JPS62188273A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62188273A
JPS62188273A JP2931086A JP2931086A JPS62188273A JP S62188273 A JPS62188273 A JP S62188273A JP 2931086 A JP2931086 A JP 2931086A JP 2931086 A JP2931086 A JP 2931086A JP S62188273 A JPS62188273 A JP S62188273A
Authority
JP
Japan
Prior art keywords
region
impurity
regions
impurity regions
high concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2931086A
Other languages
Japanese (ja)
Other versions
JPH0573068B2 (en
Inventor
Nobuaki Otsuka
伸朗 大塚
Sumio Tanaka
田中 寿実夫
Shigeru Atsumi
渥美 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2931086A priority Critical patent/JPS62188273A/en
Publication of JPS62188273A publication Critical patent/JPS62188273A/en
Publication of JPH0573068B2 publication Critical patent/JPH0573068B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the element characteristics while reducing the capacity of depletion layer and restraining the inversion voltage and the junction voltage of a field from declining by a method wherein a high concentration region is formed on the part where a gate region, a source region and a drain region are in contact with a field oxide film. CONSTITUTION:P-type high concentration impurity regions 15 slightly larger than a gate region are formed in a semiconductor substrate 10 immediately below a gate electrode 14 while the impurity regions are extended over the regions including the boundary parts between field oxide films 11 and element regions. Besides, N-type impurity regions 16 to be source region and a drain region in the diffusion depth less than that of high impurity regions 15 are formed in the element region parts halved by the gate region below the gate electrode 14. In other words, the peripheral regions of impurity regions 16 are included in the high concentration impurity regions 15.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a semiconductor device.

(従来の技術とその問題点) sz^er  all  車:# I−←j上 1iB
 n)+A Δ   噴つh・71 1r::一トf+
n  /フィールドに注入される不純物濃度が高い程、
フィールドの反転電圧は上昇し、接合のブレークダウン
電圧は下がる。つま°シ、開園の実線にて示されるフィ
ールド反転電圧とフィールドエツジ部接合耐圧の整合性
のとれる範囲でフィールド酸化膜下に注入する不純物の
濃度が決定される。
(Conventional technology and its problems) sz^er all car: # I-←j top 1iB
n) +A Δ jet h・71 1r:: one f+
The higher the impurity concentration implanted into the n/field,
The field inversion voltage increases and the junction breakdown voltage decreases. In other words, the concentration of the impurity to be implanted under the field oxide film is determined within a range where the field inversion voltage shown by the open solid line matches the field edge junction breakdown voltage.

而して、MO8型半導体装置のダート領域には、第4図
に示す如くこれよりも僅かに大きい領域にして高濃度不
純物領域1が形成されている。っまシ、高濃度不純物領
域1を形成する不純物は、フィールド酸化膜2のエツジ
部1aにも拡散する。
As shown in FIG. 4, in the dirt region of the MO8 type semiconductor device, a highly concentrated impurity region 1 is formed in a slightly larger region. However, the impurities forming the high concentration impurity region 1 also diffuse into the edge portion 1a of the field oxide film 2.

このため高濃度不純物領域1がエツジ部1aに延出して
いる部分について考えると、第5図に示す如く、このエ
ツジ部1aに拡散してきた不純物とフィールド酸化膜2
の直下に予め形成された不純物領域3中の不純物とが重
なった状態の領域4が形成される。その結果、ダート領
域に注入される不純物濃度が高くなると、結果的にフィ
ールド酸化膜2のエツジ部1aの不純物濃度が高くなる
Therefore, considering the portion where the high concentration impurity region 1 extends to the edge portion 1a, as shown in FIG.
A region 4 is formed in which the impurity in the impurity region 3 formed in advance overlaps with the impurity directly under the impurity region 3 . As a result, when the impurity concentration implanted into the dirt region increases, the impurity concentration at the edge portion 1a of the field oxide film 2 increases as a result.

とのためフィールr反1料常圧は1社1− 培春プレ−
クダウン電圧は低下する。つtb、第3図に示すフィー
ルド反転電圧が上昇してフィールドエツジ部接合耐圧が
低下するので、両者とフィールド酸化膜2下の不純物濃
度との関係は同図中破線にて示されることになる。この
ため両辺圧の整合性のとれるフィールド酸化膜1下の不
純物濃度は、同図中の実線の交点a1から破線の交点a
2に移った分だけ低下する。換言するならば、素子の微
細化によってゲート領域に注入される不純物濃度が高く
なシ、これに伴ってフィールド反転電圧は、フィールド
酸化膜2下の不純物領域3の濃度よりも、ゲート領域の
高濃度不純物領域1の濃度に大きく依存することになる
。そこで、高濃度不純物領域1がエツジ部ZaK延出し
ていない領域1bを考えると、ダート領域下の高濃度不
純物領域1が存在せずにフィールド酸化膜2下の不純物
領域3だけが存在するフィールド酸化膜2のエツジ部1
b(第4図参照)では、フィールド反転電圧が低くなっ
てしまう。そこで、f−)領域下だけでなくソース・ド
レインの不純物領域形成予定領域の全域に亘って、高濃
度不純物領域を形成することが考えられる。しかしなが
ら、このようにダート領域・ソースドレイン領域からな
る素子領域の全域に高濃度不純物領域を形成すると、素
子が微細化してソース・ドレインを構成する不純物領域
が浅くなると、次のような問題が起きる。
Because of this, there is only one company, one company, and one company, Baishun Play.
The down voltage decreases. Since the field inversion voltage shown in FIG. 3 increases and the field edge junction breakdown voltage decreases, the relationship between the two and the impurity concentration under the field oxide film 2 is shown by the broken line in the figure. . Therefore, the impurity concentration under the field oxide film 1 where the pressure on both sides can be matched is from the intersection a1 of the solid line to the intersection a of the broken line in the figure.
It decreases by the amount moved to 2. In other words, the impurity concentration implanted into the gate region becomes higher due to the miniaturization of devices, and as a result, the field reversal voltage becomes higher than the concentration of the impurity region 3 under the field oxide film 2. The concentration largely depends on the concentration of the impurity region 1. Therefore, considering a region 1b in which the high concentration impurity region 1 does not extend to the edge portion ZaK, a field oxidation is performed in which the high concentration impurity region 1 under the dirt region does not exist and only the impurity region 3 under the field oxide film 2 exists. Edge part 1 of membrane 2
b (see FIG. 4), the field inversion voltage becomes low. Therefore, it is conceivable to form a high concentration impurity region not only under the f-) region but also over the entire region where the source/drain impurity regions are to be formed. However, if a highly concentrated impurity region is formed throughout the device region consisting of the dirt region and source/drain region in this way, the following problems will occur as the device becomes finer and the impurity regions that make up the source/drain become shallower. .

すなわち、ソース・ドレインの不純物領域が浅くなるに
伴って逆にその分だけその直下に高濃度不純物領域1が
延出してくるため基板5側の不純物濃度が高くなる。つ
まシ、浅くなったソース・ドレイ/の不純物領域とそれ
に伴って延出してきた高濃度不純物領域1とで形成され
るPN接合は、ソース・ドレインの不純物領域が十分に
深くてその直下の基板5とで形成されたPN接合の場合
よシも主面側に引き上げられる。このため基板5方向に
空乏層が広がらず、空乏層容量が増大して素子特性を十
分だ向上できない結果となる。
That is, as the impurity regions of the source and drain become shallower, the high concentration impurity region 1 extends directly below the source/drain impurity regions, thereby increasing the impurity concentration on the substrate 5 side. Finally, the PN junction formed by the shallower source/drain impurity region and the correspondingly extended high concentration impurity region 1 is formed by the source/drain impurity region being sufficiently deep to form the substrate immediately below it. In the case of the PN junction formed with 5 and 5, 5 and 5 are also pulled up to the main surface side. Therefore, the depletion layer does not spread in the direction of the substrate 5, and the capacitance of the depletion layer increases, resulting in insufficient improvement of device characteristics.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、−導電型の半導体基板の所定領域に設けられ
た素子領域と、該素子領域をダート領域を介して2分し
、反対導電型の不純物領域で形成されたソース領域及び
ドレイン領域と、前記デート領域を覆いかつ、これより
僅かに広い領域でその主面から前記半導体基板の内部に
延出すると共に、前記ソース領域及び前記ドレイン領域
の周辺領域を含んでその主面から前記半導体基板内に延
出する同導電型の高濃度不純物領域とを具備することを
特徴とする半導体装置である。
(Means for Solving the Problems) The present invention includes an element region provided in a predetermined region of a semiconductor substrate of a -conductivity type, and an impurity region of an opposite conductivity type that is divided into two parts via a dirt region. a source region and a drain region formed in the semiconductor substrate; and a high concentration impurity region of the same conductivity type extending from the main surface into the semiconductor substrate.

(作用) 本発明に係る半導体装置によれば、ゲート領域、ソース
領域及びドレイン領域がフィールド酸化膜に接する部分
に、高濃度領域を設けているので空乏層容1を小さくす
ることができる。このためフィールドの反転電圧及び接
合耐圧の低下を抑えて素子特性を向上させることができ
る。
(Function) According to the semiconductor device according to the present invention, the depletion layer capacity 1 can be reduced because the high concentration region is provided in the portion where the gate region, the source region, and the drain region are in contact with the field oxide film. Therefore, it is possible to suppress a decrease in field inversion voltage and junction breakdown voltage, and improve device characteristics.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第1図は、本発明の一実施例の概略構成シ示す贈明図
〒あふ一図中10はP這雷暦の半導体基板である。半導
体基板100所定領域には、フィールド酸化膜1ノで囲
まれた素子領域が設けられている。フィールド酸化膜1
1の直下には、P型不純物領域12が形成されている。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention. Reference numeral 10 in the figure indicates a semiconductor substrate of P-type. In a predetermined region of the semiconductor substrate 100, an element region surrounded by a field oxide film 1 is provided. Field oxide film 1
A P-type impurity region 12 is formed directly under the P-type impurity region 1 .

素子領域上の所定領域には、ダート酸化膜13を介して
ゲート電極14が形成されている。r−1電櫃14直下
の半導体基板10内には、P型の高濃度不純物領域15
がダート領域よシも僅に大きく形成され、かつ、この高
濃度不純物15は、フィールド酸化膜11と素子領域と
の境界部分を含む領域に延出している。また、f−)電
極14下のデート領域で2分された素子領域の部分には
、高濃度不純物領域15よシも浅い拡赦深さでソース領
域及びドレイン領域となるN型の不純物領域16が形成
されている。つまシ、不純物領域16の周辺領域は、高
濃度不純物領域15内に含まれている。
A gate electrode 14 is formed in a predetermined region on the element region with a dirt oxide film 13 interposed therebetween. In the semiconductor substrate 10 directly under the r-1 electric box 14, there is a P-type high concentration impurity region 15.
The dirt region is also formed slightly larger than the dirt region, and the high concentration impurity 15 extends to a region including the boundary between the field oxide film 11 and the element region. Furthermore, in the part of the element region divided into two by the date region under the f-) electrode 14, an N-type impurity region 16 which becomes a source region and a drain region has a shallower expansion depth than the high concentration impurity region 15. is formed. The peripheral region of the impurity region 16 is included in the high concentration impurity region 15 .

ここで、高濃度不純物領域15の形成は、第2図(AX
B)に示す如く、素子領域内のソース・ドレインの領域
となる不純物領域形成予定部上に、これよりも僅かに小
さい形状のレジスト膜17を載置し、このレジスト膜1
7をマスクにしてゾロン等の不純物18を半導体基板1
0内に注入することによシ容易に形成することができる
Here, the formation of the high concentration impurity region 15 is shown in FIG.
As shown in B), a resist film 17 having a slightly smaller shape is placed on the portion where the impurity region which will become the source/drain region in the element region is to be formed.
Using 7 as a mask, impurities 18 such as zolon are applied to the semiconductor substrate 1.
It can be easily formed by injecting into the 0.

このように構成された半導体装置20によれば、ソース
領域及びドレイン領域を構成する不純物領域16のうち
大部分の領域でチャネルのイオン注入が行われなくなり
、半導体基板10の不純物濃度が高くならず、空乏層容
量の増大を防止できる。
According to the semiconductor device 20 configured in this manner, channel ion implantation is no longer performed in most of the impurity regions 16 constituting the source and drain regions, and the impurity concentration of the semiconductor substrate 10 is not increased. , an increase in depletion layer capacitance can be prevented.

また、フィールド酸化膜1ノのエツジ部ではチャネルの
イオン注入が均等に行われるため、素子の微細化によっ
てチャネルに注入される不純物濃度が高くなシ、フィー
ルド酸化膜11側へ注入される不純物濃度が低くなって
も、フィールド酸化膜11のエツジ部分のフィールド反
転電圧と接合耐圧との整合性をとることによシ、両電圧
の低下を防止することができる。
In addition, since the channel ion implantation is uniformly performed at the edge of the field oxide film 1, the impurity concentration implanted into the channel becomes high due to the miniaturization of the device, and the impurity concentration implanted into the field oxide film 11 side is increased. Even if the voltage becomes low, by matching the field inversion voltage at the edge portion of the field oxide film 11 with the junction breakdown voltage, it is possible to prevent both voltages from decreasing.

その結果、本発明をカラムを選択するトランジスタに適
用することにより、フィールドの反転電圧を下げること
なく周辺トランジスタとの整合性を保ったままで、トラ
ンジスタの空乏層容量を小さくしてアクセスタイムを短
縮させることができる。また、コンタクトがソース及び
ドレイン部の一部にしかとれないような場合、拡散抵抗
を減らすためにソース及びドレインの面積を大きくする
必要が生ずるが、本発明を適用することによシ、拡散領
域の面積の増大に伴う空乏層容1の増加を小さく抑える
ことができる。
As a result, by applying the present invention to a transistor that selects a column, access time can be shortened by reducing the depletion layer capacitance of the transistor while maintaining consistency with peripheral transistors without lowering the field inversion voltage. be able to. Furthermore, if the contact can be made only in part of the source and drain regions, it becomes necessary to increase the area of the source and drain in order to reduce the diffusion resistance. An increase in the depletion layer capacity 1 due to an increase in the area of can be suppressed to a small value.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る半導体装置によれば、
フィールドでの反転電圧と接合耐圧を下げることなく、
空乏層容量を小さくして素子特性を向上させることがで
きるものである。
As explained above, according to the semiconductor device according to the present invention,
without reducing inversion voltage and junction breakdown voltage in the field.
This makes it possible to reduce the depletion layer capacitance and improve device characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の概略構成を示す説明図、
第2図は、同実施例の高濃度不純物領域を形成する方法
を示す説明図、第3図は、電圧とフィールド酸化膜下の
不純物濃度との関係を示す特性図、第4図及び第5図は
、従来の半導体装置の問題点を示す説明図である。 10・・・半導体基板、11・・・フィールド酸化膜、
12・・・P型不純物領域、13・・・ダート酸化膜、
14・・・?−)電極、15・・・高濃度不純物領域、
16・・・不純物領域、17・・・レジスト膜、18・
・・不純物、20・・・半導体装置 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention,
FIG. 2 is an explanatory diagram showing the method of forming the high concentration impurity region of the same embodiment, FIG. 3 is a characteristic diagram showing the relationship between voltage and impurity concentration under the field oxide film, and FIGS. The figure is an explanatory diagram showing problems of a conventional semiconductor device. 10... Semiconductor substrate, 11... Field oxide film,
12... P-type impurity region, 13... dirt oxide film,
14...? -) electrode, 15...high concentration impurity region,
16... Impurity region, 17... Resist film, 18...
...Impurity, 20...Semiconductor device applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板の所定領域に設けられた素子領域
と、該素子領域をゲート領域を介して2分し、反対導電
型の不純物領域で形成されたリース領域及びドレイン領
域と、前記ゲート領域を覆い、かつ、これより僅かに広
い領域でその主面から前記半導体基板の内部に延出する
と共に、前記ソース領域及び前記ドレイン領域の周辺領
域を含んでその主面から前記半導体基板内に延出する同
導電型の高濃度不純物領域とを具備することを特徴とす
る半導体装置。
An element region provided in a predetermined region of a semiconductor substrate of one conductivity type, the element region divided into two by a gate region, and a lease region and a drain region formed of impurity regions of the opposite conductivity type, and the gate region and extends into the semiconductor substrate from the main surface in a slightly wider region, and extends into the semiconductor substrate from the main surface including peripheral regions of the source region and the drain region. 1. A semiconductor device comprising: a high-concentration impurity region of the same conductivity type.
JP2931086A 1986-02-13 1986-02-13 Semiconductor device Granted JPS62188273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2931086A JPS62188273A (en) 1986-02-13 1986-02-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2931086A JPS62188273A (en) 1986-02-13 1986-02-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62188273A true JPS62188273A (en) 1987-08-17
JPH0573068B2 JPH0573068B2 (en) 1993-10-13

Family

ID=12272646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2931086A Granted JPS62188273A (en) 1986-02-13 1986-02-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62188273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121737A (en) * 1991-07-15 1993-05-18 Nec Corp Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118376A (en) * 1977-03-25 1978-10-16 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118376A (en) * 1977-03-25 1978-10-16 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121737A (en) * 1991-07-15 1993-05-18 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0573068B2 (en) 1993-10-13

Similar Documents

Publication Publication Date Title
US4908681A (en) Insulated gate field effect transistor with buried layer
US5355011A (en) Insulated gate field effect transistor having LDD structure and method of making the same including a channel stop having a peak impurity concentration, the channel stop provided below a channel region
US8106465B2 (en) Semiconductor device
US5641982A (en) High voltage mosfet with an improved channel stopper structure
KR940004846A (en) Semiconductor device and manufacturing method
JPH04107867A (en) Semiconductor device
JPS62188273A (en) Semiconductor device
JPH0410227B2 (en)
JPS6123669B2 (en)
JP2727590B2 (en) MIS type semiconductor device
JPS61210673A (en) Mis type semiconductor device
US20030030105A1 (en) Semiconductor device
JP3123140B2 (en) Field effect transistor
JPS61177776A (en) Semiconductor device
US6707119B2 (en) Polygonal structure semiconductor device
JPH01286367A (en) Vertical field effect transistor
JPH02102575A (en) Semiconductor device
JPS6320382B2 (en)
JPH0462975A (en) Semiconductor device
JPS62140464A (en) Mos type semiconductor device
JPS621265B2 (en)
JPH05166832A (en) High breakdown strength transistor and its manufacture
JPS5858747A (en) Metal oxide semiconductor type semiconductor integrated circuit
JPH0621087A (en) Semiconductor device
JPS60154662A (en) Mos type semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees