JPH01306533A - Production of composite material of intermetallic compound - Google Patents

Production of composite material of intermetallic compound

Info

Publication number
JPH01306533A
JPH01306533A JP13869788A JP13869788A JPH01306533A JP H01306533 A JPH01306533 A JP H01306533A JP 13869788 A JP13869788 A JP 13869788A JP 13869788 A JP13869788 A JP 13869788A JP H01306533 A JPH01306533 A JP H01306533A
Authority
JP
Japan
Prior art keywords
metal
molding
fibers
molten
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13869788A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kajikawa
義明 梶川
Tetsuya Suganuma
菅沼 徹哉
Atsuo Tanaka
淳夫 田中
Takashi Morikawa
隆 森川
Masahiro Kubo
雅洋 久保
Tetsuya Nukami
額見 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13869788A priority Critical patent/JPH01306533A/en
Publication of JPH01306533A publication Critical patent/JPH01306533A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce the good composite material which is an intermetallic compd. by bringing a molding contg. an inorg. reinforcing material, metal forming the intermetallic compd. with Al, and the fine pieces of metal fluoride into contact with molten Al, thereby penetrating the molten Al therein. CONSTITUTION:Ni-plated carbon fibers 10 and Ni fibers 12 are oriented unidirectionally in the state of mixing the same substantially uniformly with each other into a stainless steel case 14 in such a manner that the respective volume ratios attain about 38% and about 43% and a columnar molding 16 is formed. This molding 16 is immersed together with the case 14 into an aq. K2ZrF6 soln. 18 of about 13g/100cc concn. and about 90 deg.C; thereafter, the molding is heated together with the case 14 to about 150 deg.C and is sufficiently dried to deposit the crystals of K2ZrF6 finely on the surfaces of the individual fibers. This molding 16 is then preheated by heating the same for 10 minutes at about 200 deg.C and is immersed together with the case 14 for about 2 minutes in the pure molten Al 20 kept at about 750 deg.C. The molding is taken out of the molten metal and the molten metal 20 is allowed to solidify as it is. The good composite material is thereby obtd. at a low cost without pressurizing the molten metal 20 and without preheating the reinforcing material 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合材料に係り、更に詳細にはセラミック繊
維の如き無機質の繊維等を強化材とし、主としてAlと
他の金属との金属間化合物をマトリックスとする複合材
料の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to composite materials, and more particularly to composite materials that use inorganic fibers such as ceramic fibers as reinforcing materials, and mainly contain intermetallic compounds of Al and other metals. This invention relates to a method for manufacturing a composite material used as a matrix.

従来の技術 例えば昭和58年に出版された「工業材料」(■o1.
31)の第21頁、1986年に発行されたMetal
 Progressの第27頁、昭和60年に涌1’i
iされた「耐熱金属材料第123委員会研究報告」(V
ol、26、No、1)の第69頁に記載されている如
く、マトリックスが主として金属間化合物である複合材
料の製造方法として、■同相法(ホットプレス、HIP
)、■沈積法(溶射、めっき、CVD)、■粉末冶金法
等が従来より知られている。
Conventional technology For example, "Industrial Materials" (■o1.
31), page 21 of Metal, published in 1986.
Progress page 27, Waku 1'i in 1985
“Research Report of the 123rd Committee on Heat-Resistant Metallic Materials” (V
As described on p. 69 of OL, 26, No. 1), as a method for producing composite materials whose matrix is mainly an intermetallic compound,
), (1) deposition method (thermal spraying, plating, CVD), (2) powder metallurgy method, etc. are conventionally known.

発明が解決しようとする課題 しかし上述の■の方法は、強化繊維の直径が大きく、マ
トリックス金属が塑性流動により容易に繊維の間に侵入
し得る場合に限定されるという問題かある。またこの方
法は板状の複合材料を製造するのには適しているが、そ
れ以外の形状の複合材料を製造することが困難であり、
また製造装置及び」1程が複雑であるため、複合材料の
製造コストが高くなり易いという問題がある。
Problems to be Solved by the Invention However, the above-mentioned method (1) has a problem in that it is limited to cases where the reinforcing fibers have a large diameter and the matrix metal can easily penetrate between the fibers due to plastic flow. In addition, although this method is suitable for manufacturing plate-shaped composite materials, it is difficult to manufacture composite materials of other shapes.
In addition, since the manufacturing equipment and apparatus are complicated, there is a problem that the manufacturing cost of the composite material tends to be high.

また上述の■の方法はマトリックスを稠密化することが
困難であり、また個々の繊維の間へ必ずしも十分にマト
リックスが充填せず、従って良好な段合祠料を製造する
ことか困難である。
In addition, in the method (2) described above, it is difficult to densify the matrix, and the matrix does not necessarily fill sufficiently between the individual fibers, making it difficult to produce a good corrugated abrasive material.

