JPH0573068B2 - - Google Patents

Info

Publication number
JPH0573068B2
JPH0573068B2 JP61029310A JP2931086A JPH0573068B2 JP H0573068 B2 JPH0573068 B2 JP H0573068B2 JP 61029310 A JP61029310 A JP 61029310A JP 2931086 A JP2931086 A JP 2931086A JP H0573068 B2 JPH0573068 B2 JP H0573068B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
insulating film
high concentration
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61029310A
Other languages
Japanese (ja)
Other versions
JPS62188273A (en
Inventor
Nobuaki Ootsuka
Sumio Tanaka
Shigeru Atsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2931086A priority Critical patent/JPS62188273A/en
Publication of JPS62188273A publication Critical patent/JPS62188273A/en
Publication of JPH0573068B2 publication Critical patent/JPH0573068B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a semiconductor device.

(従来の技術とその問題点) MOS型半導体装置の場合、第3図に示す如く、
フイールドに注入される不純物濃度が高い程、フ
イールドの反転電圧は上昇し、接合のプレークダ
ウン電圧は下がる。つまり、同図の実線にて示さ
れるフイールド反転電圧とフイールドエツジ部接
合耐圧の整合性のとれる範囲でフイールド酸化膜
下に注入する不純物の濃度が決定される。
(Conventional technology and its problems) In the case of a MOS type semiconductor device, as shown in Figure 3,
The higher the impurity concentration implanted into the field, the higher the field inversion voltage and the lower the junction breakdown voltage. That is, the concentration of the impurity to be implanted under the field oxide film is determined within a range in which the field inversion voltage shown by the solid line in the figure matches the field edge junction breakdown voltage.

而して、MOS型半導体装置のゲート領域には、
第4図に示す如くこれよりも僅かに大きい領域に
して高濃度不純物領域1が形成されている。つま
り、高濃度不純物領域1を形成する不純物は、フ
イールド酸化膜2のエツジ部1aにも拡散する。
このため高濃度不純物領域1がエツジ部1aに延
出している部分について考えると、第5図に示す
如く、このエツジ部1aに拡散してきた不純物と
フイールド酸化膜2の直下に予め形成された不純
物領域3中の不純物とが重なつた状態の領域4が
形成される。その結果、ゲート領域に注入される
不純物濃度が高くなると、結果的にフイールド酸
化膜2のエツジ部1aの不純物濃度が高くなる。
このためフイールド反転電圧は上昇し、接合ブレ
ークダウン電圧は低下する。つまり、第3図に示
すフイールド反転電圧が上昇してフイールドエツ
ジ部接合耐圧が低下するので、両者とフイールド
酸化膜2下の不純物濃度との関係は同図中破線に
て示されることになる。このため両電圧の整合性
のとれるフイールド酸化膜1下の不純物濃度は、
同図中の実線の交点a2から破線の交点a1に移つた
分だけ低下する。換言するならば、素子の微細化
によつてゲート領域に注入される不純物濃度が高
くなり、これに伴つてフイールド反転電圧は、フ
イールド酸化膜2下の不純物領域3の濃度より
も、ゲート領域の高濃度不純物領域1の濃度に大
きく依存することになる。そこで、高濃度不純物
領域1がエツジ部1aに延出していない領域1b
を考えると、ゲート領域下の高濃度不純物領域1
が存在せずにフイールド酸化膜2下の不純物領域
3だけが存在するフイールド酸化膜2のエツジ部
1b(第4図参照)では、フイールド反転電圧が低
くなつてしまう。そこで、ゲート領域下だけでな
くソース・ドレインの不純物領域形成予定領域の
全域に亘つて、高濃度不純物領域を形成すること
が考えられる。しかしながら、このようにゲート
領域・ソースドレイン領域からなる素子領域の全
域に高濃度不純物領域を形成すると、素子が微細
化してソース・ドレインを構成する不純物領域が
浅くなると、次のような問題が起きる。
Therefore, in the gate region of the MOS type semiconductor device,
As shown in FIG. 4, a high concentration impurity region 1 is formed in a slightly larger region. That is, the impurities forming the high concentration impurity region 1 also diffuse into the edge portion 1a of the field oxide film 2.
Therefore, considering the portion where the high concentration impurity region 1 extends to the edge portion 1a, as shown in FIG. A region 4 is formed in which the impurities in region 3 overlap. As a result, when the impurity concentration implanted into the gate region increases, the impurity concentration at the edge portion 1a of the field oxide film 2 increases as a result.
Therefore, the field inversion voltage increases and the junction breakdown voltage decreases. That is, since the field inversion voltage shown in FIG. 3 increases and the field edge junction breakdown voltage decreases, the relationship between the two and the impurity concentration under the field oxide film 2 is shown by the broken line in the figure. For this reason, the impurity concentration under the field oxide film 1 where both voltages can be matched is
It decreases by the amount moving from the solid line intersection a 2 to the broken line intersection a 1 in the figure. In other words, with the miniaturization of devices, the concentration of impurities implanted into the gate region increases, and as a result, the field inversion voltage becomes higher than the concentration of the impurity region 3 under the field oxide film 2. This largely depends on the concentration of the high concentration impurity region 1. Therefore, a region 1b in which the high concentration impurity region 1 does not extend to the edge portion 1a.
Considering that, the high concentration impurity region 1 under the gate region
The edge part of the field oxide film 2 where only the impurity region 3 under the field oxide film 2 exists without
1b (see Fig. 4), the field reversal voltage becomes low. Therefore, it is conceivable to form a high concentration impurity region not only under the gate region but also over the entire region where the source/drain impurity regions are to be formed. However, if a highly concentrated impurity region is formed throughout the device region consisting of the gate region and source/drain region in this way, the following problems will occur as the device becomes smaller and the impurity regions that make up the source and drain become shallower. .

すなわち、ソース・ドレインの不純物領域が浅
くなるに伴つて逆にその分だけその直下に高濃度
不純物領域1が延出してくるため基板5側の不純
物濃度が高くなる。つまり、浅くなつたソース・
ドレインの不純物領域とそれに伴つて延出してき
た高濃度不純物領域1とで形成されるPN接合
は、ソース・ドレインの不純物領域が十分に深く
てその直下の基板5とで形成されたPN接合の場
合よりも主面側に引き上げられる。このため基板
5方向に空乏層が広がらず、空乏層容量が増大し
て素子特性を十分に向上できない結果となる。
That is, as the impurity regions of the source and drain become shallower, the high concentration impurity region 1 extends directly below the source/drain impurity regions, thereby increasing the impurity concentration on the substrate 5 side. In other words, the sauce has become shallower.
The PN junction formed by the drain impurity region and the high concentration impurity region 1 that extends along with it is the same as the PN junction formed with the substrate 5 directly below the source/drain impurity region if it is deep enough. It is pulled up closer to the main surface than in the case of Therefore, the depletion layer does not spread in the direction of the substrate 5, and the capacitance of the depletion layer increases, resulting in failure to sufficiently improve device characteristics.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、一導電型の半導体基板の所定領域に
設けられた素子領域と、該素子領域をゲート領域
を介して2分し、反対導電型の不純物領域で形成
されたソース領域及びドレイン領域と、前記ゲー
ト領域を覆いかつ、これより僅かに広い領域でそ
の主面から前記半導体基板の内部に延出すると共
に、前記ソース領域及び前記ドレイン領域の周辺
領域を含んでその主面から前記半導体基板内に延
出する同導電型の高濃度不純物領域とを具備する
ことを特徴とする半導体装置である。
(Means for Solving the Problems) The present invention includes an element region provided in a predetermined region of a semiconductor substrate of one conductivity type, and an impurity region of the opposite conductivity type that is divided into two parts via a gate region. a source region and a drain region formed by the semiconductor substrate; and a high concentration impurity region of the same conductivity type extending from the main surface into the semiconductor substrate.

(作用) 本発明に係る半導体装置によれば、ゲート領
域、ソース領域及びドレイン領域がフイールド酸
化膜に接する部分に、高濃度領域を設けているの
で空乏層容量が小さくすることができる。このた
めフイールドの反転電圧及び接合耐圧の低下を抑
えて素子特性を向上させることができる。
(Function) According to the semiconductor device according to the present invention, the depletion layer capacitance can be reduced because the high concentration region is provided in the portion where the gate region, the source region, and the drain region are in contact with the field oxide film. Therefore, it is possible to suppress a decrease in field inversion voltage and junction breakdown voltage, and improve device characteristics.

(実施例) 以下、本発明の実施例について図面を参照して
説明する。第1図は、本発明の一実施例の概略構
成を示す説明図である。図中10はP導電型の半
導体基板である。半導体基板10の所定領域に
は、フイールド酸化膜11で囲まれた素子領域が
設けられている。フイールド酸化膜11の直下に
は、P型不純物領域12が形成されている。素子
領域上の所定領域には、ゲート酸化膜13を介し
てゲート電極14が形成されている。ゲート電極
14直下の半導体基板10内には、P型の高濃度
不純物領域15がゲート領域よりも僅に大きく形
成され、かつ、この高濃度不純物領域15は、フ
イールド酸化膜11と素子領域との境界部分を含
む領域に延出している。また、ゲート電極14下
のゲート領域で2分された素子領域の部分には、
高濃度不純物領域15よりも浅い拡散深さでソー
ス領域及びドレイン領域となるN型の不純物領域
16が形成されている。つまり、不純物領域16
の周辺領域は、高濃度不純物領域15内に含まれ
ている。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention. In the figure, 10 is a P conductivity type semiconductor substrate. An element region surrounded by a field oxide film 11 is provided in a predetermined region of the semiconductor substrate 10 . A P-type impurity region 12 is formed directly under the field oxide film 11 . A gate electrode 14 is formed in a predetermined region on the element region with a gate oxide film 13 interposed therebetween. A P-type high concentration impurity region 15 is formed in the semiconductor substrate 10 directly under the gate electrode 14 to be slightly larger than the gate region, and this high concentration impurity region 15 is located between the field oxide film 11 and the element region. Extends into the area containing the border. In addition, in the part of the element region divided into two by the gate region under the gate electrode 14,
N-type impurity regions 16, which serve as source and drain regions, are formed with a shallower diffusion depth than the high concentration impurity regions 15. In other words, impurity region 16
The peripheral region is included in the high concentration impurity region 15.

ここで、高濃度不純物領域15の形成は、第2
図A,Bに示す如く、素子領域内のソース・ドレ
インの領域となる不純物領域形成予定部上に、こ
れよりも僅かに小さい形状のレジスト膜17を載
置し、このレジスト膜17をマスクにしてボロン
等の不純物18を半導体基板10内に注入するこ
とにより容易に形成することができる。
Here, the formation of the high concentration impurity region 15 is performed in the second
As shown in Figures A and B, a resist film 17 with a shape slightly smaller than this is placed on the portion where the impurity region that will become the source/drain region in the element region is to be formed, and this resist film 17 is used as a mask. It can be easily formed by implanting an impurity 18 such as boron into the semiconductor substrate 10.

このように構成された半導体装置20によれ
ば、ソース領域及びドレイン領域を構成する不純
物領域16のうち大部分の領域でチヤネルのイオ
ン注入が行われなくなり、半導体基板10の不純
物濃度が高くならず、空乏層容量の増大を防止で
きる。また、フイールド酸化膜11のエツジ部で
はチヤネルのイオン注入が均等に行われるため、
素子の微細化によつてチヤネルに注入される不純
物濃度が高くなり、フイールド酸化膜11側へ注
入される不純物濃度が低くなつても、フイールド
酸化膜11のエツジ部分のフイールド反転電圧と
接合耐圧との整合性をとることにより、両電圧の
低下を防止することができる。
According to the semiconductor device 20 configured in this manner, channel ion implantation is no longer performed in most of the impurity regions 16 constituting the source and drain regions, and the impurity concentration of the semiconductor substrate 10 is not increased. , an increase in depletion layer capacitance can be prevented. In addition, since the channel ion implantation is performed evenly at the edge portion of the field oxide film 11,
Due to the miniaturization of devices, the impurity concentration implanted into the channel increases, and even if the impurity concentration implanted into the field oxide film 11 side decreases, the field inversion voltage and junction breakdown voltage at the edge portion of the field oxide film 11 decrease. By ensuring consistency, it is possible to prevent both voltages from dropping.

その結果、本発明をカラムを選択するトランジ
スタに適用することにより、フイールドの反転電
圧を下げることなく周辺トランジスタとの整合性
を保つたままで、トランジスタの空乏層容量を小
さくしてアクセスタイムを短縮させることができ
る。また、コンタクトがソース及びドレイン部の
一部にしかとれないような場合、拡散抵抗を減ら
すためにソース及びドレインの面積を大きする必
要が生ずるが、本発明を適用することにより、拡
散領域の面積の増大に伴う空乏層容量の増加を小
さく抑えることができる。
As a result, by applying the present invention to a transistor that selects a column, access time can be shortened by reducing the depletion layer capacitance of the transistor while maintaining consistency with peripheral transistors without lowering the field inversion voltage. be able to. Furthermore, in cases where the contact can be made only in part of the source and drain regions, it is necessary to increase the area of the source and drain in order to reduce the diffusion resistance, but by applying the present invention, the area of the diffusion region The increase in depletion layer capacitance due to the increase in can be suppressed to a small level.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る半導体装置に
よれば、フイールドでの反転電圧と接合耐圧を下
げることなく、空乏層容量を小さくして素子特性
を向上させることができるものである。
As explained above, according to the semiconductor device according to the present invention, the depletion layer capacitance can be reduced and the device characteristics can be improved without lowering the field reversal voltage and the junction breakdown voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の概略構成を示す
説明図、第2図は、同実施例の高濃度不純物領域
を形成する方法を示す説明図、第3図は、電圧と
フイールド酸化膜下の不純物濃度との関係を示す
特性図、第4図及び第5図は、従来の半導体装置
の問題点を示す説明図である。 10……半導体基板、11……フイールド酸化
膜、12……P型不純物領域、13……ゲート酸
化膜、14……ゲート電極、15……高濃度不純
物領域、16……不純物領域、17……レジスト
膜、18……不純物、20……半導体装置。
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a method of forming a high concentration impurity region of the same embodiment, and FIG. Characteristic diagrams showing the relationship with the impurity concentration under the film, FIGS. 4 and 5, are explanatory diagrams showing problems with conventional semiconductor devices. 10... Semiconductor substrate, 11... Field oxide film, 12... P-type impurity region, 13... Gate oxide film, 14... Gate electrode, 15... High concentration impurity region, 16... Impurity region, 17... ...Resist film, 18... Impurity, 20 ... Semiconductor device.

Claims (1)

【特許請求の範囲】 1 第一導電型の半導体基板と、 該半導体基板の表面に選択的に形成されたフイ
ールド絶縁膜と、 該フイールド絶縁膜で取り囲まれた素子領域
と、 前記フイールド絶縁膜の下に形成された第一導
電型の反転防止層と、 前記素子領域2分するように、該素子領域表面
上にゲート絶縁膜を介して設けられたゲート電極
と、 前記素子領域とフイールド絶縁膜との境界部分
ならびに前記素子領域におけるゲート電極下に選
択的に、所定の拡散深さで連続して形成された第
一導電型の高濃度不純物領域と、 該高濃度不純物領域に囲まれ且つ2分された前
記素子領域の夫々に、側面を該高濃度不純物領域
に接して形成された第二導電型の不純物領域から
なり、その拡散深さが前記高濃度不純物領域より
も浅く、且つその底面が前記半導体基板の第一導
電型領域と接しているソース領域およびドレイン
領域とを具備したことを特徴とする半導体装置。 2 第一導電型の半導体基板のフイールド領域予
定部に選択的に第一導電型不純物をドープし、第
一導電型の反転防止領域を形成する工程と、 前記フイールド領域予定部表面に選択的にフイ
ールド絶縁膜を形成し、該フイールド絶縁膜で囲
まれた素子領域を分離する工程と、 該素子領域のソース領域予定部およびドレイン
領域予定部を覆うイオン注入遮蔽膜を選択的に形
成する工程と、 該イオン注入遮蔽膜をブロツキングマスクとし
て、第一導電型不純物の高濃度イオン注入を行な
うことにより、前記フイールド領域と前記素子領
域との境界部分ならびに前記素子領域内のチヤン
ネル領域予定部に、所定の拡散深さで、第一導電
型の連続した高濃度不純物領域を形成する工程
と、 前記チヤンネル領域予定部上にゲート絶縁膜を
介してゲート電極を形成する工程と、 前記ケース領域予定部および前記ドレイン領域
予定部に、第二導電型不純物を選択的にドープす
ることにより、前記高濃度不純物領域よりも浅い
拡散深さのソース領域およびドレイン領域を形成
する工程とを具備したことを特徴とする半導体装
置の製造方法。
[Claims] 1. A semiconductor substrate of a first conductivity type, a field insulating film selectively formed on the surface of the semiconductor substrate, an element region surrounded by the field insulating film, and a semiconductor substrate of the field insulating film. a first conductivity type inversion prevention layer formed below; a gate electrode provided on the surface of the element region with a gate insulating film interposed therebetween so as to divide the element region into two; and the element region and the field insulating film. a first conductivity type high concentration impurity region selectively and continuously formed at a predetermined diffusion depth under the gate electrode in the element region and at the boundary with the first conductivity type; Each of the divided element regions includes a second conductivity type impurity region formed with a side surface in contact with the high concentration impurity region, the diffusion depth of which is shallower than that of the high concentration impurity region, and a bottom surface of the second conductivity type impurity region. A semiconductor device comprising a source region and a drain region that are in contact with a first conductivity type region of the semiconductor substrate. 2. A step of selectively doping a first conductivity type impurity into a portion of a semiconductor substrate of a first conductivity type where a field region is to be formed to form an inversion prevention region of a first conductivity type; a step of forming a field insulating film and isolating a device region surrounded by the field insulating film; and a step of selectively forming an ion implantation shielding film covering a planned source region and a planned drain region of the device region. Using the ion implantation shielding film as a blocking mask, high concentration ions of first conductivity type impurities are implanted into the boundary between the field region and the device region and into the planned channel region in the device region. , forming a continuous high-concentration impurity region of the first conductivity type at a predetermined diffusion depth; forming a gate electrode on the planned channel region via a gate insulating film; and forming a gate electrode in the planned case region. forming a source region and a drain region having a shallower diffusion depth than the high concentration impurity region by selectively doping the region and the planned drain region with a second conductivity type impurity. A method for manufacturing a featured semiconductor device.
JP2931086A 1986-02-13 1986-02-13 Semiconductor device Granted JPS62188273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2931086A JPS62188273A (en) 1986-02-13 1986-02-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2931086A JPS62188273A (en) 1986-02-13 1986-02-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62188273A JPS62188273A (en) 1987-08-17
JPH0573068B2 true JPH0573068B2 (en) 1993-10-13

Family

ID=12272646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2931086A Granted JPS62188273A (en) 1986-02-13 1986-02-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62188273A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121737A (en) * 1991-07-15 1993-05-18 Nec Corp Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118376A (en) * 1977-03-25 1978-10-16 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118376A (en) * 1977-03-25 1978-10-16 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS62188273A (en) 1987-08-17

Similar Documents

Publication Publication Date Title
US4908681A (en) Insulated gate field effect transistor with buried layer
US4906588A (en) Enclosed buried channel transistor
US6924529B2 (en) MOS transistor having a recessed gate electrode and fabrication method thereof
US5355011A (en) Insulated gate field effect transistor having LDD structure and method of making the same including a channel stop having a peak impurity concentration, the channel stop provided below a channel region
US5641982A (en) High voltage mosfet with an improved channel stopper structure
JP2003347546A (en) Vertical dmos element and manufacturing method therefor
US5623154A (en) Semiconductor device having triple diffusion
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPS63177471A (en) Mos-type semiconductor device
JPH02280342A (en) Mos semiconductor device and manufacture thereof
JPS6123669B2 (en)
JPH0573068B2 (en)
USRE44430E1 (en) PMOS depletable drain extension made from NMOS dual depletable drain extensions
JPS61210673A (en) Mis type semiconductor device
JPS6118349B2 (en)
US6285059B1 (en) Structure for laterally diffused metal-oxide semiconductor
JPS62141754A (en) High-dielectric-strength semiconductor device
JPH1012876A (en) Semiconductor device
JP2507981B2 (en) Manufacturing method of complementary MIS transistor
JPH03169080A (en) Field effect transistor
JPS6320382B2 (en)
JPH01286367A (en) Vertical field effect transistor
JPS61203679A (en) Mos transistor of high withstand voltage
JP2765142B2 (en) Method for manufacturing semiconductor device
JPH04142039A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees