JPS6017002A - Production of composite metallic micro-ball - Google Patents

Production of composite metallic micro-ball

Info

Publication number
JPS6017002A
JPS6017002A JP58125694A JP12569483A JPS6017002A JP S6017002 A JPS6017002 A JP S6017002A JP 58125694 A JP58125694 A JP 58125694A JP 12569483 A JP12569483 A JP 12569483A JP S6017002 A JPS6017002 A JP S6017002A
Authority
JP
Japan
Prior art keywords
ball
balls
grain size
metal
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58125694A
Other languages
Japanese (ja)
Inventor
Shigeo Shioda
重雄 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP58125694A priority Critical patent/JPS6017002A/en
Publication of JPS6017002A publication Critical patent/JPS6017002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain efficiently composite metallic micro-balls having a uniform grain size by placing cores of the metallic micro-balls having a prescribed grain size on a plate consisting of graphite, etc., dropping a mixture composed of a single metallic substance having a very small grain size and an org. binder thereon to form a film on each ball then heating and holding the balls in a non-oxidative atmosphere kept at the temp. slightly higher than the temp. of said metal and cooling the balls. CONSTITUTION:A metallic micro-ball (e.g.; iron ball) of 0.1-3mm. dia. grain size to be used as a core is placed on a graphite plate or ceramic plate having low wettability with a metal. A mixture composed of a single metallic substance having <=44mu dia. grain size or mixed powder and an alloy powder (e.g.; mixed powder composed or reduced silver powder and electrolytic copper powder) and 1-50% by weight thereof an org. binder is dropped onto such metallic micro-ball by a constant rate feeder in a way that the prescribed film thickness is attained. A mixture composed of, for example, an acrylic acid, EG and epoxy resin is used for the above- described org. binder. The ball is then heated and held in a non-oxidative atmosphere kept at the temp. higher by 0-100 deg.C than the m.p. of the metal in the above-described mixture and thereafter the ball is cooled. As a result, the composite metallic micro-balls having a uniform grain size over a wide grain size range are obtd. without being limited by the kind of the metllic ball to be formed on the outside surface of the metallic micro-balls.

Description

【発明の詳細な説明】 本発明は、粒径のそろった複合微小金属球の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing composite fine metal spheres having uniform particle sizes.

半導体工業の発展により半導体チップと基板との接合に
複合微小金属球が使用されたり、種々の微細な部品のろ
う接、はんだ付にも複合微小金属球の使用が急激に増加
している。
With the development of the semiconductor industry, composite microscopic metal balls are being used for joining semiconductor chips and substrates, and the use of composite microscopic metal balls for brazing and soldering of various microscopic parts is rapidly increasing.

(1) 従来、複合微小金属球を製造するには、アトマイズ法に
より粒度分布の広い粉末を製造し、所望の粒径に分級後
I浅域加工により整粒したり、金属線を所望の重量に切
断後機械加工若しくは再溶解したりすることにより、略
均−な粒径の微小金属球を作り、然る1多無電IWめっ
き又は電気めっきにより外表面に所要の金属膜を形成し
て複合微小金属球を作っていた。
(1) Conventionally, in order to manufacture composite micro metal spheres, powder with a wide particle size distribution is manufactured by the atomization method, and after classification to the desired particle size, the particles are sized by I shallow area processing, or metal wires are sized to the desired weight. After cutting and machining or remelting, fine metal spheres of approximately uniform particle size are made, and then a desired metal film is formed on the outer surface by electroless IW plating or electroplating to form a composite. They were making tiny metal balls.

然し乍ら、斯かる製造方法では微小金属球の外表面に金
属膜を形成する為の無電解めっき又は電気めっきに於い
ては合金めっきが難しく、無電解めっきに於いてはさら
にめっきの種類が限定されるという問題があった。
However, with this manufacturing method, alloy plating is difficult in electroless plating or electroplating to form a metal film on the outer surface of the micro metal sphere, and the types of plating are further limited in electroless plating. There was a problem that

本発明は斯かる諸事情に鑑みなされたもので、微小金属
球の外表面に形成する金属膜の種類に限定されることが
無く、広い粒度範囲にわたって粒径のそろった複合微小
金属球を効率良く容易且つ確実に作ることのできる製造
方法を提供せんとするものである。
The present invention was made in view of the above circumstances, and is not limited to the type of metal film formed on the outer surface of the micro metal sphere, and is capable of efficiently producing composite micro metal balls with uniform particle sizes over a wide range of particle sizes. It is an object of the present invention to provide a manufacturing method that can be manufactured easily and reliably.

本発明の複合微小金属球の製造方法は、黒鉛板(2) 又はセラミックス板上に芯となる粒径0.1〜3闘の微
小金属球を置き、次にこの−にに粒径44 tt以下の
金属の単体若しくは混合粉末又は合金粉末とその重量の
1〜50%の有機バインダー例えばアクリル酸、エチレ
ングリコール、エポキシ樹用1とをン昆練した混練物を
定量供給機にて所望の膜厚となる量を滴下し、次いで混
練物中の金属の融点よりも0〜100℃高い温度で非酸
化性雰囲気中で加熱保持した後冷却して複合微小金属球
を得ることを特徴とするものである。
The method for manufacturing composite micrometallic spheres of the present invention involves placing a micrometallic sphere with a particle size of 0.1 to 3mm as a core on a graphite plate (2) or a ceramic plate, and then placing a micrometallic sphere with a particle size of 44tt on the core. A desired film is prepared by kneading a mixture of the following metal powders, mixed powders, or alloy powders with 1 to 50% of the weight of an organic binder such as acrylic acid, ethylene glycol, or epoxy resin 1 using a quantitative feeder. A method characterized by dropping a thick amount, followed by heating and holding in a non-oxidizing atmosphere at a temperature 0 to 100°C higher than the melting point of the metal in the kneaded material, and then cooling to obtain composite microscopic metal spheres. It is.

本発明の複合微小金属球の製造方法に於いて用いる金属
の混合粉末又は合金わ)末の粒径を44p以下とした理
由は、44!lを超えると微小金属球の外表面に形成す
る金属膜の膜厚を薄くできないからである。また金属の
単体若しくは混合粉末又は合金粉末に対する有機バイン
ダーの混入割合をその粉末重量の1〜50%とした理由
は、1%未満では定量供給機で供給滴下するに必要な粘
性を持たーlることができず、50%を超えると加熱時
粉末が十分に凝集せず、所望の膜厚が得られないからで
あ(3) る。さらに微小金属球を置いて混練物を滴下する台とし
て、黒鉛板又はセラミックス板を用いる理由は、金属膜
を形成する混練物中の金属との濡れ性が小さいからであ
る。また加熱温度を混練物中の金属の融点よりも0〜1
00°C高くした理由は、融点以下では固相が介在して
芯である微小金属球との濡れが悪く、融点よりも100
℃超えると芯で微小金属球と合金化するようになるから
である。
The reason why the particle size of the metal mixed powder or alloy powder used in the method for manufacturing composite microscopic metal balls of the present invention is set to 44p or less is because it is 44! This is because if it exceeds l, the thickness of the metal film formed on the outer surface of the micro metal sphere cannot be reduced. Also, the reason why the proportion of organic binder mixed in the single metal, mixed powder, or alloy powder is set to 1 to 50% of the powder weight is that if it is less than 1%, it will not have the viscosity necessary to be fed dropwise with a metering feeder. If it exceeds 50%, the powder will not coagulate sufficiently during heating and the desired film thickness will not be obtained (3). Furthermore, the reason why a graphite plate or a ceramic plate is used as a table on which the fine metal balls are placed and the kneaded material is dropped is that the wettability with the metal in the kneaded material that forms the metal film is low. Also, the heating temperature is 0 to 1 higher than the melting point of the metal in the kneaded material.
The reason for raising the temperature by 00°C is that below the melting point, a solid phase intervenes and the wetting with the micro metal sphere that is the core is poor.
This is because if the temperature exceeds ℃, the core will become alloyed with minute metal balls.

さらにまた加熱雰囲気を還元性、不活性等の非酸化性の
雰囲気とした理由は、芯である微小金属球の外表面に酸
化膜が形成されて金属膜との濡れ性がり[(くなるのを
防ぐ為である。
Furthermore, the reason why the heating atmosphere is a reducing, inert, or other non-oxidizing atmosphere is that an oxide film is formed on the outer surface of the microscopic metal sphere that is the core, which reduces the wettability with the metal film. This is to prevent

次に本発明による複合微小金属球の製造方法の具体的な
実施例について説明する。
Next, a specific example of the method for manufacturing composite fine metal spheres according to the present invention will be described.

〔実施例1〕 黒鉛板上に芯となる粒径1■の鉄球を200個置き、次
に1〜5μの粒度分布を有する還元銀粉72重量%と1
〜5 Itの粒度分布を有する電解銅粉28重惜%との
混合粉末を該混合粉末の重量の50%にあたるアクリル
酸から成る有機バインダーと共に(4) 混練した後、この混練物を定量供給機により前記黒鉛板
−1ユの鉄球各10(l (lX+に、夫々計算粒径1
.o3鰭。
[Example 1] 200 iron balls with a core particle size of 1 μm were placed on a graphite plate, and then 72% by weight of reduced silver powder with a particle size distribution of 1 to 5 μm and 1 μm were added.
After kneading (4) a mixed powder of 28% electrolytic copper powder having a particle size distribution of ~5 It with an organic binder consisting of acrylic acid that accounts for 50% of the weight of the mixed powder, the kneaded product is passed through a quantitative feeder. According to the above-mentioned graphite plate - 1 unit of iron balls each 10 (l (l
.. o3 fins.

計算膜厚0.015罪と計算粒径1.25幽m、計算膜
厚0.125m1lの複合微小金属球を得るべく1■、
10■を供給滴下し、次いで800℃、5分間窒素ガス
雰囲気中で加熱保持した後、冷却してサイズの異なる2
種類の複合微小金属球を得た。この2種類の複合微小金
属球の粒径を測定した処、第1図a、bのグラフに示す
如き粒度分布で、大部分のものは計算粒径と同じで、そ
の前後の近似粒径のものは僅かで、粒径のそろった複合
微小金属球であった。またその2種類の複合微小金属球
の外表面の金属膜の膜厚を測定した処、第2図a、bの
グラフに示す如き膜厚分布で、大部分のものは計算膜厚
と同じで、残りはその前後の近似膜厚であった。
In order to obtain composite fine metal spheres with a calculated film thickness of 0.015 mm, a calculated particle size of 1.25 m, and a calculated film thickness of 0.125 ml,
10cm was supplied dropwise, and then heated and held at 800°C for 5 minutes in a nitrogen gas atmosphere, cooled and
Different types of composite micro metal spheres were obtained. When we measured the particle size of these two types of composite micrometallic spheres, we found that the particle size distribution was as shown in the graphs in Figure 1 a and b, and most of the particles were the same as the calculated particle size, and the approximate particle sizes before and after that were the same as the calculated particle size. There were only a few particles, and they were composite microscopic metal spheres of uniform particle size. In addition, when we measured the thickness of the metal film on the outer surface of the two types of composite micrometallic spheres, we found that the film thickness distribution was as shown in the graphs in Figure 2 a and b, and most of the thicknesses were the same as the calculated film thickness. , and the rest are approximate film thicknesses before and after that.

〔実施例2〕 セラミックス板上に粒径0.5龍の銅球を200個置き
、次に30〜44μの粒度分布を有する5n−Pb40
重量%合金のア1−マイズ粉を該アトマイズ粉の重量の
20%にあたるエチレングリコールから成る(5) 有機バインダーと共に混練した後、この混練物を定量供
給機により前記セラミックス板上の銅球各10 (H[
FAニ、夫々計算粒径0.7m、計算膜厚0.hmと計
算粒径1.26mm、計算膜厚0.38flの複合微小
金属球を得るべく1mg、10■を供給滴下し、次いで
250℃、3分間窒素ガス雰囲気中で加熱保持した後、
冷却してサイズの異なる2種類の複合微小金属球を得た
。この2種類の複合微小金属球の粒径を測定した処、第
3図a、bのグラフに示す如き粒度分布で、大部分のも
のは 計算粒径と同じで、その前後の近似粒径のものは
僅がで、粒径のそろった複合微小金属球であった。また
その2種類の複合微小金属球の外表面の金属膜の膜厚を
測定した処、第4図a、bのグラフに示す如き膜厚分布
で、大部分のものは計算膜厚と同じで、その残りはその
前後の近似膜厚であった。
[Example 2] 200 copper balls with a grain size of 0.5 μm were placed on a ceramic plate, and then 5n-Pb40 having a grain size distribution of 30 to 44μ was placed.
After kneading the atomized powder of 1-wt% alloy with an organic binder (5) consisting of ethylene glycol corresponding to 20% of the weight of the atomized powder, the kneaded product was fed to 10 copper balls each on the ceramic plate using a quantitative feeder. (H[
FA D, calculated particle size 0.7m, calculated film thickness 0. hm, a calculated particle size of 1.26 mm, and a calculated film thickness of 0.38 fl, 1 mg of 10 μm was supplied dropwise, and then heated and held at 250° C. for 3 minutes in a nitrogen gas atmosphere.
After cooling, two types of composite fine metal spheres with different sizes were obtained. When we measured the particle size of these two types of composite micrometallic spheres, we found that the particle size distribution was as shown in the graphs in Figure 3 a and b, and most of them were the same as the calculated particle size, and the approximate particle sizes before and after that were the same as the calculated particle size. There were only a few particles, and they were composite microscopic metal spheres with uniform particle sizes. In addition, when we measured the thickness of the metal film on the outer surface of the two types of composite micrometal balls, we found that the film thickness distribution was as shown in the graphs in Figure 4 a and b, and most of the thicknesses were the same as the calculated film thickness. , and the rest were approximate film thicknesses before and after that.

以上の説明で判るように本発明の複合微小金属球の製造
方法によれば、芯となる微小金属球の外表面に形成する
金属膜の種類に限定されることが無く、広い粒度範囲に
わたって適宜所要の膜厚の(6) 金属膜を有し且つ所要の粒径のそろった複合微小金属球
を、スクラップを生じさせること無く、効率良く容易口
4つ6′IC実に製造することができるという優れた効
果がある。
As can be seen from the above explanation, according to the method for manufacturing composite micrometal balls of the present invention, there is no limitation to the type of metal film formed on the outer surface of the core micrometallic sphere, and the metal film can be appropriately applied over a wide particle size range. It is said that it is possible to efficiently and easily produce composite micrometallic spheres having a (6) metal film with the required film thickness and the required particle size without producing scrap. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、b4;j、夫々本発明の複合微小金属球の製
造方法の具体的な一実施例によって得られた複合微小金
属球の粒度分布を示すグラフ、第2図a、bば夫々その
複合微小金属球の外表面の金属膜の膜厚分布を示すグラ
フ、第3図a、bば夫々本発明の複合微小金属球の製造
方法の具体的な他の実施例によって得られた複合微小金
属球の粒度分布を示すグラフ、第4図a、bは夫々その
複合微小金属球の外表面の金属膜の膜厚分布を示すグラ
フである。 出願人 H1中貴金属=C業株式会社 (7) 第1図 (Q) (b) 粒径(mm) 第2図 ((1) (b) 膜厚(mm) 第3図 (Q) 粒径(mm) (b) 粒 イ予(mm)
Figures 1 a and b are graphs showing the particle size distribution of composite fine metal spheres obtained by a specific example of the method for producing composite fine metal spheres of the present invention; Figures 2 a and b are graphs showing the particle size distribution, respectively. Graphs showing the film thickness distribution of the metal film on the outer surface of the composite micrometallic sphere, FIGS. Graphs showing the particle size distribution of the fine metal spheres, FIGS. 4a and 4b, are graphs showing the thickness distribution of the metal film on the outer surface of the composite fine metal spheres, respectively. Applicant H1 Precious Metals = C Gyo Co., Ltd. (7) Figure 1 (Q) (b) Particle size (mm) Figure 2 ((1) (b) Film thickness (mm) Figure 3 (Q) Grain size (mm) (b) Grain size (mm)

Claims (1)

【特許請求の範囲】[Claims] 黒鉛板又は9?ラミンクス板上に芯となる粒径0.1〜
31謙の微小金属球を置き、次にこの−1−に粒径44
μ以下の金属の単体若しくは混合粉末又は合金粉末とそ
の重量の1〜50%の有機バインダーとをン昆練した混
練物を定量供給機にて所望の膜厚となる量を滴下し、次
いで混練物中の金属の融点よりも0〜100℃高い温度
で非酸化性雰囲気中で加熱保持した後冷却して複合微小
金属球を得ることを特徴とする複合微小金属球の製造方
法。
Graphite plate or 9? Core particle size 0.1~ on Laminx plate
Place a 31mm micrometal ball, then place a particle size 44mm on this -1-
A kneaded product made by kneading single or mixed metal powder or alloy powder with a particle size of less than μ and an organic binder of 1 to 50% of its weight is dropped in an amount to obtain the desired film thickness using a quantitative feeder, and then kneaded. 1. A method for producing composite fine metal spheres, which comprises heating and holding in a non-oxidizing atmosphere at a temperature 0 to 100° C. higher than the melting point of the metal in the object, followed by cooling to obtain composite fine metal spheres.
JP58125694A 1983-07-11 1983-07-11 Production of composite metallic micro-ball Pending JPS6017002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125694A JPS6017002A (en) 1983-07-11 1983-07-11 Production of composite metallic micro-ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125694A JPS6017002A (en) 1983-07-11 1983-07-11 Production of composite metallic micro-ball

Publications (1)

Publication Number Publication Date
JPS6017002A true JPS6017002A (en) 1985-01-28

Family

ID=14916386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125694A Pending JPS6017002A (en) 1983-07-11 1983-07-11 Production of composite metallic micro-ball

Country Status (1)

Country Link
JP (1) JPS6017002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170998A (en) * 2011-02-23 2012-09-10 National Institute Of Advanced Industrial Science & Technology Jig for forming metal ball, method of forming metal ball using the same, and metal ball produced by the method
CN108015274A (en) * 2017-12-27 2018-05-11 洛阳神佳窑业有限公司 A kind of novel powder metallurgy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414587A (en) * 1977-07-06 1979-02-02 Sekisui Chem Co Ltd Preparation of bacterial cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414587A (en) * 1977-07-06 1979-02-02 Sekisui Chem Co Ltd Preparation of bacterial cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170998A (en) * 2011-02-23 2012-09-10 National Institute Of Advanced Industrial Science & Technology Jig for forming metal ball, method of forming metal ball using the same, and metal ball produced by the method
CN108015274A (en) * 2017-12-27 2018-05-11 洛阳神佳窑业有限公司 A kind of novel powder metallurgy material

Similar Documents

Publication Publication Date Title
CN104668807B (en) Spherical low-melting-point brazing filler metal powder manufacturing method
TWI597241B (en) Metal particle and method for producing the same, coated metal particle, metal powder
WO2020013300A1 (en) Metal-silicon carbide-based composite material, and method for producing metal-silicon carbide-based composite material
CN105980087A (en) Method for producing metal ball, joining material, and metal ball
CN107630150B (en) A kind of preparation method of the enhanced CuNiSi alloy of timeliness
JPS6017002A (en) Production of composite metallic micro-ball
US10906099B2 (en) Preparation method of high purity and densified tungsten-titanium metal
JP2005161338A (en) Solder sheet
CA1334132C (en) Manufacture of low expansion composites having high electrical and heat conductivity
US4380479A (en) Foils of brittle alloys
US5878322A (en) Heat-dissipating substrate for micro-electronic devices and fabrication method
WO2020004342A1 (en) Silver paste and joined body production method
JPS605802A (en) Production of fine metallic ball
CN111775069B (en) Binder for coating CBN abrasive particles on honing wheel substrate and fixing brazing filler metal and preparation method thereof
JPH04262895A (en) Manufacture of metallic ultra fine ball
JPH06128609A (en) Production of ag-cu alloy powder
JPH03155493A (en) Gold alloy solder paste for semiconductor device
JP2973390B2 (en) Method for producing metal in which fine particles of metal or metal oxide are dispersed
CN108080645B (en) Method for reducing hollow rate of 316L stainless steel spherical powder
JP2004124259A (en) METHOD FOR PRODUCING W-Cu COMPOSITE MATERIAL THIN SHEET
JPH093562A (en) Production of niobium-aluminum intermetallic compound
JP2559085B2 (en) Composite sintered material and manufacturing method thereof
JPH0455087A (en) Production of brazing material
JPH1025502A (en) Production of fine metal ball
TW202120705A (en) Solder paste having nanoparticles and capable of being used in a high-temperature service and the preparation method thereof