史に上述の■の方法に於ては、強化材が繊維長の比較的
大きい繊維である場合には繊維を均一に分散させること
が困難であり、またHIPやホットプレスを使用しない
と複合化を達成することが困難であり、そのため複合材
料の製造コストが高いという問題があり、更には113
状が曳雑な複合材料や大型の複合材料を製造するこが困
難であるという問題がある。
In the method (2) mentioned above, if the reinforcing material is a relatively long fiber, it is difficult to uniformly disperse the fibers, and if HIP or hot pressing is not used, it is difficult to form a composite. There is a problem that it is difficult to achieve, and therefore the manufacturing cost of composite materials is high, and furthermore, 113
There is a problem in that it is difficult to manufacture complex-shaped composite materials or large-sized composite materials.

本発明は、マトリックスか主として金属間化合物である
複合材料を製造する従来の方法に於ける上述の如き種々
の問題に鑑み、マトリックスが主として金属間化合物で
ある良好な複合材料を能率よく且低廉に製造することの
できる方法を提供することを1」的としている。
In view of the various problems mentioned above in the conventional methods of manufacturing composite materials in which the matrix is mainly an intermetallic compound, the present invention provides an efficient and inexpensive way to produce a good composite material in which the matrix is mainly an intermetallic compound. The first objective is to provide a method for manufacturing.

課題を解決するための手段 上述の如きl」的は、本発明によれば、無機質の強化材
と、Alと反応して金属間化合物を形成する金属と、金
属フッ化物の微細j1とを含む多孔質の成形体を形成し
、該成形体の少なくとも一部をAl又はA l l″?
金の溶湯に接触させ、前記溶l易を実質的に加圧するこ
となく前記成形体中に浸透させる金属間化合物132 
合材料の製造h−法によって達成される。
Means for Solving the Problems According to the present invention, the above-mentioned target contains an inorganic reinforcing material, a metal that reacts with Al to form an intermetallic compound, and fine particles of metal fluoride. A porous molded body is formed, and at least a portion of the molded body is made of Al or Al.
An intermetallic compound 132 that is brought into contact with molten gold and infiltrated into the molded body without substantially pressurizing the molten metal.
This is accomplished by the H-method of manufacturing composite materials.

発明の作用及び効果 本発明の方法によれば、無機質の強化材と、Alと反応
して金属間化合物を形成する金属と、金属フッ化物の微
細片とを含む多孔質の成形体が形成され、該成形体の少
くとも一部がAl又はAl合金の溶l易に接触せしめら
れる。
Effects and Effects of the Invention According to the method of the present invention, a porous molded body containing an inorganic reinforcing material, a metal that reacts with Al to form an intermetallic compound, and fine pieces of metal fluoride is formed. , at least a portion of the molded body is brought into contact with meltable Al or Al alloy.

一般にAlと反応して金属間化合物を形成する金属(以
下特定の金属という)はAl又はAl合金の溶出に対す
る濡れ性に優れているので、溶出は特定の金属を伝って
成形体中へ浸透する。また金属フッ化物は溶湯及び特定
の金属の表面の酸化膜を除去して強化+1に対する溶湯
の濡れを敗訴する。また溶湯及び特定の金属は互いに反
応することによって金属間化合物を形成すると共に発熱
し、その熱によって溶湯及び強化材が加熱され、これに
より溶出の成形体中への浸透性及び強化材の濡れ性か向
上され、これにより溶湯が成形体中へ良好に浸透してい
くと共に個々の強化材の間に金属間化合物が順次良好に
形成される。
In general, metals that react with Al to form intermetallic compounds (hereinafter referred to as specific metals) have excellent wettability against the elution of Al or Al alloys, so the elution penetrates into the compact through the specific metal. . Also, metal fluoride removes the oxide film on the surface of the molten metal and certain metals, thereby eliminating the wetting of the molten metal against reinforcement +1. In addition, the molten metal and specific metals react with each other to form intermetallic compounds and generate heat, which heats the molten metal and the reinforcing material, which improves the permeability of elution into the compact and the wettability of the reinforcing material. As a result, the molten metal penetrates into the molded body well, and intermetallic compounds are successively formed between the individual reinforcing materials.

従って本発明の方法によれば、金属の溶湯を加圧したり
強化材を高温に予熱する必要がなく、従って金属の溶湯
を加圧したり強化材を高温に予熱するための大川りな設
jiiiを要しないので、金属間化合物が個々の強化材
の間に良好に充填された複合材料をホットプレス法の如
き従来の方法に比して能率よく低廉に製造することがで
きる。
Therefore, according to the method of the present invention, there is no need to pressurize the molten metal or preheat the reinforcing material to a high temperature, and therefore, there is no need for Okawa Rina equipment for pressurizing the molten metal or preheating the reinforcing material to a high temperature. Therefore, a composite material in which intermetallic compounds are well filled between individual reinforcing materials can be produced more efficiently and at lower cost than conventional methods such as hot pressing.

また複合材料を製造する際の処理温度は、従来の方法に
於ては1000℃以上であるのに対し、本発明の方法に
於ては約750℃以下であるので、従来の方法に比して
強化材の劣化を低減することができ、このことによって
も良好な複合材料を製造することができる。
Furthermore, the processing temperature when manufacturing composite materials is 1000°C or higher in conventional methods, whereas it is approximately 750°C or lower in the method of the present invention, which is superior to conventional methods. Therefore, deterioration of the reinforcing material can be reduced, and a good composite material can also be manufactured by this.

また本発明の方法によれば、上述の如く金属の溶湯が良
好に成形体中へ浸透して行くので、強化材と金属と金属
フッ化物の微細片とを含む成形体を所定の形状及び寸法
にて形成し、その一部を金属の溶出に接触させれば、成
1[a体全体に金属の溶湯が過不足なく迅速に浸透する
と共に金属間化合物が形成され、これにより実質的に所
定の形状及び寸法の複合材料が形成される。従って非常
に高い歩留りにて実質的に所定の形状及び寸法の複合材
事1を能率よく低廉に製造することができ、また棒状や
板状の連続的な成形体を形成することにより、長尺の複
合材料を連続的に製造することができ、史には製造され
た複合材料に対しそのまま圧延や鍛造の如き二次加工を
連続的に行うことができる。
Furthermore, according to the method of the present invention, as described above, the molten metal penetrates into the molded body well, so that the molded body containing the reinforcing material, the metal, and fine pieces of metal fluoride can be formed into a predetermined shape and size. If a part of the molten metal is brought into contact with the elution of the metal, the molten metal will quickly permeate the entire body, and an intermetallic compound will be formed, which will substantially form a predetermined amount. A composite material of shape and dimensions is formed. Therefore, it is possible to efficiently and inexpensively produce a composite material 1 having a substantially predetermined shape and dimensions at a very high yield, and by forming a continuous molded product in the shape of a rod or plate, it is possible to It is possible to continuously manufacture composite materials, and in history, secondary processing such as rolling and forging can be continuously performed on the manufactured composite materials as they are.

本発明の一つの詳細な特徴によれば、金属は短繊維、ウ
ィスカ、粉末の如き微細片として使用され、従って強化
材と金属の微細片と金属フッ化物@細片とを混合するこ
とにより、或いは強化材の表面に金属の微細片及び金属
フッ化物の微細片を付着することにより、これらよりな
る成形体が形成される。
According to one particular feature of the invention, the metal is used in fine pieces such as short fibers, whiskers, powder, and thus by mixing the reinforcing material with the metal fine pieces and the metal fluoride@stripes. Alternatively, by attaching fine pieces of metal and fine pieces of metal fluoride to the surface of the reinforcing material, a molded body made of these is formed.

本発明の他の一つの詳細な特徴によれば、金属は強化材
の表面に被覆される。従ってこの場合には金属にて被覆
された強化(」″と金属フッ化物とを混合することによ
り、或いは金属にて被覆された強化材の表面に金属フッ
化物を付着させることにより、これらよりなる成形体が
形成される。
According to another detailed feature of the invention, the metal is coated on the surface of the reinforcement. Therefore, in this case, by mixing a metal-coated reinforcement material with a metal fluoride, or by attaching a metal fluoride to the surface of a metal-coated reinforcement material, A molded body is formed.

本発明の他の一つの詳細な特徴によれば、強化材の表面
に金属が被覆され、その被覆層中に金属フッ化物の微細
片が分散され、かかる複合被覆層を有する強化材を用い
て成形体が形成される。
According to another detailed feature of the invention, the surface of the reinforcing material is coated with metal, fine particles of metal fluoride are dispersed in the coating layer, and the reinforcing material with such a composite coating layer is used. A molded body is formed.

また本発明の方法に於ては、金属フッ化物は任意の金属
元素のフッ化物であってよいが、例えばに2 ZrF6
 、K2 TiF6 、KAlF4 、K2AlF3 
、K2 AlF3−H20、CS A I F 4、C
s A I F 5  ・H20の如く、アルカリ金属
、アルカリ土類金属、希土類金属の如き電気的に正の元
素と結合したTi5Zr、Hf、V、Nb5Taの如き
遷移金属又はAIを含むフッ化物であることが好ましい
。従って本発明の他の一つの詳細な特徴によれば、金属
フッ化物は電気的に正の金属元素と結合した遷移金属又
はAIを含むフッ化物である。
Further, in the method of the present invention, the metal fluoride may be a fluoride of any metal element, but for example, 2 ZrF6
, K2TiF6 , KAlF4 , K2AlF3
, K2 AlF3-H20, CS AIF 4, C
s A I F 5 ・H20 is a fluoride containing transition metals such as Ti5Zr, Hf, V, Nb5Ta, or AI combined with electrically positive elements such as alkali metals, alkaline earth metals, and rare earth metals. It is preferable. According to another detailed feature of the invention, therefore, the metal fluoride is a fluoride containing a transition metal or AI in combination with an electrically positive metal element.

また本発明の方法に於ては、成形体に含まれる金属はA
Iと反応して金属間化合物を形成する限り任意の金属で
あってよい力1、特にNi、Fe。
Further, in the method of the present invention, the metal contained in the molded body is A
Force 1 may be any metal as long as it reacts with I to form an intermetallic compound, especially Ni, Fe.

Co、Cr、M n、Cu、Ag5S i、Mg、Z「
、Zn、Sn、Pb、Ti5Nb、又はこれらの何れか
を主成分とする合金であることが好ましい。従って本発
明の他の一つの詳細な特徴によれば、金属はNi、Fe
、、Co、CrSMn、CusAg、S t、Mg、Z
 r、Zn、Sn%Pb%TtSNb、及びこれらの何
れかを主成分とする合金よりなる群より選択された金属
細片である。
Co, Cr, M n, Cu, Ag5S i, Mg, Z
, Zn, Sn, Pb, Ti5Nb, or an alloy containing any of these as a main component. Therefore, according to another detailed feature of the invention, the metal is Ni, Fe.
,, Co, CrSMn, CusAg, St, Mg, Z
The metal flakes are selected from the group consisting of r, Zn, Sn%Pb%TtSNb, and alloys containing any of these as main components.

また本発明の更に他の一つの詳細な特徴によれば、成形
体は所定の形状及び寸法を有し、その−部のみが金属の
溶湯に浸漬される。かかる方法によれば、金属の溶湯を
加圧したり所定の製品形状を郭定するための鋳型等を使
用することなく、所定の形状及び寸法の複合材料を非常
に高い歩留りにて能率よくn匹廉に製造することができ
る。
According to yet another detailed feature of the invention, the molded body has a predetermined shape and dimensions, and only a portion thereof is immersed in the molten metal. According to this method, n pieces of composite material of a predetermined shape and size can be efficiently produced at a very high yield without pressurizing molten metal or using a mold to define a predetermined product shape. Can be manufactured cheaply.

尚本発明の方法に於ては、成形体の予熱は不要であるが
、金属の溶湯に対する強化材及び金属の罵れ性を向上さ
せるべく成形体を予熱する場合には、その温度は従来よ
り採用されている温度よりも低いことが好ましい。また
本発明に於ける金属フッ化物の微細片の形態は短繊維、
ウィスカ、粉末の如き任意の形態のものであってよい。
In the method of the present invention, it is not necessary to preheat the molded body, but when preheating the molded body in order to improve the abrasiveness of the reinforcing material and the metal against molten metal, the temperature is lower than that of the conventional method. Preferably, the temperature is lower than that employed. In addition, the form of the fine pieces of metal fluoride in the present invention is short fibers,
It may be in any form such as whiskers or powder.

また本発明の方法に於ては、強化材の形態及び材質は任
意のものであってよく、例えば炭化ケイ素繊維、アルミ
ナ繊維の如きセラミック繊維、鉄繊維、タングステン繊
維の如き金属繊維、炭素繊維の如きセラミック及び金属
以外の無機質繊維、炭化ケイ素ウィスカの如きウィスカ
、炭化ケイ素粒子、炭化チタン粒子の如き粒子であって
よい。
In addition, in the method of the present invention, the reinforcing material may have any form and material, for example, silicon carbide fibers, ceramic fibers such as alumina fibers, iron fibers, metal fibers such as tungsten fibers, carbon fibers, etc. The particles may be inorganic fibers other than ceramics and metals such as ceramics and metals, whiskers such as silicon carbide whiskers, silicon carbide particles, and titanium carbide particles.

以下に添付の図を参照して本発明を実施例について詳細
に説明する。
The invention will now be described in detail by way of example embodiments with reference to the accompanying drawings.

実・施例1 第1図に示されている如く、厚さ0.2μmにてNiが
めっきされた炭素繊維10(繊維径7μm1東し株式会
社製rT300J)と、繊維径4μ−のNi繊維12(
鈴木金属工業株式会社製「スズロン」)とをそれぞれ長
さ10cmに切断し、それらをそれぞれの体積率が38
96.4396になるようステンレス鋼製のケース(長
さ12en、外径12+am、内径10■)内に互いに
実質的に均一に混合された状態にて一方向に配向して充
填し、これによりNiにてめっきされた炭素繊維とNi
繊維とよりなる円柱形の成形体16を形成した。
Practical Example 1 As shown in Fig. 1, carbon fiber 10 plated with Ni to a thickness of 0.2 μm (fiber diameter 7 μm 1 rT300J manufactured by Toshi Co., Ltd.) and Ni fiber with a fiber diameter of 4 μm were used. 12(
"Suzlon" manufactured by Suzuki Metal Industry Co., Ltd.) was cut into 10 cm long pieces, each with a volume ratio of 38 cm.
96.4396 in a stainless steel case (length 12en, outer diameter 12+am, inner diameter 10mm), the Ni Carbon fiber and Ni plated with
A cylindrical molded body 16 made of fibers was formed.

次いで第2図に示されている如く、成形体16を濃度1
3g/100cc、温度90℃のに2ZrF6水溶液1
8中にケース毎浸漬し、しかる後成形体をケース海豹1
50℃に加熱することにより十分乾燥させ、これにより
個々の繊維の表面にに2ZrF6の結晶を微細に析出さ
せた。
Next, as shown in FIG.
3g/100cc, 2ZrF6 aqueous solution 1 at a temperature of 90°C
8, and then the molded body was immersed in case 1.
The fibers were sufficiently dried by heating to 50° C., thereby finely depositing 2ZrF6 crystals on the surface of each fiber.

次いで成形体16をケース海豹200℃に10分間加熱
することにより予熱し、しかる後第3図に示されている
如く、かくして予熱された成形体16をケース海豹75
0℃の純Alの溶湯20内に2分間浸漬して溶湯より取
出し、そのままの状態で溶湯を凝固させた。この場合溶
湯はそれが凝固するまで表面張力により成形体に付着し
た状態を維持し、実質的に成形体より滴り落ちることは
なかった。
Next, the molded body 16 is preheated by heating to 200° C. for 10 minutes, and then the preheated molded body 16 is heated to a temperature of 200° C. as shown in FIG.
It was immersed in a molten metal 20 of pure Al at 0° C. for 2 minutes, taken out from the molten metal, and left to solidify the molten metal. In this case, the molten metal remained attached to the molded body due to surface tension until it solidified, and substantially did not drip from the molded body.

溶湯が完全に凝固した後、その凝固体を切断してその断
面の金属組織を光学顕微鏡にて調査したところ、マトリ
ックス金属の含浸不良部は存在していなかった。また凝
固体の切断面の組織をEPMAにて分析したところ、炭
素繊維表面のNi及びNi繊維が純Al溶湯と反応する
ことにより形成されたNi3Alか7トリツクス部分の
断面の大部分を占めており、従って主として金属間化合
物Ni3Alをマトリックスとし一方向に配向された体
積率約3096の炭素繊維を強化材とする複合材料が良
好に形成されていることが認められた。
After the molten metal was completely solidified, the solidified body was cut and the metallographic structure of the cross section was examined using an optical microscope. As a result, there was no defective impregnation of the matrix metal. Furthermore, when the structure of the cut surface of the solidified body was analyzed using EPMA, it was found that Ni on the surface of the carbon fiber and Ni fibers formed by reacting with pure Al molten metal accounted for most of the cross section of the Ni3Al or 7 trix portion. Therefore, it was confirmed that a composite material mainly composed of the intermetallic compound Ni3Al as a matrix and carbon fibers oriented in one direction and having a volume fraction of about 3096 as a reinforcing material was well formed.

実施例2 繊維径15μmのSiC繊維(11本カーボン株式会社
製「ニカロン」)及び譲錐径1. Ott mのTi繊
維をそれぞれ長さ10cmに切断し、それらをそれぞれ
の体積率が40%、30?6になるようステンレス鋼製
のケース(長さ12c1、外径12mm。
Example 2 SiC fibers with a fiber diameter of 15 μm (11 “Nicalon” manufactured by Carbon Co., Ltd.) and a cone diameter of 1. Ott m Ti fibers were cut into lengths of 10 cm, and each was placed in a stainless steel case (length: 12 cm, outer diameter: 12 mm) so that the volume ratio of each fiber was 40% and 30~6.

内径10■)内に互いに実質的に均一に混合された状態
にて一方向に配向して充填し、これによりS i CG
R錐とT i繊維とよりなる円柱形の成形体を形成した
S i CG
A cylindrical molded body consisting of an R-shaped cone and Ti fibers was formed.

次いで実施例1の場合と同様の要領及び条件にて成形体
を処理し、これにより個々の繊維の表面にに2ZrFδ
の結晶を微細に析出させた。次いで成形体を約200℃
に10分間加熱することによりr熱し、しかる後かくし
て予熱された成形体をケース海豹750℃の純Alの溶
湯内に2分間浸漬して溶出より取出し、そのままの状態
で溶湯を凝固させた。この場合にも溶出はそれが凝固す
るまで表面張力により成形体に付着した状態を維持し、
実質的に成形体より滴り落ちることはなかった。
The molded body was then treated in the same manner and under the same conditions as in Example 1, whereby 2ZrFδ was applied to the surface of each fiber.
Fine crystals were precipitated. The molded body is then heated to about 200°C.
After that, the preheated molded body was immersed in a pure Al molten metal at 750° C. for 2 minutes and taken out from the eluent, and the molten metal was allowed to solidify in that state. In this case as well, the eluate remains attached to the molded body due to surface tension until it solidifies.
There was virtually no dripping from the molded article.

溶湯が完全に凝固した後、その凝固体を切1折してその
断面の金属組織を光学顕@鏡にて調査したところ、マト
リックス金属の含浸不良部は存在していなかった。また
凝固体の切断面の組織をEPMAにて分析したところ、
Ti繊維が純Al溶湯と反応することにより形成された
TiAlがマトリックス部分の断面の大部分を占めてお
り、従って七として金属間化合物TiAlを7トリツク
スとし一方向に配向された体積率約40%のSiC繊維
を強化材とするIM、&+J料が良好に形成されている
ことが認められた。
After the molten metal had completely solidified, the solidified body was cut and the metallographic structure of the cross section was examined using an optical microscope, and no defective matrix metal impregnation was found. In addition, when the structure of the cut surface of the coagulated body was analyzed using EPMA,
TiAl formed by the reaction of Ti fibers with pure Al molten metal occupies most of the cross section of the matrix portion, and therefore, the intermetallic compound TiAl is used as a 7 trix and the volume fraction oriented in one direction is approximately 40%. It was observed that IM and &+J materials using SiC fibers as reinforcing materials were well formed.

実施例3 平均繊維径0.5μms平均m It長150zzmの
SiCウィスカ(東海カーボン株式会i!、製「1・−
カマソクス」)の表面に厚さ0.2μmにてNiを無電
解めっきした。次いでかくしてめっきされたSiCウィ
スカと平均粒径5μlのNi合金粉末(N i  O、
196B )とを10:’63の体積比にて均一に混合
し、更にその混合物とK A I F4粉末とを均一に
混合し、その混合物を金型にて圧縮成形することにより
SiCウィスカ及びNi合金粉末の体積率がそれぞれ1
096.63%であり、直径30mm、厚さ5+amの
寸法を有する円板状の成形体を形成した。
Example 3 SiC whiskers (manufactured by Tokai Carbon Co., Ltd. i!, “1.-
Ni was electrolessly plated to a thickness of 0.2 μm on the surface of the “Kamasokusu”). The thus plated SiC whiskers were then mixed with Ni alloy powder (N i O,
SiC whiskers and Ni The volume fraction of alloy powder is 1
096.63%, and a disc-shaped molded body having dimensions of 30 mm in diameter and 5+ am in thickness was formed.

次いで成形体を約300℃に予熱した後、かくして−r
熱された成形体をケース海豹750℃の純Alの溶出内
に2分間浸漬して溶ルシより取出し、そのままの状態で
溶湯を凝固させた。この場合にも溶湯はそれが凝固する
まで表面張力により成形体にf・j右した状態を維持し
、実質的に成形体より滴り落ちることはなかった。
The compact is then preheated to about 300°C, and then -r
The heated molded body was immersed in pure Al eluate at 750° C. for 2 minutes and taken out from the melt, and the molten metal was allowed to solidify in that state. In this case as well, the molten metal remained in a state where it was attached to the molded body due to surface tension until it solidified, and substantially did not drip from the molded body.

溶湯か完全に凝固した後、その凝固体を切断してその断
面の金属組織を光学顕微鏡にて調査した所、マトリック
ス金属の含浸不良部は存在していなかった。また凝固体
の切断面の組織をE P M Aにて分析したところ、
SiCウィスカ表面のNi及びNi合金粉末のNiか純
Al溶湯と反応することにより形成されたNi3Alが
マトリックス部分の断面の大部分を占めており、従って
主として金属間化合物Ni3A+をマトリックスとし体
積率約1096のSiCウィスカを強化材とする複合材
料が良好に形成されていることか認められた。
After the molten metal had completely solidified, the solidified body was cut and the metallographic structure of the cross section was examined using an optical microscope, and no defective matrix metal impregnation was found. In addition, when the structure of the cut surface of the coagulated body was analyzed by EPM A, it was found that
Ni3Al formed by reacting Ni on the surface of the SiC whisker and Ni alloy powder with pure Al molten metal occupies most of the cross section of the matrix portion, and therefore the intermetallic compound Ni3A+ is mainly used as a matrix and the volume fraction is approximately 1096. It was observed that a composite material using SiC whiskers as a reinforcing material was well formed.

実施例4 平均繊維径0.3μm1平均繊維長100μlのSi3
N4ウィスカと平均繊維径20μI5平均繊維長1−9
5IIIIIlのTi繊維とを1=2の体積比にて均一
に混合し、その混合物にに2ZrF6粉末を均一に混合
し、その混合物を金型にて圧縮成形することにより、S
i3N4ウィスカ及びTi繊維の体積率がそれぞれ20
%、4096であり、実施例3の成形体と同一の寸法及
び形状を有する円板状の成形体を形成した。
Example 4 Si3 with average fiber diameter 0.3 μm 1 average fiber length 100 μl
N4 whisker and average fiber diameter 20μI5 average fiber length 1-9
S
The volume fractions of i3N4 whiskers and Ti fibers are each 20
%, 4096, and a disk-shaped molded body having the same dimensions and shape as the molded body of Example 3 was formed.

次いでかくして形成された成形体を用いて実施例3の場
合と同一の要領及び条件にて複合材料を形成し、その複
合材料を切断してその断面の金属組織を光学顕微鏡にて
調査したところ、マトリックス金属の含浸不良部は存在
していなかった。また凝固体の切断面の組織をEPMA
にて分析したところ、Ti繊維が純Al溶湯と反応する
ことにより形成されたTiAlがマトリックス部分の断
面の大部分を占めており、従って主として金属間化合物
TiAlをマトリックスとし体清率約2096のSi3
N4ウィスカを強化材とする複合材料が良好に形成され
ていることが認められた。
Next, a composite material was formed using the molded body thus formed in the same manner and under the same conditions as in Example 3, and the composite material was cut and the metal structure of the cross section was investigated using an optical microscope. There were no areas with poor matrix metal impregnation. In addition, the structure of the cut surface of the coagulated body was examined using EPMA.
According to the analysis, TiAl formed by the reaction of Ti fibers with pure Al molten metal occupies most of the cross section of the matrix part.
It was observed that the composite material with N4 whiskers as a reinforcement material was well formed.

実施例5 平均繊維径12μm1平均繊維長1■のW繊維と゛1ξ
均粒径40μmのCu粉末とを15:28の体積比にて
均一に混合し、その混合物にに2ZrF6扮末を均一に
混合し、その混合物を金型にて圧縮成形することにより
、W繊維及びCu粉末の体積率がそれぞれ15%、28
%であり、実施例3の成形体と同一のXJ法及び形状を
Hする円板状の成形体を形成した。
Example 5 W fiber with an average fiber diameter of 12 μm and an average fiber length of 1 ゛1ξ
By uniformly mixing Cu powder with an average particle size of 40 μm at a volume ratio of 15:28, uniformly mixing 2ZrF6 powder into the mixture, and compression molding the mixture in a mold, W fibers were produced. and the volume percentage of Cu powder is 15% and 28%, respectively.
%, and a disk-shaped molded body was formed using the same XJ method and shape H as the molded body of Example 3.

次いでp熱温度か約200℃に設定され、金属の溶湯と
してAl合金(JIS規格AC8A)が使用された点を
除き、実施例3の場合と同一の要領にて複合材料を形成
し、その複合材料を切断してその断面の金属組織を光学
顕微鏡にて調査したところ、マトリックス金属の含浸不
良部は存在していなかった。また凝固体の切断面の組織
をEPMAにて分析したところ、Cui維がAl合金の
溶湯中のAIと反応することにより形成されたCu A
 l 2がマトリックス部分の断面の大部分を占めてお
り、従って主として金属間化合物CuAl2をマトリッ
クスとし体積率約15%のW m維を強化材とする複合
材料が良好に形成されていることが認められた。
Next, a composite material was formed in the same manner as in Example 3, except that the p-thermal temperature was set to about 200°C and an Al alloy (JIS standard AC8A) was used as the molten metal. When the material was cut and the metallographic structure of the cross section was examined using an optical microscope, no defective matrix metal impregnation areas were found. Furthermore, when the structure of the cut surface of the solidified body was analyzed using EPMA, it was found that CuA was formed by the reaction of Cu fibers with AI in the molten Al alloy.
12 occupies most of the cross section of the matrix portion, and it is therefore recognized that a composite material mainly composed of the intermetallic compound CuAl2 as a matrix and Wm fibers with a volume fraction of about 15% as a reinforcement material is well formed. It was done.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はこれらの実施例に限定されるものでは
なく、本発明の範囲内にて他の種々の実施例が可能であ
ることは当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. This will be obvious to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明による複合材料の製造方法の
一つの実施例を示す工程図である。 10・・・炭素繊維、12・・・Ni繊維、14・・・
ステンレス鋼製のケース、16・・・成形体、18・・
・K2ZrF6水溶液、20・・・純Alの溶湯時  
許  出  願  人    トヨタ自動屯株式会社代
     理     人   弁理士  明  石 
 昌  毅第1図    第2図 20−Mlの;f”iカ
1 to 3 are process diagrams showing one embodiment of the method for manufacturing a composite material according to the present invention. 10... Carbon fiber, 12... Ni fiber, 14...
Stainless steel case, 16... Molded object, 18...
・K2ZrF6 aqueous solution, 20... when molten pure Al
Applicant: Toyota Autotun Co., Ltd. Representative: Patent Attorney: Akashi
Takeshi Masa Figure 1 Figure 2 20-Ml's ;f”i

Claims (1)

【特許請求の範囲】[Claims] 無機質の強化材と、Alと反応して金属間化合物を形成
する金属と、金属フッ化物の微細片とを含む多孔質の成
形体を形成し、該成形体の少なくとも一部をAl又はA
l合金の溶湯に接触させ、前記溶湯を実質的に加圧する
ことなく前記成形体中に浸透させる金属間化合物複合材
料の製造方法。
A porous molded body containing an inorganic reinforcing material, a metal that reacts with Al to form an intermetallic compound, and fine pieces of metal fluoride is formed, and at least a portion of the molded body is made of Al or A.
1. A method for producing an intermetallic compound composite material, which comprises contacting a molten metal of an I-alloy and causing the molten metal to permeate into the molded body without substantially applying pressure.
JP13869788A 1988-06-06 1988-06-06 Production of composite material of intermetallic compound Pending JPH01306533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13869788A JPH01306533A (en) 1988-06-06 1988-06-06 Production of composite material of intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13869788A JPH01306533A (en) 1988-06-06 1988-06-06 Production of composite material of intermetallic compound

Publications (1)

Publication Number Publication Date
JPH01306533A true JPH01306533A (en) 1989-12-11

Family

ID=15228008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13869788A Pending JPH01306533A (en) 1988-06-06 1988-06-06 Production of composite material of intermetallic compound

Country Status (1)

Country Link
JP (1) JPH01306533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207829A (en) * 1989-10-20 1991-09-11 Toyota Motor Corp Manufacture of metal matrix composite
CN111172434A (en) * 2020-01-16 2020-05-19 西北工业大学 Method for reducing content of aluminum oxide in aluminum-based composite material by coating potassium fluozirconate on surface of silicon-plated graphite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207829A (en) * 1989-10-20 1991-09-11 Toyota Motor Corp Manufacture of metal matrix composite
JP3107563B2 (en) * 1989-10-20 2000-11-13 トヨタ自動車株式会社 Manufacturing method of metal matrix composite material
CN111172434A (en) * 2020-01-16 2020-05-19 西北工业大学 Method for reducing content of aluminum oxide in aluminum-based composite material by coating potassium fluozirconate on surface of silicon-plated graphite

Similar Documents

Publication Publication Date Title
Kretz et al. The electroless deposition of nickel on SiC particles for aluminum matrix composites
CN106583735B (en) A method of it prepares with high-volume fractional diamond/copper composite material parts
Singer et al. Metal matrix composites produced by spray codeposition
JP3193708B2 (en) Composite material and method for producing the same
CN108149182A (en) The method that powder core aluminium wire material electric arc spraying prepares silicon carbide aluminum matrix composite
EP1520057B1 (en) Method of making a composite product and in particular a heat sink
JPH01306533A (en) Production of composite material of intermetallic compound
JPH01279721A (en) Manufacture of metal-based composite material
JP2576188B2 (en) Manufacturing method of metal matrix composite material
US3770492A (en) Method of manufacture of materials from polycrystalline filaments
JPH01279720A (en) Manufacture of metal-based composite material
JPS61210137A (en) Manufacture of silicon nitride fiber frinforced metal
JPS6039737B2 (en) Manufacturing method for highly conductive metal-carbon fiber composite sliding member
JP2576187B2 (en) Manufacturing method of metal matrix composite material
US5697421A (en) Infrared pressureless infiltration of composites
JPH01279713A (en) Manufacture of metal-based composite material
JP2541298B2 (en) Manufacturing method of metal matrix composite material
JPH0568530B2 (en)
JPS6293323A (en) Whisker-reinforced al alloy composite material
JPH0331434A (en) Production of clad material containing metal matrix composite
JPS58136735A (en) Manufacture of carbon fiber reinforced composite aluminum material
JPH01279717A (en) Manufacture of metal-based composite material
JPH01306531A (en) Production of intermetallic compound
JPH01279719A (en) Manufacture of metal-based composite material
JPH02101127A (en) Manufacture of metal matrix composite