JPH0572643B2 - - Google Patents

Info

Publication number
JPH0572643B2
JPH0572643B2 JP9126384A JP9126384A JPH0572643B2 JP H0572643 B2 JPH0572643 B2 JP H0572643B2 JP 9126384 A JP9126384 A JP 9126384A JP 9126384 A JP9126384 A JP 9126384A JP H0572643 B2 JPH0572643 B2 JP H0572643B2
Authority
JP
Japan
Prior art keywords
magnetic
storage medium
bias
electrodes
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9126384A
Other languages
Japanese (ja)
Other versions
JPS60236110A (en
Inventor
Nobuyuki Hayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9126384A priority Critical patent/JPS60236110A/en
Publication of JPS60236110A publication Critical patent/JPS60236110A/en
Publication of JPH0572643B2 publication Critical patent/JPH0572643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記憶媒体に書き込まれた磁気的情
報を、いわゆる磁気抵抗効果を利用して、読み出
しを行う強磁性磁気抵抗効果素子(以下、MR素
子と称す)を備えた磁気抵抗効果ヘツド(以下、
MRヘツドと称す)に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a ferromagnetic magnetoresistive element (hereinafter referred to as "magnetoresistive element") that reads magnetic information written on a magnetic storage medium by using the so-called magnetoresistive effect. A magnetoresistive head (hereinafter referred to as MR element) equipped with
(referred to as MR head).

(従来技術とその問題点) 近年、MRヘツドは磁気記録における記録密度
の向上に大きく貢献するものとして注目されてい
る。
(Prior art and its problems) In recent years, MR heads have attracted attention as a device that greatly contributes to improving the recording density in magnetic recording.

周知の如く、MR素子を磁気記憶媒体からの信
号磁界に対して、線形応答を呈する高効率の再生
ヘツドとして用いる場合には、MR素子に流すセ
ンス電流ISとMR素子の磁化Mの成す角度θb(以
下、バイアス角と称す)を所定の値に設定するバ
イアス手段が必要である。又、記録密度の増大に
対して、その再生分解能を高める手段も必要とさ
れ、種々の検討がなされている。
As is well known, when an MR element is used as a highly efficient reproducing head that exhibits a linear response to a signal magnetic field from a magnetic storage medium, the angle formed by the sense current I S flowing through the MR element and the magnetization M of the MR element is A bias means is required to set θ b (hereinafter referred to as bias angle) to a predetermined value. Furthermore, in response to the increase in recording density, there is also a need for means for increasing the reproduction resolution, and various studies have been made.

特に高記録密度における再生分解能の低下は、
次の様に説明されている。今、第1図に示すMR
素子1(流さL、幅h、厚みtMのストライプ状に
形成され、長さL方向にセンス電流ISが供給され
適当なバイアス磁界によつて前記センス電流IS
磁化Mとθbの角度を成す)と磁気記憶媒体2の相
対的位置関係において、磁気記憶媒体2からの信
号磁界HSは低記録密度時においては、MR素子1
の幅h方向に充分に印加され、MR素子1全体が
抵抗変化に寄与し、大きい再生出力が得られたも
のの、高記録密度時には、MR素子1に充分な信
号磁界HSが到達しえず、抵抗変化に寄与するの
は、磁気記憶媒体2に最近接する領域のみとな
り、大きく再生出力が低下するとされている。更
に、MR素子1の磁化Mのバイアス状態は一般
に、幅hの中央部で最適となる様に設定され(即
ちθb45度となる様に設定されている)ている
が、高記録密度時に最も抵抗変化に寄与する、磁
気記憶媒体2に最近接する領域では、MR素子1
の幅h方向の反磁界のため、理想的バイアス状態
は実現されておらず(即ちθb≪45度)、再生感度
を低下させていた。
In particular, the reduction in reproduction resolution at high recording densities
It is explained as follows. Now, MR shown in Figure 1
Element 1 (formed in a stripe shape with flow length L, width h, and thickness tM , a sense current I S is supplied in the direction of length L, and the sense current I S changes between magnetization M and θ b by an appropriate bias magnetic field. In the relative positional relationship between the magnetic storage medium 2 and the magnetic storage medium 2, the signal magnetic field H S from the magnetic storage medium 2 is
Although a sufficient signal magnetic field H S was applied in the width h direction of the MR element 1 and the entire MR element 1 contributed to the resistance change, and a large reproduction output was obtained, at high recording density, a sufficient signal magnetic field H S could not reach the MR element 1. It is said that only the region closest to the magnetic storage medium 2 contributes to the resistance change, and the reproduction output is greatly reduced. Furthermore, the bias state of the magnetization M of the MR element 1 is generally set to be optimal at the center of the width h (that is, set so that θ b is 45 degrees), but at high recording density In the region closest to the magnetic storage medium 2 that contributes to the resistance change the most, the MR element 1
Because of the demagnetizing field in the direction of the width h, an ideal bias state was not realized (ie, θ b <<45 degrees), which lowered the reproduction sensitivity.

上述した、MRヘツドの欠点を解決するため、
特に、再生分解能の向上をはかるため、特開昭50
−59023号に、MR素子の両側に所定の距離をお
いて、高透磁率磁性体からなる磁気シールドを並
設した構成のMRヘツドが開示されている。この
種の磁気シールドを設けたMRヘツドは二つの磁
気シールド間の距離、即ち、キヤツプ長が小さい
程、磁気シールドとMR素子の静磁的結合が強固
となりMR素子の反磁界を軽減して、より高い分
解能の特性が得られるものの、MR素子のセンス
電流ISと磁化Mを所定のバイアス角θbに設定する
ためのバイアス手段のスペースを磁気シールドに
はさまれたキヤツプの中において必要とするた
め、ギヤツプ長の大きさを小さくしようとしても
限られたものとなり、情報読み出しに所望の分解
能を得ることが困難になつていた。
In order to solve the above-mentioned drawbacks of the MR head,
In particular, in order to improve the reproduction resolution,
No. 59023 discloses an MR head having a structure in which magnetic shields made of a high magnetic permeability magnetic material are arranged in parallel at a predetermined distance on both sides of an MR element. In an MR head equipped with this type of magnetic shield, the smaller the distance between the two magnetic shields, that is, the cap length, the stronger the static magnetic coupling between the magnetic shield and the MR element becomes, reducing the demagnetizing field of the MR element. Although higher resolution characteristics can be obtained, space for a bias means for setting the sense current I S and magnetization M of the MR element to a predetermined bias angle θ b is required in the cap sandwiched between the magnetic shields. Therefore, even if an attempt is made to reduce the gap length, there is a limit, and it has become difficult to obtain the desired resolution for information reading.

この磁気シールド付MRヘツドのバイアス手段
の問題を解決するため、特願昭51−114038号に、
第2図の断面図に示す如き、MRヘツドが開示さ
れている。第2図のMRヘツドはギヤツプ長Gを
有する二つの磁気シールド3及び4の間に、MR
素子1が並置された磁気シールト付MRヘツドに
おいて、磁気シールド3及び4の少くなくとも一
方に、MR素子1に流すセンス電流ISと平行な電
流IB(以下、バイアス電流と称す)を流し、該バ
イアス電流IBによつて磁気シールド3及び4の周
囲に発生するバイアス磁界HBを利用して、MR
素子1の磁化Mをセンス電流ISに対して回転さ
せ、θb45°に設定せしめることができる。
In order to solve the problem of the biasing means of this magnetically shielded MR head, Japanese Patent Application No. 114038/1983
An MR head is disclosed as shown in the cross-sectional view of FIG. The MR head in FIG. 2 has an MR head between two magnetic shields 3 and 4 having a gap length G.
In an MR head with a magnetic shield in which the element 1 is arranged in parallel, a current I B (hereinafter referred to as a bias current) parallel to the sense current I S flowing through the MR element 1 is passed through at least one of the magnetic shields 3 and 4. , by using the bias magnetic field H B generated around the magnetic shields 3 and 4 by the bias current I B , the MR
The magnetization M of the element 1 can be rotated with respect to the sense current I S and set at θ b 45°.

