の粉末粒子
は、高融点の酸化物微粒子からなる表層部とその内部に
形成された空洞とを有しているため、溶射時に酸化物微
粒子がよく溶融して、微粒子同志もよく結合し、被溶射
材表面にもよく圧着するので、気孔の少ない、非常に緻
密で強固な溶射被膜を形成することが出来る。
According to the configuration of the present invention, the powder particles of the oxide-based thermal spray material have a surface layer portion composed of high-melting oxide fine particles and a cavity formed therein. Since the particles are well melted, the fine particles are well bonded to each other, and are well pressed against the surface of the material to be sprayed, a very dense and strong thermal spray coating with few pores can be formed.

また、本発明の酸化物系溶射材料の粉末は外径の大き
い球状粒子のため流動性が優れ、粉末輸送管内で目ずま
りを起すこともなく、また溶射ガン内部に付着、凝集す
ることもないので、溶射ガン内部の付着物が未溶融のま
ま被膜中に混入し欠陥となる恐れがない。
In addition, the powder of the oxide-based thermal spray material of the present invention has excellent fluidity due to spherical particles having a large outer diameter, does not cause clogging in the powder transport tube, and also adheres and agglomerates inside the thermal spray gun. Therefore, there is no possibility that the deposits inside the spray gun are mixed into the coating film unmelted and become a defect.

従って、溶射被膜が酸化物系溶射材料で形成された緻
密な被膜なので耐食性に優れた強固な溶射被膜を得るこ
とが出来、この被膜を製品に適用することにより、製品
の耐熱・耐摩耗・耐食性を著しく向上させることが可能
となり、製品の寿命延長に大きく寄与する。
Therefore, since the thermal spray coating is a dense coating formed of an oxide thermal spray material, a strong thermal spray coating with excellent corrosion resistance can be obtained. By applying this coating to the product, the heat resistance, abrasion resistance, and corrosion resistance of the product can be obtained. Can be significantly improved, which greatly contributes to extending the life of the product.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明になる酸化物系溶射材料の粉末粒子の構
造を示す断面図、第2図は本発明になる酸化物系溶射材
料の粉末の製造方法を説明する断面図である。 第3図(a)は、本発明による酸化物系溶射材料による
溶射被膜の断面の気孔発生状況を示す説明図であり、第
3図(b)は、比較例の溶射材料による溶射被膜の断面
の気孔発生状況を示す説明図である。 1……微粒子、2……空洞。
FIG. 1 is a cross-sectional view showing the structure of powder particles of the oxide-based thermal spray material according to the present invention, and FIG. 2 is a cross-sectional view for explaining a method for producing powder of the oxide-based thermal spray material according to the present invention. FIG. 3 (a) is an explanatory view showing the porosity of the cross section of the thermal spray coating made of the oxide thermal spray material according to the present invention, and FIG. 3 (b) is the cross section of the thermal spray coating of the comparative thermal spray material. FIG. 4 is an explanatory diagram showing a state of pore generation. 1 ... fine particles, 2 ... cavities.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−262453(JP,A) 特開 昭58−151474(JP,A) 特開 昭57−210969(JP,A) 特開 昭56−150178(JP,A) 特開 昭56−33469(JP,A) 金属,57[4](昭62−4−1), P.54−57 Adu,Therm Sprayin g(1986),P.241−249,M.R.D orfman and J.D.Rea rdon,”Spherical Ce ramic Powders for Thermal Spraying" ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-262453 (JP, A) JP-A-58-151474 (JP, A) JP-A-57-210969 (JP, A) 150178 (JP, A) JP-A-56-33469 (JP, A) Metal, 57 [4] (Showa 62-4-1); 54-57 Adu, Therm Spraying (1986); 241-249, M.P. R. Dorfman and J.M. D. Realdon, "Spherical Ceramic Powers for Thermal Spraying"

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1μm以下の平均粒径からなる酸化物の微
粒子を結合して粉末粒子を形成し、該粉末粒子の中が空
洞であることを特徴とする酸化物系溶射材料。
1. An oxide-based thermal spray material characterized in that oxide particles having an average particle diameter of 1 μm or less are combined to form powder particles, and the inside of the powder particles is hollow.
【請求項2】前記酸化物がジルコニア、アルミナ、チタ
ニア、イットリア、マグネシア、カルシア、クロミアの
うち少なくとも1種からなることを特徴とする特許請求
の範囲第1項に記載の酸化物系溶射材料。
2. The oxide spray material according to claim 1, wherein said oxide comprises at least one of zirconia, alumina, titania, yttria, magnesia, calcia, and chromia.
【請求項3】前記粉末粒子の空洞の直径が200μm以下
であることを特徴とする特許請求の範囲第1項又は第2
項に記載の酸化物系溶射材料。
3. The method according to claim 1, wherein the diameter of the cavity of the powder particles is 200 μm or less.
Item 2. The oxide spray material according to item 1.
JP62259042A 1987-10-14 1987-10-14 Oxide spray material Expired - Fee Related JP2640234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259042A JP2640234B2 (en) 1987-10-14 1987-10-14 Oxide spray material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259042A JP2640234B2 (en) 1987-10-14 1987-10-14 Oxide spray material

Publications (2)

Publication Number Publication Date
JPH01104756A JPH01104756A (en) 1989-04-21
JP2640234B2 true JP2640234B2 (en) 1997-08-13

Family

ID=17328527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259042A Expired - Fee Related JP2640234B2 (en) 1987-10-14 1987-10-14 Oxide spray material

Country Status (1)

Country Link
JP (1) JP2640234B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762035B2 (en) * 2011-02-10 2015-08-12 三菱日立パワーシステムズ株式会社 Thermal spray powder and method for producing thermal spray powder
JP6908973B2 (en) 2016-06-08 2021-07-28 三菱重工業株式会社 Manufacturing methods for thermal barrier coatings, turbine components, gas turbines, and thermal barrier coatings
JP7169077B2 (en) 2018-03-26 2022-11-10 三菱重工業株式会社 Thermal barrier coating, turbine component, gas turbine, and method for producing thermal barrier coating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Adu,Therm Spraying(1986),P.241−249,M.R.Dorfman and J.D.Reardon,"Spherical Ceramic Powders for Thermal Spraying"
金属,57[4](昭62−4−1),P.54−57

Also Published As

Publication number Publication date
JPH01104756A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
EP0455996B1 (en) Composite thermal spray powder of metal and non-metal
US4645716A (en) Flame spray material
JP2008155206A (en) Method for coating metal matrix composite material
JPS58151474A (en) Manufacture of flame spray powder and porous coating
JP6979754B2 (en) Thermal spray material and thermal spray coating
JP2640234B2 (en) Oxide spray material
JPH05320860A (en) Zirconia powder for thermal spraying
JP2003503601A (en) Ceramic material and manufacturing method, ceramic material utilization method and layer made of ceramic material
JP3735671B2 (en) Method for forming sprayed coating
JP3403460B2 (en) Method for producing carbon material having non-oxide ceramic spray coating
JP2770968B2 (en) Chromium carbide-metal composite powder for high energy spraying
JP2700241B2 (en) Oxide spray material
JPH0215157A (en) Oxide-type thermal spraying material
JPS6156313B2 (en)
JPS58113369A (en) Powder material for melt-spraying and its production
JP3254730B2 (en) Zirconia powder for thermal spraying
JP2000044843A (en) Coating material and its production
JP2003105426A (en) Water-cooled lance for metallurgical use and manufacturing method therefor
JPS61186190A (en) Composite filter rod for building up by welding
EP4385967A1 (en) Spray powder for high porosity coatings
JPS6320441A (en) Thermal spraying method
JP2770967B2 (en) Surface treatment method for metal materials
CN115896672A (en) Powder for thermal spraying and method for producing thermal-sprayed film
JPS61157621A (en) Roll for heat-treating furnace
JP2016183065A (en) Composite hollow particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees