JPS61210137A - Manufacture of silicon nitride fiber frinforced metal - Google Patents

Manufacture of silicon nitride fiber frinforced metal

Info

Publication number
JPS61210137A
JPS61210137A JP5033585A JP5033585A JPS61210137A JP S61210137 A JPS61210137 A JP S61210137A JP 5033585 A JP5033585 A JP 5033585A JP 5033585 A JP5033585 A JP 5033585A JP S61210137 A JPS61210137 A JP S61210137A
Authority
JP
Japan
Prior art keywords
fibers
silicon nitride
metal
fiber
frinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5033585A
Other languages
Japanese (ja)
Inventor
Hiromitsu Takeda
博光 竹田
Masako Nakabashi
中橋 昌子
Makoto Shirokane
白兼 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5033585A priority Critical patent/JPS61210137A/en
Publication of JPS61210137A publication Critical patent/JPS61210137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To facilitate the wetting of silicon nitride fibers with molten metal and to fill easily the metal into the voids among the fibers by covering the fibers with metallic powder having a prescribed particle size and reacting readily with Si and by heating the covered fibers to metallize the surfaces of the fibers. CONSTITUTION:Silicon nitride fibers are immersed in a suspension contg. metallic powder having a diameter <=1/10 time the diameter of the fibers and reacting readily with Si, and the fibers are pulled up and dried. The silicon nitride fibers covered with the metallic powder is heated at a high temp. in vacuum to metallize the surfaces of the fibers. Molten metal is filled into the voids among the metallized fibers.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は窒化ケイ素繊維を強化材とした金属基複合材料
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a metal matrix composite material using silicon nitride fibers as a reinforcing material.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化ケイ素は比重が小さく高強度、高弾性率でるること
から、各種構造部材への適用が期待されている。バルク
の材料については、そのまま部材へ加工して用いられる
が、繊維状のものはプラスチックるるいは金属の中に埋
め込まnて、複合材料として使つことが考えらnている
。複合材料として用いる場合、窒化ケイ≠の持゛り特性
を最大限に活かすためには、金属、特に@量金属と組み
合せる仁とが望ましい。一般に金属基複合材料を形成す
る方法としては次の各方法が知られている。
Silicon nitride has low specific gravity, high strength, and high elastic modulus, so it is expected to be applied to various structural members. Bulk materials can be processed into parts as they are and used, but fibrous materials are being considered to be embedded in plastic or metal and used as composite materials. When used as a composite material, in order to make the most of the properties of silicon nitride, it is desirable to use it in combination with metals, especially metals. Generally, the following methods are known as methods for forming metal matrix composite materials.

(1)繊維を束ねたりマットにしたものに解けた金属f
e浸み込ませるようにした液体金属含浸法。(2)繊維
と金属粉末を混ぜ会せ、プレス後焼結を行うようにした
粉末冶金法。(3)繊維に電気メッキを施しながら成形
してゆく成層法。(4)真空蒸着、化学蒸着により繊維
上に金属を付けた後ホット・プレスするようにした蒸着
法。(5)繊維を金属箔の間に挾みホット・プレスする
ようにした拡散法等である。
(1) Metal f dissolved into bundled or matted fibers
e Liquid metal impregnation method. (2) A powder metallurgy method in which fibers and metal powder are mixed and sintered after pressing. (3) A layered method in which the fibers are formed while being electroplated. (4) A vapor deposition method in which metal is attached to fibers by vacuum vapor deposition or chemical vapor deposition and then hot pressed. (5) A diffusion method in which fibers are sandwiched between metal foils and hot pressed.

しかしながら上記(1)の方法にあっては溶融金属1−
1没する際に、繊維が金属と濡れ難い材料であると、繊
維束内に溶融金属を含浸させることが困峻でめる。(2
)の粉末冶金法にめりては繊維と金属粉末を混ぜてプレ
スする際の繊維の破損が多い。
However, in the method (1) above, the molten metal 1-
If the fibers are made of a material that is difficult to wet with metal during immersion, it will be difficult to impregnate the fiber bundle with molten metal. (2
) When using the powder metallurgy method, the fibers often break when the fibers and metal powder are mixed and pressed.

(3)の゛鑞着法にあっては金属のような電気良導体か
らなる長繊維に限られ、そのうえ、かなりの長時間を要
して工業的に不適当である。(4)の蒸着法もt産が難
しくコスト面に2い°Cかなり高くなる。
The brazing method (3) is limited to long fibers made of a good electrical conductor such as metal, and furthermore requires a considerable amount of time, making it industrially unsuitable. The evaporation method (4) is also difficult to produce and costs 2°C considerably.

拡散法にあっ′Cμ繊維と金属箔との積層作業が・極め
て困難である。等の問題が窒化ケイ素繊維強化全域の成
形を困難にしCいる。
Due to the diffusion method, laminating the Cμ fiber and metal foil is extremely difficult. These problems make it difficult to mold the entire area reinforced with silicon nitride fibers.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記の点に鑑みてなされたもので、複合
材として最も数品な成形体が得られる溶融金属含浸法が
適用できる、窒化ケイ素繊維表向へのメタライズを利用
した窒化ケイ素繊維強化金属の製造方法を提供するもの
である。
The object of the present invention has been made in view of the above points, and the object of the present invention is to produce silicon nitride fibers using metallization on the surface of silicon nitride fibers, to which the molten metal impregnation method can be applied to obtain the most compact molded products as a composite material. A method of manufacturing a reinforced metal is provided.

〔発明の概要〕[Summary of the invention]

本発明者らは、窒化ケイ素繊維強化金属を溶融金属含浸
法で製造する試みを種々に行ない、該繊維表面に溶融金
属と濡れ易い物質を被覆することが必須条件でめること
を見い出した。しかしながら、窒化ケイ素に対する通常
の被覆方法、たとえば化学蒸着、物理蒸着、無電解メッ
キ等では、表面に被覆層が物理的に付着し“Cいるのみ
で、溶融金属が含浸した際すぐに剥離し゛〔、十分に目
的の機能を果さない。そこで、化学的に強固に接合した
被覆層の形成方法の研究を行なったところ、新規なメタ
ライズ法を見い出し本発明に至った。
The present inventors have made various attempts to produce silicon nitride fiber-reinforced metal by a molten metal impregnation method, and have found that it is essential to coat the fiber surface with a substance that is easily wetted with molten metal. However, in conventional coating methods for silicon nitride, such as chemical vapor deposition, physical vapor deposition, and electroless plating, the coating layer is physically attached to the surface and is easily peeled off when impregnated with molten metal. Therefore, we conducted research into a method for forming a chemically strongly bonded coating layer, and found a new metallization method, resulting in the present invention.

即ち、本発明者らは窒化ケイ素が高温真空中に2い′〔
、表面がわずかにその構成元素に分解することに着目し
、実験を重ねたところ、該分解元素がある種の金属と容
易に反応し溶融状態になる条件を把握し、これが有効な
メタライジング法として利用できることを見出した。
That is, the present inventors discovered that silicon nitride was heated in a vacuum at a high temperature.
We focused on the fact that the surface slightly decomposes into its constituent elements, and after repeated experiments, we discovered the conditions under which the decomposed elements easily react with certain metals and become molten, and we discovered that this is an effective metallizing method. I found out that it can be used as

ここで言うある種の金属とはケイ素と容易に反応し、反
応によって生成する合金が元の金属の融点より低下する
もので、窒化ケイ素の表面が反応に有効な量のケイ素を
分解する温度(10−’Torrの真空下で1,200
℃程度)において溶融しない金属、例えばFe、 Ni
 、 Coおよびこれらの金属を少なくとも50%以上
含む合金例えばケイ素鋼、炭素鋼1合金鋼、特殊鋼、N
i−0r合金、 N1−AA金合金Ni−Tl合金、各
種超合金等でるる。
The certain metals mentioned here are those that easily react with silicon, and the alloy formed by the reaction is lower than the melting point of the original metal, and the temperature at which the surface of silicon nitride decomposes an effective amount of silicon for the reaction ( 1,200 under a vacuum of 10-'Torr
metals that do not melt at temperatures (about ℃), such as Fe, Ni
, Co and alloys containing at least 50% of these metals such as silicon steel, carbon steel 1 alloy steel, special steel, N
There are i-0r alloy, N1-AA gold alloy, Ni-Tl alloy, various superalloys, etc.

反応は次の過程を経て起る。The reaction occurs through the following process.

1、窒化ケイ素の表面の分解 2、窒化ケイ素表面に配した金属とケイ素との反応3、
金属とケイ素の反応による金属の融点の低下4、金属の
溶融 5、溶融金属と窒化ケイ素との濡れ 6、メタライズ完T 従りで、メタライズを生じせしめるためには、窒化ケイ
素の表面が一部分解する条件を与えること。
1. Decomposition of the surface of silicon nitride 2. Reaction between metal placed on the surface of silicon nitride and silicon 3.
Lowering of the melting point of the metal due to the reaction between the metal and silicon 4 Melting of the metal 5 Wetting of the molten metal with silicon nitride 6 Completion of metallization Therefore, in order to produce metallization, the surface of the silicon nitride must partially decompose. to give conditions to do so.

分解する表面が存在すること1分解面に反応すべき金属
が密着することが重要である。このためには、窒化ケイ
素を真空中で高温に訓熱することが分解に有効であり、
分解表面を存在させることと金属を密着させることを同
時に満足させる手段として金属の粉末を用いることがす
ぐれた方法である。本発明のポイントもここにある。
Presence of a decomposing surface 1. It is important that the metal to be reacted be in close contact with the decomposing surface. For this purpose, heating silicon nitride to a high temperature in a vacuum is effective for decomposition.
An excellent method is to use metal powder as a means of simultaneously satisfying the presence of a decomposed surface and the adhesion of metal. This is also the point of the present invention.

本方法によっ゛〔形成されるメタライズ層の厚さは、初
めに窒化ケイ素表面に配する粉末の粒径及び量によりて
変化する。ウィスカーのように径が数μm以下の繊維で
は、メタライズ層が数μmになってしまっては繊維の実
体が消滅する。従って、繊維に有効にその機能を働かせ
るためには、断面積の80%程度が残存するようなメタ
ライズにせねばならないため窒化ケイ素繊維表面に付着
せしめる金属粉末の径は、該繊維の1710以下とする
必要がある。
The thickness of the metallized layer formed by this method varies depending on the particle size and amount of powder initially placed on the silicon nitride surface. In the case of fibers with a diameter of several micrometers or less, such as whiskers, when the metallized layer becomes several micrometers, the substance of the fiber disappears. Therefore, in order for the fiber to function effectively, it must be metalized so that about 80% of the cross-sectional area remains, so the diameter of the metal powder attached to the surface of the silicon nitride fiber should be 1710 or less than that of the fiber. There is a need.

繊維状物質の表面に金属粉末を配する方法としては、金
属粉を液体中に浮遊させその中に繊維を浸漬させる方法
がある。繊維表面に付着する金属粉末量は液体中の粉末
量によっ′で制御できる。
As a method for disposing metal powder on the surface of a fibrous substance, there is a method in which the metal powder is suspended in a liquid and the fibers are immersed therein. The amount of metal powder adhering to the fiber surface can be controlled by the amount of powder in the liquid.

〔発明の実施例〕[Embodiments of the invention]

実施例 平均長さ50μm、平均径5μmの窒化ケイ素ウィスカ
ーLopを、200CCの水に平均粒径300叉のNi
微粉を0.5f@濁させたものの中に浸漬し、十分に攪
拌した後、該ウィスカーt−フィルターを用いCl1i
り出す。該ウィスカーの表面にはNiの微粉末が付着し
Cいる。該ウィスカーを乾燥後、真空炉中に設置し2X
10  Tartの真空迄排気し、その状態で1230
℃迄昇温。10分間保持後冷却した。
Example A silicon nitride whisker Lop with an average length of 50 μm and an average diameter of 5 μm was added to 200 CC of water with Ni having an average particle size of 300 μm.
After immersing the fine powder in 0.5f@turbid solution and stirring thoroughly, Cl1i was added using the whisker T-filter.
Start out. Fine Ni powder is attached to the surface of the whisker. After drying the whiskers, place them in a vacuum oven and heat them 2X.
Evacuate to 10 Tart vacuum, and in that state, 1230
Increase temperature to ℃. After holding for 10 minutes, it was cooled.

炉中より取り出した該ウィスカーは表面がNl−Si合
金でメタライズされCいた。その厚さは極めて薄いため
正確な測定は不可能であるが、走査形電子顕微鏡の1象
からxoooXないしそれ以下と思われる。
The surface of the whisker taken out from the furnace was metallized with an Nl-Si alloy. Although its thickness is extremely thin, it is impossible to measure it accurately, but it appears to be xooooX or less, based on a scanning electron microscope.

該ウィスカーを束ねで、内径10ダの黒鉛製ルツボに挿
填し、真空中で700℃に力allp4溶融した606
1に1合金を注入した。該ウィスカー表面のメタライズ
ノーと人を合金との濡れ性は極め′C良好であるため、
毛細管現象で完全にウィスカー間に含浸した。冷却後ル
ツボより取り出した窒化ケイ素ウィスカ7人を合金複合
材料の一部を切り出し顕微鏡観察したところ、空孔のな
い緻密な組織を呈しCいた。窒化ケイ素ウィスカー含有
量は30vol!Xで、機械的特性はヤンイ率が13,
500#/J 、引張強さがT6熱処理後で55辞/−
ありた。
The whiskers were bundled and inserted into a graphite crucible with an inner diameter of 10 da, and melted at 700°C in a vacuum.
1 alloy was injected into 1. The wettability between the metallized snow on the surface of the whisker and the alloy is extremely good.
The whiskers were completely impregnated by capillary action. After cooling, seven silicon nitride whiskers were taken out from the crucible, a part of the alloy composite material was cut out, and when it was observed under a microscope, it showed a dense structure with no pores. Silicon nitride whisker content is 30vol! X, the mechanical properties have a Yang Yi rate of 13,
500#/J, tensile strength is 55/- after T6 heat treatment
There was.

なお本発明方法は上記実施例に限定される事なく、例え
ば溶融合金は尼に限定されずFe系、Ni系。
Note that the method of the present invention is not limited to the above embodiments, and the molten alloy is not limited to aluminum, but may be Fe-based or Ni-based.

Cu系、 Mf系等有効である。また溶融含浸の工程は
メタライズ直後で同一真空炉内で連続に行なっても良い
し溶融含浸時の雰囲気は還元性、不活性いずれでも艮い
Cu-based, Mf-based, etc. are effective. Further, the melt impregnation step may be carried out continuously in the same vacuum furnace immediately after metallization, and the atmosphere during the melt impregnation may be either reducing or inert.

〔発明の効果〕〔Effect of the invention〕

本発明方法を用いる事により、窒化ケイ素繊維金属を容
易かつ確実に製造する事ができる。
By using the method of the present invention, silicon nitride fiber metal can be easily and reliably produced.

代理人 弁理士 則 近 憲 佑 (他 1名)Agent: Patent Attorney Noriyuki Chika (1 other person)

Claims (1)

【特許請求の範囲】[Claims]  窒化ケイ素繊維をその径の1/10以下の径のSiと
反応し易い金属粉末を懸濁させた液の中に浸漬する工程
と、該繊維を液中より引き上げ乾燥する工程と、該繊維
を高温真空中で加熱し該繊維表面をメタライズする工程
と、該メタライズした繊維束中に溶湯金属を含浸するこ
とから成ることを特徴とする窒化ケイ素繊維強化金属の
製造方法。
A step of immersing a silicon nitride fiber in a liquid in which a metal powder that easily reacts with Si having a diameter of 1/10 or less of the fiber is suspended, a step of lifting the fiber from the liquid and drying it, and a step of drying the fiber. 1. A method for producing a silicon nitride fiber-reinforced metal, comprising the steps of metallizing the surface of the fibers by heating in a high-temperature vacuum, and impregnating the metalized fiber bundle with molten metal.
JP5033585A 1985-03-15 1985-03-15 Manufacture of silicon nitride fiber frinforced metal Pending JPS61210137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5033585A JPS61210137A (en) 1985-03-15 1985-03-15 Manufacture of silicon nitride fiber frinforced metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5033585A JPS61210137A (en) 1985-03-15 1985-03-15 Manufacture of silicon nitride fiber frinforced metal

Publications (1)

Publication Number Publication Date
JPS61210137A true JPS61210137A (en) 1986-09-18

Family

ID=12856044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033585A Pending JPS61210137A (en) 1985-03-15 1985-03-15 Manufacture of silicon nitride fiber frinforced metal

Country Status (1)

Country Link
JP (1) JPS61210137A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279720A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
JPH01279714A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
JPH01279716A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
JPH01279721A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
JPH01279715A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
CN114046209A (en) * 2022-01-13 2022-02-15 爱柯迪股份有限公司 Silicon nitride fiber reinforced aluminum alloy engine cylinder sleeve and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279720A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
JPH01279714A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
JPH01279716A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
JPH01279721A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
JPH01279715A (en) * 1988-04-30 1989-11-10 Toyota Motor Corp Manufacture of metal-based composite material
CN114046209A (en) * 2022-01-13 2022-02-15 爱柯迪股份有限公司 Silicon nitride fiber reinforced aluminum alloy engine cylinder sleeve and preparation method thereof

Similar Documents

Publication Publication Date Title
US4341823A (en) Method of fabricating a fiber reinforced metal composite
US5244748A (en) Metal matrix coated fiber composites and the methods of manufacturing such composites
Zhu et al. Effect of Al2O3 coating thickness on microstructural characterization and mechanical properties of continuous carbon fiber reinforced aluminum matrix composites
US3770488A (en) Metal impregnated graphite fibers and method of making same
US4157409A (en) Method of making metal impregnated graphite fibers
JPS6147891B2 (en)
US3953647A (en) Graphite fiber reinforced metal matrix composite
US4659593A (en) Process for making composite materials consisting of a first reinforcing component combined with a second component consisting of a light alloy and products obtained by this process
US4831707A (en) Method of preparing metal matrix composite materials using metallo-organic solutions for fiber pre-treatment
JPS61210137A (en) Manufacture of silicon nitride fiber frinforced metal
Warrier et al. Control of interfaces in Al-C fibre composites
JP2001316785A (en) Porous preform, metal composite material and production method therefor
JPH04304333A (en) Composite material made by using aluminum or its alloy as matrix and method for improving the wetting of the reinforcement with the matrix and the bonding between them
JPH03103334A (en) Fiber-reinforced metal
US3770492A (en) Method of manufacture of materials from polycrystalline filaments
JPH01111830A (en) Reinforcing fiber for production of fiber-reinforced composite metallic material
FR2494260A1 (en) PROCESS FOR TREATING FIBER AND PROCESS FOR PRODUCING COMPOSITE MATERIAL FROM FIBERGLASS, CERAMIC, METAL OR THE LIKE
EP0228166B1 (en) Method of making graphite forming dies
Lacom et al. Assessment and control of surface reactions of carbon fibres in light weight metal matrix composites
FR2707628A1 (en) Process for improving the oxidation resistance of a composite material with fiber reinforcement and glass matrix, glass ceramic or ceramic.
JPS5912733B2 (en) Method of forming fiber-metal composites
US5697421A (en) Infrared pressureless infiltration of composites
JP2610265B2 (en) Manufacturing method of metal matrix composite material
CN110453495B (en) Method for plating boron carbide on surface of carbon fiber
JP4026676B2 (en) Electronic circuit member and method of manufacturing the same