この種のMRヘツドは、磁気シールド3及び4
のギヤツプ内にバイアス手段を必要としないた
め、ギヤツプ長Gを小さく設定でき、比較的高い
分解能特性を達成することができるが、MR素子
1に印加されるバイアス磁界HBがMR素子1の
幅h方向に略一様であるため、MR素子1のバイ
アス状態は幅hの中央部で最適となるか、もしく
は、MR素子1の幅hが磁気シールド3及び4の
幅SHよりも小さい時は、磁気記憶媒体2に最も
遠隔した領域で最適となる様に設定される。即
ち、第1図を用いて説明した単独のMR素子のみ
で構成されるMRヘツドと同様高記録密度時に最
も抵抗変化に寄与する、磁気記憶媒体2に最近接
する領域では理想的バイアス状態が実現されてお
らず、再生感度を低下させていた。これを避ける
ため、h≫SHなる構成にし、MR素子1の磁気
記憶媒体2に最近接する領域に最も大きなバイア
ス磁界HBが印加される様に設定することができ
るが、これは結果として磁気シールドの本来の効
果(即ち、MR素子1の反磁界を軽減する効果、
不要外来磁界をしやへいする効果)を著しく低下
させることになる。
This type of MR head has magnetic shields 3 and 4.
Since no bias means is required within the gap of MR element 1, the gap length G can be set small and relatively high resolution characteristics can be achieved. Since it is approximately uniform in the h direction, the bias state of the MR element 1 is optimal at the center of the width h, or when the width h of the MR element 1 is smaller than the width SH of the magnetic shields 3 and 4. , is set to be optimal in the area farthest from the magnetic storage medium 2. That is, similar to the MR head constructed of only a single MR element explained using FIG. 1, an ideal bias state is realized in the region closest to the magnetic storage medium 2, which contributes the most to the resistance change at high recording density. This resulted in a decrease in playback sensitivity. To avoid this, it is possible to configure h≫SH so that the largest bias magnetic field H B is applied to the region of the MR element 1 closest to the magnetic storage medium 2, but this results in magnetic shielding. (i.e., the effect of reducing the demagnetizing field of MR element 1,
This will significantly reduce the effect of suppressing unnecessary external magnetic fields.

(発明の目的) 本発明は、このような欠点を招来することなく
高記録密度側の特性を更に向上することのできる
バイアス状態を実現した磁気抵抗効果ヘツドを提
供することにある。
(Object of the Invention) An object of the present invention is to provide a magnetoresistive head that realizes a bias state that can further improve the characteristics on the high recording density side without causing such drawbacks.

(発明の構成) 本発明によれば、強磁性薄膜を含む磁気抵抗効
果素子と、前記磁気抵抗効果素子と所定のギヤツ
プを介して形成した高透磁率磁性体からなる少な
くとも1枚の磁気シールドを備え、少なくとも1
枚の磁気シールドは前記磁気シールドに電流を供
給するための1対の電極を備え、前記電流によ
り、前記磁気抵抗効果素子にバイアス磁界を印加
する構成の磁気抵抗効果ヘツドにおいて、前記1
対の電極間隔は磁気記憶体に最も近い部分が磁気
記憶媒体に最も遠い部分よりも小さいことを特徴
とする磁気抵抗効果ヘツドが得られる。
(Structure of the Invention) According to the present invention, a magnetoresistive element including a ferromagnetic thin film and at least one magnetic shield made of a high magnetic permeability magnetic material formed with the magnetoresistive element through a predetermined gap are provided. preparedness, at least 1
In the magnetoresistive head, the magnetic shield includes a pair of electrodes for supplying a current to the magnetic shield, and the current applies a bias magnetic field to the magnetoresistive element.
A magnetoresistive head is obtained in which the distance between the pair of electrodes is smaller at the part closest to the magnetic storage medium than at the part furthest from the magnetic storage medium.

(構成の詳細な説明) 本発明は、上述の構成をとることにより従来技
術の問題点を解決した。即ち、本発明では、磁気
シールドに接続された二つの電極の間隔を磁気記
憶媒体に最近接する領域で小さく、設定している
ため、二つの電極を径由して磁気シールドに流れ
るバイアス電流は、磁気シールドの幅方向で不均
一に流れ、特に磁気記憶媒体に最近接する領域に
集中することになる。従つて、MR素子の磁気記
憶媒体に最近接する領域に最も大きなバイアス磁
界が印加されることにより、この領域を最大感度
とするバイアス状態が実現される。これにより、
高記録密度時の再生出力の低下を補正し、良好な
記録密度特性が得られる。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. That is, in the present invention, since the interval between the two electrodes connected to the magnetic shield is set to be small in the region closest to the magnetic storage medium, the bias current flowing through the two electrodes to the magnetic shield is The flow will be non-uniform in the width direction of the magnetic shield, and will be particularly concentrated in the region closest to the magnetic storage medium. Therefore, by applying the largest bias magnetic field to the region of the MR element closest to the magnetic storage medium, a bias state is realized in which this region has the maximum sensitivity. This results in
It is possible to correct the decrease in reproduction output at high recording densities and obtain good recording density characteristics.

以下、さらに本発明の構成例について、図面を
参照して詳細に説明する。第3図は、本発明の第
1の構成例を示す概略斜視図で、長さL、幅hを
有する短冊状MR素子1の厚み方向の両側に、高
透磁率磁性体から成る磁気シールド3及び4がギ
ヤツプ長Gの間隔をおいて並設されている。又、
MR素子1には、その長さL方向と平行なセンス
電流ISが外部からの電源(図示せず)より供給さ
れ、磁気シールド3及び4には、その長さ方向の
両端に接続された電極5a,5b及び5c,5d
を径由してバイアス電流Ibが外部からの電源(図
示せず)より供給されている。電極5aと電極5
bの間隔及び電極5cと電極5dの間隔は、磁気
シールド3及び磁気シールド4が、磁気記憶媒体
2に近接する領域でW2、最も離れた領域でW1
値を有し、W1>W2の関係を満す様に設定されて
いる。即ち、電極5a,5b及び電極5c,5d
の間隔は磁気シールド3及び4の幅SH方向に対
し、傾斜をもつて接続されている。
Hereinafter, configuration examples of the present invention will be further described in detail with reference to the drawings. FIG. 3 is a schematic perspective view showing a first configuration example of the present invention, in which magnetic shields 3 made of a high magnetic permeability magnetic material are provided on both sides in the thickness direction of a strip-shaped MR element 1 having a length L and a width h. and 4 are arranged in parallel at an interval of gap length G. or,
MR element 1 is supplied with a sense current I S parallel to its length L direction from an external power supply (not shown), and magnetic shields 3 and 4 are connected at both ends in the length direction. Electrodes 5a, 5b and 5c, 5d
A bias current I b is supplied from an external power source (not shown) via the . Electrode 5a and electrode 5
The distance b and the distance between the electrodes 5c and 5d have a value of W 2 in the region where the magnetic shield 3 and the magnetic shield 4 are close to the magnetic storage medium 2, and a value of W 1 in the region farthest away, and W 1 > It is set to satisfy the relationship W 2 . That is, electrodes 5a, 5b and electrodes 5c, 5d
The intervals between the magnetic shields 3 and 4 are connected at an angle with respect to the width SH direction.

MR素子1は、例えば、NiCo系合金、NiFe系
合金(パーマロイ等)が選定され、その寸法は厚
みを数百Å乃至数千Å、幅hを数μm乃至数十μ
m、長さLを数μm乃至数百μmにされる。又、
磁気シールド3及び4は、例えばパーマロイ、非
晶質軟磁性体等の導電性の薄膜が適し、その寸法
は厚みを数千Å乃至数μm、幅SHをMR素子1
の幅hに対し、数倍の大きさを持つ様に選定され
る。更に、電極5a,5b,5c及び5dは、磁
気シールド3及び4よりも固有抵抗の小さい、例
えば、Au、Al、Cu等が選定される。
The MR element 1 is made of, for example, a NiCo-based alloy or a NiFe-based alloy (permalloy, etc.), and its dimensions range from several hundred Å to several thousand Å in thickness and several μm to several tens of μm in width h.
m, and the length L is set to several μm to several hundred μm. or,
For the magnetic shields 3 and 4, conductive thin films such as permalloy or amorphous soft magnetic material are suitable, and their dimensions are several thousand Å to several μm thick, and the width SH is similar to that of the MR element 1.
The width h is selected to be several times larger than the width h. Furthermore, the electrodes 5a, 5b, 5c, and 5d are selected from a material having a lower specific resistance than the magnetic shields 3 and 4, such as Au, Al, or Cu.

かかる構成により、電極5a及び5b更には電
極5c及び5dを径由して、磁気シールド3及び
4に供給されるバイアス電流Ibは電極間隔が最も
小さなW1を有する領域、即ち、磁気記憶媒体2
に最近接する領域に集中することになる。
With this configuration, the bias current Ib supplied to the magnetic shields 3 and 4 via the electrodes 5a and 5b and further the electrodes 5c and 5d is directed to the region where the electrode spacing is the smallest W1 , that is, the magnetic storage medium. 2
will be concentrated in the area closest to .

第4図は、この磁気シールド3又は4の幅SH
方向における電流分布を示す。第4図において、
横軸の零目盛は、磁気シールド3又は4が磁気記
憶媒体2に最近接する側、SHは最も遠い側を示
し、縦軸の電流密度は、磁気記憶媒体2に最近接
する側の電流密度で規格化した値で示している。
又、パラメータとして2SH/W1−W2を取つている。
Figure 4 shows the width SH of this magnetic shield 3 or 4.
Shows the current distribution in the direction. In Figure 4,
The zero scale on the horizontal axis indicates the side where the magnetic shield 3 or 4 is closest to the magnetic storage medium 2, and SH indicates the farthest side, and the current density on the vertical axis is standardized by the current density on the side closest to the magnetic storage medium 2. It is shown as a converted value.
Also, 2SH/W 1 −W 2 is taken as a parameter.

第4図より、磁気シールド3又は4の幅SHを
一定とした場合、W1−W2の値が大きくなるほ
ど、バイアス電流Ibは、磁気記憶媒体2に最近接
する側に大きく集中することが理解される。
From FIG. 4, when the width SH of the magnetic shield 3 or 4 is constant, the larger the value of W 1 - W 2 is, the more the bias current I b is concentrated on the side closest to the magnetic storage medium 2. be understood.

この結果、バイアス電流Ibによつて磁気シール
ド3及び4の周囲に発生した磁界の内、MR素子
1の膜面内を通る成分は、幅h方向に強度分布を
有するバイアス磁界を与え、MR素子1の磁化M
をセンス電流ISに対して、角度θbだけ回転させ
る。
As a result, of the magnetic field generated around the magnetic shields 3 and 4 by the bias current I b , the component passing through the film plane of the MR element 1 gives a bias magnetic field with an intensity distribution in the width h direction, and the MR Magnetization M of element 1
is rotated by an angle θ b with respect to the sense current IS .

第5図に、バイアス角θbのMR素子1の幅h方
向の分布を示す。又、参考のため、バイアス電流
IBが幅SH方向に均一に分布する従来例における
バイアス角度θbの分布を破線で示す。尚、横軸の
零目盛は、MR素子1が磁気記憶媒体2に最近接
する側、hは最も遠い側を示す。
FIG. 5 shows the distribution of the bias angle θ b in the width h direction of the MR element 1. Also, for reference, the bias current
The distribution of the bias angle θ b in a conventional example in which I B is uniformly distributed in the width SH direction is shown by a broken line. Note that the zero scale on the horizontal axis indicates the side where the MR element 1 is closest to the magnetic storage medium 2, and h indicates the farthest side.

第5図から明らかな如く、従来例では、幅hの
中央部で最大のバイアス角θbが得られるのに対
し、本発明では磁気記憶媒体2に近接する側にバ
イアス角θbの最大値がシフトしている。このシフ
ト量は、バイアス電流IBが磁気シールド3及び4
の磁気記憶媒体2に最近接する側に集中する程、
即ち、W1−W2の値が大きくなる程、大きくな
る。
As is clear from FIG. 5, in the conventional example, the maximum bias angle θ b is obtained at the center of the width h, whereas in the present invention, the maximum bias angle θ b is obtained at the side close to the magnetic storage medium 2. is shifting. This shift amount is such that the bias current I B is
The more concentrated it is on the side closest to the magnetic storage medium 2, the more
That is, the larger the value of W 1 −W 2 is, the larger the value becomes.

従つて、本発明では、MR素子1の高記録密度
時に最も再生出力として寄与する領域のバイアス
状態を最適に設定(望ましくはθb=45°)するこ
とができる。
Therefore, in the present invention, it is possible to optimally set the bias state (preferably θ b =45°) in the region that contributes most to the reproduced output when the MR element 1 has a high recording density.

尚、第3図では、磁気シールド3及び4の両方
にバイアス電流IBを供給する構成を示している
が、製造プロセスを簡単にするため、磁気シール
ド3又は4の一方のみにバイアス電流IBを供給す
る構成であつても良い。この場合は、バイアス磁
界が弱まるものの、第5図に示したと同様なバイ
アス角θbの分布が得られる。また磁気シールドは
1枚であつても前記と同様にバイアス磁界は弱ま
るが同様な効果が得られる。
Although FIG. 3 shows a configuration in which the bias current I B is supplied to both the magnetic shields 3 and 4, in order to simplify the manufacturing process, the bias current I B is supplied only to one of the magnetic shields 3 or 4. It is also possible to have a configuration that supplies the following. In this case, although the bias magnetic field is weakened, a distribution of bias angles θ b similar to that shown in FIG. 5 is obtained. Further, even if there is only one magnetic shield, the bias magnetic field is weakened as described above, but the same effect can be obtained.

第1の実施例におけるMRヘツドは、1つの
MR素子及び1対の磁気シールドで構成されてい
るが、本発明は、複数のMR素子を磁気記憶媒体
上の複数のトラツクにわたつて並置した、言わゆ
るマルチトラツク用MRヘツドにも好適である。
以下、第6図を用いて、この様な構成を有する
MRヘツドの例について説明する。
The MR head in the first embodiment has one
Although it is composed of an MR element and a pair of magnetic shields, the present invention is also suitable for a so-called multi-track MR head in which a plurality of MR elements are arranged side by side across a plurality of tracks on a magnetic storage medium. .
Below, using FIG. 6, we will explain how to
An example of an MR head will be explained.

第6図は、マルチトラツク用MRヘツドの平面
概略図である。図において、複数のMR素子1が
磁気記憶媒体2のトラツク幅方向に平行に所定の
間隔をおいて、配置され、それぞれのMR素子1
には、その長さL方向と平行なセンス電流ISが供
給される。該MR素子1の上に絶縁層を介して磁
気シールド3が積層され、その長さ方向の両端に
は、磁気シールド3にバイアス電流IBを供給する
ための電極5a及び5bが設けられ、更に、隣接
するMR素子1の間に相当する部分に複数のシヨ
ート用電極6が磁気シールド3上に積層されてい
る。又、隣接するシヨート電極6間の間隔及び、
電極5a,5bと隣接するシヨート用電極6の間
隔は、電気記憶媒体2に最近接する側でW2、最
も遠隔した側でW1を有し、W2<W1の関係を満
す様に設定されている。
FIG. 6 is a schematic plan view of the multitrack MR head. In the figure, a plurality of MR elements 1 are arranged parallel to the track width direction of a magnetic storage medium 2 at predetermined intervals, and each MR element 1
is supplied with a sense current I S parallel to its length L direction. A magnetic shield 3 is laminated on the MR element 1 via an insulating layer, and electrodes 5a and 5b are provided at both longitudinal ends of the magnetic shield 3 for supplying a bias current IB to the magnetic shield 3. A plurality of shot electrodes 6 are stacked on the magnetic shield 3 in a portion corresponding to between adjacent MR elements 1. In addition, the distance between adjacent short electrodes 6 and
The distance between the electrodes 5a and 5b and the adjacent shot electrode 6 is W 2 on the side closest to the electrical storage medium 2 and W 1 on the farthest side, so that the relationship W 2 <W 1 is satisfied. It is set.

シヨート用電極6は電極5a及び5bと同様、
磁気シールド3よりも固有抵抗の小さい、材料で
形成される。
The shot electrode 6 is similar to the electrodes 5a and 5b,
It is formed of a material having a lower specific resistance than the magnetic shield 3.

かかる構成により、電極5a,5b及びシヨー
ト電極6を径由して磁気シールド3に供給される
バイアス電流Ibは、第4図に示したと同様に磁気
記憶媒体2に最近接する領域に集中し、それによ
つて発生するバイアス磁界の分布により、MR素
子1のバイアス角θbの最大値は磁気記憶媒体2に
最近接する側にシフトすることになる。
With this configuration, the bias current Ib supplied to the magnetic shield 3 via the electrodes 5a, 5b and the short electrode 6 is concentrated in the region closest to the magnetic storage medium 2, as shown in FIG. Due to the distribution of the bias magnetic field generated thereby, the maximum value of the bias angle θ b of the MR element 1 is shifted to the side closest to the magnetic storage medium 2 .

尚、この構造においてシヨート用電極6は必ず
しも必要としないが、シヨート用電極6が存在し
ない場合、磁気シールド3の幅SH方向のバイア
ス電流IBの分布は電極5a及び5bのみで制御し
なければならず、特に電極5a及び5b間の距離
が大きくなれば、バイアス電流IBの幅SH方向の
分布はほぼ均一になつてしまう恐れがある。一方
シヨート用電極6が存在する場合、シヨート用電
極6の内部では略等電位となるため、隣接するシ
ヨート用電極間の間隔に応じたバイアス電流IB
分布を得ることができる。
Note that the short electrode 6 is not necessarily required in this structure, but if the short electrode 6 is not present, the distribution of the bias current I B in the width SH direction of the magnetic shield 3 must be controlled only by the electrodes 5a and 5b. In particular, if the distance between the electrodes 5a and 5b becomes large, the distribution of the bias current I B in the width SH direction may become almost uniform. On the other hand, when the shoot electrode 6 is present, the inside of the shoot electrode 6 has a substantially equal potential, so that it is possible to obtain a distribution of bias current I B depending on the interval between adjacent shoot electrodes.

又、シヨート用電極6が存在することにより、
磁気シールド3の電極5a及び5b間の電気抵抗
がその分だけ低下し、バイアス電流IBによるジユ
ール熱の発生を押さえることができる。
Also, due to the presence of the shoot electrode 6,
The electrical resistance between the electrodes 5a and 5b of the magnetic shield 3 is reduced accordingly, and generation of Joule heat due to the bias current IB can be suppressed.

尚、第6図において磁気シールド3は複数の
MR素子1にわたつて連続して形成されている
が、トラツク間の磁気シールドを径由した磁気的
相互作用を避けるため、磁気シールド3をシヨー
ト用電極6の部分で分割しても良い。この場合の
シヨート用電極6は分割された磁気シールド3を
電気的に接続する効果も有する。
In addition, in FIG. 6, the magnetic shield 3 has multiple
Although it is formed continuously across the MR element 1, the magnetic shield 3 may be divided at the shot electrode 6 in order to avoid magnetic interaction via the magnetic shield between tracks. The shot electrode 6 in this case also has the effect of electrically connecting the divided magnetic shields 3.

以上、本発明の構成例について述べたが、本発
明で示した磁気シールドの電極及びシヨート用電
極の間隔は第3図及び第6図に示した如く、磁気
シールドの幅方向に直線的に広がつた構造に限る
ものでなく、曲線状に広がつた構成であつても良
く、本発明の主旨を逸脱しない限り種々の変形変
更をなし得る。
The configuration example of the present invention has been described above, but the spacing between the electrodes of the magnetic shield and the shot electrode shown in the present invention is linearly widened in the width direction of the magnetic shield, as shown in FIGS. 3 and 6. The structure is not limited to a curved structure, but may be a curved structure, and various modifications and changes can be made without departing from the gist of the present invention.

尚、本発明では磁気シールドの磁気記憶媒体に
最近接する側の電極間隔は、磁気記憶媒体上のト
ラツク幅(MR素子の長さ方向に対して、磁気的
情報が書き込まれている領域幅)もしくはMR素
子の長さ方向の有効検知幅よりも大きいことが望
ましい。これは、MR素子の有効検知幅全域にバ
イアス磁界を印加するのに有効である。
In the present invention, the distance between the electrodes of the magnetic shield on the side closest to the magnetic storage medium is the track width on the magnetic storage medium (width of the area where magnetic information is written in the longitudinal direction of the MR element) or It is desirable that the width be larger than the effective detection width in the longitudinal direction of the MR element. This is effective in applying a bias magnetic field to the entire effective detection width of the MR element.

(発明の効果) 以上、説明した様に、本発明はMR素子に並設
された磁気シールドにバイアス電流を供給するた
めの電極の間隔を磁気記憶媒体に近接する側で小
さく設定しているため、MR素子に印加されるバ
イアス磁界が磁気記憶媒体に近接する側で最大と
なり、この領域が最大感度となるバイアス状態が
実現でき、極めて簡単にかつ磁気シールドの効果
を損うことなく高記録密度において極めて再生分
解能の高いMRヘツドが得られる。
(Effects of the Invention) As explained above, in the present invention, the spacing between the electrodes for supplying bias current to the magnetic shields arranged in parallel to the MR element is set smaller on the side closer to the magnetic storage medium. , the bias magnetic field applied to the MR element is maximum on the side close to the magnetic storage medium, and a bias state in which this region has maximum sensitivity can be achieved, making it possible to achieve high recording density extremely easily and without impairing the effectiveness of magnetic shielding. An MR head with extremely high reproduction resolution can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気抵抗効果ヘツドの概略斜視
図、第2図は従来の磁気シールド付磁気抵抗効果
ヘツドの断面図、第3図は本発明の構成例を示す
概略斜視図、第4図は磁気シールドに流れるバイ
アス電流の分布を示すグラフ、第5図は磁気抵抗
効果ヘツドのバイアス状態を示すグラフ、第6図
は本発明の他の構成例を示す平面図である。 図において、1……磁気抵抗効果素子(MR素
子)、2……磁気記憶媒体、3,4……磁気シー
ルド、5a,5b,5c,5d,6……電極をそ
れぞれ示す。
FIG. 1 is a schematic perspective view of a conventional magnetoresistive head, FIG. 2 is a sectional view of a conventional magnetoresistive head with a magnetic shield, FIG. 3 is a schematic perspective view showing an example of the structure of the present invention, and FIG. 4 5 is a graph showing the distribution of bias current flowing through the magnetic shield, FIG. 5 is a graph showing the bias state of the magnetoresistive head, and FIG. 6 is a plan view showing another example of the structure of the present invention. In the figure, 1... magnetoresistive element (MR element), 2... magnetic storage medium, 3, 4... magnetic shield, 5a, 5b, 5c, 5d, 6... electrodes, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 強磁性薄膜を含む磁気抵抗効果素子と、前記
磁気抵抗効果素子と所定のギヤツプを介して形成
された高透磁率磁性体からなる少なくとも1枚の
磁気シールドを備え、さらにこの磁気シールドの
少なくとも1枚には磁気シールドに電流を供給す
るための1対の電極を備えた構成の磁気抵抗効果
ヘツドであつて、前記1対の電極の間隔は磁気記
憶媒体に最も近い部分が磁気記憶媒体に最も遠い
部分よりも小さいことを特徴とする磁気抵抗効果
ヘツド。
1 A magnetoresistance effect element including a ferromagnetic thin film, and at least one magnetic shield made of a high magnetic permeability magnetic material formed through a predetermined gap with the magnetoresistance effect element, and at least one of the magnetic shields. The magnetic head is a magnetoresistive head having a configuration in which a pair of electrodes are provided for supplying current to a magnetic shield, and the distance between the pair of electrodes is such that the part closest to the magnetic storage medium is the closest to the magnetic storage medium. A magnetoresistive head characterized by being smaller than the far part.
JP9126384A 1984-05-08 1984-05-08 Magneto-resistance effect head Granted JPS60236110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9126384A JPS60236110A (en) 1984-05-08 1984-05-08 Magneto-resistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9126384A JPS60236110A (en) 1984-05-08 1984-05-08 Magneto-resistance effect head

Publications (2)

Publication Number Publication Date
JPS60236110A JPS60236110A (en) 1985-11-22
JPH0572643B2 true JPH0572643B2 (en) 1993-10-12

Family

ID=14021529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9126384A Granted JPS60236110A (en) 1984-05-08 1984-05-08 Magneto-resistance effect head

Country Status (1)

Country Link
JP (1) JPS60236110A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177069U (en) * 1987-05-08 1988-11-16
US5311385A (en) * 1991-12-18 1994-05-10 Minnesota Mining And Manufacturing Company Magnetoresistive head with integrated bias and magnetic shield layer

Also Published As

Publication number Publication date
JPS60236110A (en) 1985-11-22

Similar Documents

Publication Publication Date Title
US4255772A (en) Read/write magnetic head assembly with magnetoresistive sensor
US5943763A (en) Method of manufacturing a magneto-resistive reading head with reduced side-lobe
US5402292A (en) Magnetoresistance effect type thin film magnetic head using high coercion films
US3940797A (en) Shielded magnetoresistive magnetic transducer
US5436779A (en) Integrated yoke magnetoresistive transducer with magnetic shunt
US4803581A (en) Thin film yoke-type magnetoresistive head
US6191925B1 (en) Dual element read with shaped elements
US5493466A (en) Composite thin film recording/reproducing head with MR reproducing head having greater track width than recording head
US5581427A (en) Peak enhanced magnetoresistive read transducer
US4065797A (en) Multi-element magnetic head
JPH07192227A (en) Magneto-resistance effect type magnetic head
JPH0572643B2 (en)
JPS6020802B2 (en) magnetic head
JP2001101612A (en) Magnetic head and magnetic recorder
JPH0375925B2 (en)
JPH0441415B2 (en)
JPH05266437A (en) Magnetoresistance effect type head
JPH0572642B2 (en)
JPH026490Y2 (en)
JP2596010B2 (en) Magnetoresistive magnetic head
JPH11120523A (en) Magnetoresistive effect head
JP3606988B2 (en) Magnetoresistive head
JPH048851B2 (en)
JPH04364212A (en) Magnetic resistance head
JPH01296421A (en) Thin film magnetic head