JPH04142039A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04142039A
JPH04142039A JP26481890A JP26481890A JPH04142039A JP H04142039 A JPH04142039 A JP H04142039A JP 26481890 A JP26481890 A JP 26481890A JP 26481890 A JP26481890 A JP 26481890A JP H04142039 A JPH04142039 A JP H04142039A
Authority
JP
Japan
Prior art keywords
gate electrode
offset
film
semiconductor substrate
offset film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26481890A
Other languages
Japanese (ja)
Inventor
Masahiko Ito
政彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26481890A priority Critical patent/JPH04142039A/en
Publication of JPH04142039A publication Critical patent/JPH04142039A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a semiconductor device which is fine and whose reliability is high by a method wherein, in a state that sidewall spacers are formed at a gate electrode and an offset film laminated on its upper part, a high-concentration impurity region is formed, and, after that, the offset film and the sidewall spacers are etched back. CONSTITUTION:A gate electrode 13 where an offset film 17 is laminated on the upper part is formed on a semiconductor substrate 11; first impurity regions 15 whose impurity concentration is relatively low are formed in the semiconductor substrate 11 by making use of the gate electrode 13 as a mask. Sidewall spacers 14 are formed at side parts of the gate electrode 13 and the offset film 17; second impurity regions 16 whose impurity concentration is relatively high are formed in the semiconductor substrate 11 by making use of the gate electrode 13 and the sidewall spacers 14 as a mask. The offset film 17 and the sidewall spacers 14 are etched back. Thereby, it is possible to manufacture a semiconductor device which is fine and whose reliability is high.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、LDD構造と称されており、低濃度の不純物
領域によるオフセットで高濃度の不純物領域近傍の電界
を緩和している半導体装置の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semiconductor device called an LDD structure, in which an electric field near a high concentration impurity region is relaxed by an offset by a low concentration impurity region. This relates to a manufacturing method.

〔発明の概要] 本発明は、上記の様な半導体装置の製造方法において、
ゲート電極とその上部に積層されているオフセット膜と
に側壁スペーサを形成した状態で高tM度の不純物領域
を形成し、その後にオフセット膜と側壁スペーサとをエ
ッチバックすることによって、微細でしかも信軌性の高
い半導体装置を製造することができる様にしたものであ
る。
[Summary of the Invention] The present invention provides a method for manufacturing a semiconductor device as described above.
By forming a high tM impurity region with a sidewall spacer formed on the gate electrode and the offset film laminated on top of the gate electrode, and then etching back the offset film and sidewall spacer, a fine and reliable impurity region can be formed. This makes it possible to manufacture semiconductor devices with high orbital characteristics.

〔従来の技術〕[Conventional technology]

MOS)ランジスタの各種特性がホ・ノドキャリアによ
って劣化したり経時変化したりするのを緩和する構造と
して、LDD構造がある。
There is an LDD structure as a structure that alleviates the deterioration of various characteristics of a MOS (MOS) transistor due to the presence of carriers or changes over time.

MOSトランジスタでは、第2図に示す様に半導体基体
11の表面のゲート酸化膜12上にゲート電極13が形
成されているが、LDD構造では、ゲート電極13の側
部に側壁スペーサ14が形成されている。
In a MOS transistor, a gate electrode 13 is formed on a gate oxide film 12 on the surface of a semiconductor substrate 11 as shown in FIG. 2, but in an LDD structure, sidewall spacers 14 are formed on the sides of the gate electrode 13. ing.

N−拡散Ji15はゲート電極13をマスクにして形成
されるが、N゛拡散層16はゲート電極13と側壁スペ
ーサ14とをマスクにして形成される。
The N-diffusion Ji 15 is formed using the gate electrode 13 as a mask, while the N-diffusion layer 16 is formed using the gate electrode 13 and sidewall spacer 14 as a mask.

従って、側壁スペーサ14下にN−拡散層15が残され
、二〇N−拡散層15によるオフセットで、N゛拡散層
16のうちの一方であるドレイン領域近傍の電界が緩和
されている。
Therefore, the N-diffusion layer 15 is left under the sidewall spacer 14, and the electric field near the drain region, which is one of the N-diffusion layers 16, is relaxed by the offset caused by the 20N-diffusion layer 15.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、半導体装置の微細化に伴って、縦方向の段差
も緩和するために、ゲート電極13の膜厚Hも薄くなっ
てきている。
However, with the miniaturization of semiconductor devices, the thickness H of the gate electrode 13 is also becoming thinner in order to reduce the vertical step difference.

この結果、側壁スペーサ140幅が狭くなって。As a result, the width of the side wall spacer 140 becomes narrower.

N−拡散層15によるオフセ・ント量りも小さくなって
きている。
The offset caused by the N-diffusion layer 15 is also becoming smaller.

そして、デザインルールがハーフミクロンレベルになる
と、オフセット量りが不十分になり、N°拡散層16近
傍の電界を十分には緩和することができなくなってきて
いる。
When the design rule reaches the half-micron level, the offset measurement becomes insufficient and the electric field near the N° diffusion layer 16 cannot be sufficiently relaxed.

これを解決する手段の一つとして、N−拡散層15の不
純物濃度を高くし、N−拡散層15をチャネル方向へ広
げてオフセット量りを確保する方法もある。
One way to solve this problem is to increase the impurity concentration of the N-diffusion layer 15 and widen the N-diffusion layer 15 in the channel direction to ensure an offset measurement.

しかしこの方法では、N−拡散層15が深さ方向へも広
がって接合深さX、が深くなり、パンチスルー耐圧が劣
化する。
However, in this method, the N- diffusion layer 15 also expands in the depth direction, increasing the junction depth X and deteriorating the punch-through breakdown voltage.

〔課題を解決す゛るための手段) 本発明による半導体装置の製造方法は、オフセット膜1
7が上部に積層されているゲート電極13を半導体基体
ll上に形成し、前記ケート電極13をマスクにして不
純物濃度が相対的に低い第1の不純物領域15を前記半
導体基体11に形成し、前記ゲート電極13と前記オフ
セット膜17との側部に側壁スペーサ14を形成し、前
記ゲート電極13と前記側壁スペーサ14とをマスクに
して不純物濃度が相対的に高い第2の不純物領域16を
前記半導体基体11に形成し、前記オフセット膜17と
前記側壁スペーサ14とをエッチバンクしている。
[Means for Solving the Problems] A method for manufacturing a semiconductor device according to the present invention includes an offset film 1
forming a gate electrode 13 on which a gate electrode 7 is laminated on the semiconductor substrate 11; using the gate electrode 13 as a mask, forming a first impurity region 15 having a relatively low impurity concentration on the semiconductor substrate 11; A sidewall spacer 14 is formed on the side of the gate electrode 13 and the offset film 17, and a second impurity region 16 having a relatively high impurity concentration is formed using the gate electrode 13 and the sidewall spacer 14 as a mask. It is formed on the semiconductor substrate 11, and the offset film 17 and the sidewall spacer 14 are etched and banked.

(作用] 本発明による半導体装置の製造方法では、ゲート電極1
3とオフセット膜17との側部に側壁スペーサ14を形
成しているので、ゲート電極130側部にのみ側壁スペ
ーサ14を形成する場合に比べて、側壁スペーサ140
幅が広い。
(Function) In the method for manufacturing a semiconductor device according to the present invention, the gate electrode 1
Since the sidewall spacer 14 is formed on the side of the gate electrode 130 and the offset film 17, the sidewall spacer 14 is formed on the side of the gate electrode 130.
It's wide.

そして、第2の不純物領域16の形成に際して側壁スペ
ーサ14をもマスクにしているので、第1の不純′#J
領域15によるオフセット量りが大きい。従って、第2
の不純物領域16近傍の電界を十分に緩和することがで
きる。
Since the sidewall spacer 14 is also used as a mask when forming the second impurity region 16, the first impurity '#J
The offset measurement due to region 15 is large. Therefore, the second
The electric field near the impurity region 16 can be sufficiently relaxed.

しかも、オフセット膜17と側壁スペーサ14とは第2
の不純物領域16の形成後にエッチハックしているので
、段差は増加しない。
Moreover, the offset film 17 and the sidewall spacer 14 are
Since the etch hack is performed after the impurity region 16 is formed, the step height does not increase.

(実施例〕 以下、NチャネルMO3I−ランジスタの製造に適用し
た本発明の一実施例を、第1図を参照しながら説明する
(Embodiment) Hereinafter, an embodiment of the present invention applied to the manufacture of an N-channel MO3I-transistor will be described with reference to FIG.

この一実施例では、第1A図に示す様乙こ、半導体基体
11の表面にゲート酸化膜12を形成し、このゲート酸
化膜12上に多結晶Si膜等の導電膜と5iOz膜とを
順次に積層させる。
In this embodiment, as shown in FIG. 1A, a gate oxide film 12 is formed on the surface of a semiconductor substrate 11, and a conductive film such as a polycrystalline Si film and a 5iOz film are sequentially formed on this gate oxide film 12. Laminated on.

そして、これらのSiO□膜と導電膜とをパターニング
することによって、5iO7膜から成るオフセ。
Then, by patterning these SiO□ films and conductive films, an offset made of a 5iO7 film is formed.

ト膜17が上部に積層されているゲート電極13を形成
する。
A gate electrode 13 is formed on which a gate film 17 is laminated.

その後、ゲート電極13をマスクにして半導体基体11
中へN型不純物を低濃度にイオン注入することによって
、半導体基体11中にN−拡散層15を形成する。
Thereafter, using the gate electrode 13 as a mask, the semiconductor substrate 11 is
An N- diffusion layer 15 is formed in the semiconductor substrate 11 by ion-implanting N-type impurities into the semiconductor substrate 11 at a low concentration.

次に、SiO□膜をCVDで全面に堆積させ、このSi
O2膜をエッチパンクすることによって、第1B図に示
す様に、ゲート電極13とオフセント膜17との側部に
、SiO□膜から成る側壁スペーサ14を形成する。
Next, a SiO□ film is deposited on the entire surface by CVD, and this Si
By etching and puncturing the O2 film, sidewall spacers 14 made of a SiO□ film are formed on the sides of the gate electrode 13 and the offset film 17, as shown in FIG. 1B.

その後、ゲート電極13と側壁スペーサ14とをマスク
にして半導体基体11中へN型不純物を高濃度にイオン
注入することによって、半導体基体11中にN゛拡散層
16を形成する。
Thereafter, N type impurities are ion-implanted into the semiconductor substrate 11 at a high concentration using the gate electrode 13 and the sidewall spacers 14 as masks, thereby forming an N diffusion layer 16 in the semiconductor substrate 11.

次に、第1C図に示す様に、オフセット膜17がなくな
るまで、このオフセット膜17と側壁スペーサ14とを
エッチハックする。
Next, as shown in FIG. 1C, the offset film 17 and the sidewall spacer 14 are etched and hacked until the offset film 17 is removed.

゛以上の様な本実施例では、ゲート電極13の膜厚Hは
第2図の場合と同しであるが、ゲート電極13の上部に
オフセット膜17を積層させ、これらのゲート電極13
とオフセット膜17との側部に側壁スペーサ14を形成
しているので、N゛拡散層16を形成する時の側壁スペ
ーサ14の幅は第2図の場合よりも広い。
In this embodiment as described above, the film thickness H of the gate electrode 13 is the same as in the case of FIG.
Since the sidewall spacer 14 is formed on the side of the offset film 17, the width of the sidewall spacer 14 when forming the N₂ diffusion layer 16 is wider than in the case of FIG.

従って、段差を緩和するために、N゛拡散層16の形成
後にオフセット膜17と側壁スペーサ14とをエッチハ
ックして、側壁スペーサ14の幅が最終的には第2図の
場合と同等程度になっても、N−拡散層15によるオフ
セント量りは第2図の場合よりも大きい。
Therefore, in order to reduce the level difference, the offset film 17 and the sidewall spacer 14 are etched and hacked after the N diffusion layer 16 is formed, so that the width of the sidewall spacer 14 is finally equal to that in the case of FIG. Even so, the offset due to the N- diffusion layer 15 is larger than in the case of FIG.

この結果、N゛拡散層16のうちの一方であるドレイン
領域近傍の電界を十分に緩和することができる。
As a result, the electric field near the drain region, which is one of the N diffusion layers 16, can be sufficiently relaxed.

ところで、オフセント量りを大きくすると、ホットキャ
リアによるトランジスタ特性の劣化等を緩和することが
できるが、N−拡散層15の抵抗値が増大してトランジ
スタの駆動能力は低下し、両者は二律背反の関係にある
Incidentally, increasing the offset measurement can alleviate deterioration of transistor characteristics due to hot carriers, but the resistance value of the N-diffusion layer 15 increases and the driving ability of the transistor decreases, and the two are in a trade-off relationship. be.

従って、上述の実施例では何れのトランジスタについて
もオフセット量りが一定になるが、各トランジスタのデ
ユーティ比つまりICの使用時間に対する各トランジス
タの使用時間の比に応じてオフセット量りを調整し、駆
動能力の異なる複数種類のトランジスタを得ることもで
きる。
Therefore, in the above embodiment, the offset value is constant for all transistors, but the offset value is adjusted according to the duty ratio of each transistor, that is, the ratio of the usage time of each transistor to the usage time of the IC, and the drive capacity can be improved. It is also possible to obtain a plurality of different types of transistors.

即ち、デユーティ比が小さくて特性の劣化等をあまり考
慮しなくてもよいトランジスタについては、オフセット
量りを小さくして大きな駆動能力を得ることもできる。
That is, for transistors having a small duty ratio and requiring little consideration of deterioration of characteristics, it is possible to obtain a large drive capability by reducing the offset measurement.

この様にオフセット量りを調整するためには、オフセッ
ト膜17の膜厚とオフセット膜17及び側壁スペーサ1
4に対するエッチハック量との少なくとも一方をデユー
ティ比に応して調整し、側壁スペーサ140幅がデユー
ティ比に応して異なる状態でN゛拡散層16を形成すれ
ばよい。
In order to adjust the offset measurement in this way, the thickness of the offset film 17 and the thickness of the offset film 17 and the side wall spacer 1 are
It is sufficient to adjust at least one of the etch hack amount and the amount of etch hack with respect to 4 in accordance with the duty ratio, and form the N' diffusion layer 16 in a state in which the width of the sidewall spacer 140 differs in accordance with the duty ratio.

なお、上述の実施例はNチャネル間Osトランジスタの
製造に本発明を適用したものであるが、本発明はPチャ
ネルMosトランジスタ等の製造にも適用することがで
きる。
Although the above-described embodiments apply the present invention to the manufacture of N-channel Os transistors, the present invention can also be applied to the manufacture of P-channel Mos transistors and the like.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体装置の製造方法では、段差を増加さ
せることなく第2の不純物領域近傍の電界を十分に緩和
することができるので、微細でしかも信軌性の高い半導
体装置を製造することができる。
In the method for manufacturing a semiconductor device according to the present invention, it is possible to sufficiently relax the electric field near the second impurity region without increasing the step height, and therefore it is possible to manufacture a fine semiconductor device with high reliability. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を順次に示す側断面図、第2
図は本発明の一従来例によって製造したMOSトランジ
スタの側断面図である。 なお図面に用いた符号において、 11 −−−−−一 半導体基体 13−−−−−一−−−−ゲート電極 14−−−− 側壁スペーサ 15− ・ −−−−−N−拡散層 16−・−−−N゛拡散層 17−−−−−−−−−−−オフセソト膜である。
Fig. 1 is a side sectional view sequentially showing one embodiment of the present invention;
The figure is a side sectional view of a MOS transistor manufactured according to a conventional example of the present invention. In addition, in the symbols used in the drawings, 11 --------1 Semiconductor substrate 13 -----1 ---- Gate electrode 14 ---- Side wall spacer 15 - ・ -------N- Diffusion layer 16 ---N Diffusion layer 17 --- Offset film.

Claims (1)

【特許請求の範囲】  オフセット膜が上部に積層されているゲート電極を半
導体基体上に形成し、 前記ゲート電極をマスクにして不純物濃度が相対的に低
い第1の不純物領域を前記半導体基体に形成し、 前記ゲート電極と前記オフセット膜との側部に側壁スペ
ーサを形成し、 前記ゲート電極と前記側壁スペーサとをマスクにして不
純物濃度が相対的に高い第2の不純物領域を前記半導体
基体に形成し、 前記オフセット膜と前記側壁スペーサとをエッチバック
する半導体装置の製造方法。
[Claims] A gate electrode on which an offset film is laminated is formed on a semiconductor substrate, and a first impurity region having a relatively low impurity concentration is formed on the semiconductor substrate using the gate electrode as a mask. a sidewall spacer is formed on a side of the gate electrode and the offset film, and a second impurity region having a relatively high impurity concentration is formed in the semiconductor substrate using the gate electrode and the sidewall spacer as a mask. A method of manufacturing a semiconductor device, further comprising etching back the offset film and the sidewall spacer.
JP26481890A 1990-10-02 1990-10-02 Manufacture of semiconductor device Pending JPH04142039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26481890A JPH04142039A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26481890A JPH04142039A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04142039A true JPH04142039A (en) 1992-05-15

Family

ID=17408636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26481890A Pending JPH04142039A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04142039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837302A (en) * 1993-11-30 1996-02-06 Siliconix Inc Bi-directional current blocking switch using mosfet and switching circuit and power supply selecting method using such switch
KR100396469B1 (en) * 2001-06-29 2003-09-02 삼성전자주식회사 Method of forming the gate electrode in semiconductor device and Method of manufacturing the non-volatile memory device comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837302A (en) * 1993-11-30 1996-02-06 Siliconix Inc Bi-directional current blocking switch using mosfet and switching circuit and power supply selecting method using such switch
KR100396469B1 (en) * 2001-06-29 2003-09-02 삼성전자주식회사 Method of forming the gate electrode in semiconductor device and Method of manufacturing the non-volatile memory device comprising the same

Similar Documents

Publication Publication Date Title
KR100237279B1 (en) Misfet, complementary misfet and manufacturing method thereof
US5283455A (en) Thin film field effect element having an LDD structure
US5828104A (en) MOS structure device having asymmetric LDD structure and fabrication method thereof
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JP2667465B2 (en) Semiconductor device
JPH04142039A (en) Manufacture of semiconductor device
JPH1050721A (en) Bipolar transistor and manufacture thereof
JPH0493083A (en) Semiconductor device and manufacture thereof
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JPH0521789A (en) Field effect type transistor and its manufacture
JPS61210673A (en) Mis type semiconductor device
JPH067596B2 (en) Method for manufacturing semiconductor device
US6720224B2 (en) Method for forming transistor of semiconductor device
JPS621276A (en) Mos type semiconductor device
JPH06112218A (en) Semiconductor device and its manufacture
KR100405450B1 (en) Dmos transistor having structure of pocket type junction layer and manufacturing method thereof
KR100448090B1 (en) Method for fabricating high-performance semiconductor device by reducing junction capacitance
JPS62133763A (en) Mos transistor
JP2001257346A (en) Semiconductor integrated circuit device
JPH03171671A (en) Semiconductor device and manufacture thereof
JP2001196583A (en) Semiconductor device and manufacturing method therefor
JPH08274313A (en) Semiconductor device and its manufacture
JPH03276680A (en) Semiconductor device and manufacture thereof
JPH065795A (en) Semiconductor device
JPS63124575A (en) Semiconductor device