JPH057064B2 - - Google Patents

Info

Publication number
JPH057064B2
JPH057064B2 JP58114100A JP11410083A JPH057064B2 JP H057064 B2 JPH057064 B2 JP H057064B2 JP 58114100 A JP58114100 A JP 58114100A JP 11410083 A JP11410083 A JP 11410083A JP H057064 B2 JPH057064 B2 JP H057064B2
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
light source
wavelength
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58114100A
Other languages
Japanese (ja)
Other versions
JPS607936A (en
Inventor
Atsushi Sekiguchi
Takashi Hiraga
Michio Nagasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP11410083A priority Critical patent/JPS607936A/en
Publication of JPS607936A publication Critical patent/JPS607936A/en
Publication of JPH057064B2 publication Critical patent/JPH057064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment

Description

【発明の詳細な説明】 本発明は所定の気体を光化学反応により活性化
し薄膜の作成、食刻、清浄化あるいは表面の改質
などの固体表面処理をするための光化学的表面処
理装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a photochemical surface treatment device for activating a predetermined gas through a photochemical reaction to perform solid surface treatment such as forming a thin film, etching, cleaning, or surface modification. It is something.

気体を光化学的反応により活性化し固体に前記
したような種々の表面処理をする方法は処理過程
が低温で可能であること、荷電粒子の衝撃による
損傷がないこと、光化学的選択性により従来に無
い処理が可能となること、反応過程の選択および
制御が容易であることなどから近年急速な進展を
みせている。そして利用される光源として200〜
400nmの近紫外光のみならず50〜200nmの遠紫外
光も重要視されてきている。そして、従来は第1
図に示すような装置が使用されている。
The method of activating a gas through a photochemical reaction and subjecting a solid to the various surface treatments described above is unprecedented because the treatment process can be performed at low temperatures, there is no damage due to the impact of charged particles, and there is photochemical selectivity. Rapid progress has been made in recent years due to the ease of processing and the ease of selecting and controlling the reaction process. And as a light source used 200 ~
Not only near-ultraviolet light of 400 nm but also far-ultraviolet light of 50 to 200 nm is gaining importance. Conventionally, the first
The device shown in the figure is used.

第1図にて、2は光源、12は光源支持台、3
は光学窓、6は反応気体導入系、7は反応室排気
系、8は支持台、9はその上に置かれた被処理
物、10は反応室である。
In Figure 1, 2 is a light source, 12 is a light source support stand, 3
1 is an optical window, 6 is a reaction gas introduction system, 7 is a reaction chamber exhaust system, 8 is a support table, 9 is a workpiece placed thereon, and 10 is a reaction chamber.

しかしながら、光源と反応室の光学窓との間に
空気20が存在するこの第1図の従来の装置では
光源より発せられた遠紫外光を利用する事ができ
ない。これは空気20中の気体の中で特に酸素の
シユーマン−ルンゲ吸収帯は195nm付近から始ま
り175nmより短波長側では強い連続吸収帯となつ
ていて、しかも、この吸収帯に相当する波長領域
は前記反応室内にて所望の光化学的反応を生ぜし
める場合において極めて重要な領域であるためで
ある。低圧水銀ランプの253.7nmの波長の光のよ
うな近紫外領域(200〜400nm)に吸収帯をもつ
物質、あるいは光化学処理に利用可能な程度に吸
収効率の大きい物質は、本願の光化学反応処理の
場合、取り扱うことが非常に少なく、処理に用い
られる殆んどの物質は、200nmよりも波長の短い
遠紫外領域に大きい吸収帯をもつものばかりであ
る。
However, the conventional apparatus of FIG. 1, in which air 20 is present between the light source and the optical window of the reaction chamber, cannot utilize the deep ultraviolet light emitted from the light source. This is because, among the gases in air 20, the Schumann-Runge absorption band of oxygen in particular starts around 195 nm and becomes a strong continuous absorption band at wavelengths shorter than 175 nm, and the wavelength region corresponding to this absorption band is This is because it is an extremely important region in producing a desired photochemical reaction within the reaction chamber. Substances that have an absorption band in the near-ultraviolet region (200 to 400 nm), such as light with a wavelength of 253.7 nm from a low-pressure mercury lamp, or substances that have a high absorption efficiency to the extent that they can be used for photochemical treatment, cannot be used in the photochemical reaction treatment of this application. In this case, there are very few things to handle, and most of the substances used for processing have large absorption bands in the deep ultraviolet region, with wavelengths shorter than 200 nm.

例えば、太陽電池、TFTデバイス、感光性ド
ラム等の作製に必要なアモルフアスシリコン膜を
作製するのに用いるシラン、ジシラン、トリシラ
ン等は、遠紫外領域に大きな吸収帯が存在する。
(文献、Chemical Physics Letters Vol.1,
P.595−596(1968)やJ.Chem.Phys.Vol.85,
P.4867−4872(1986)参照) また、シラン、ジシラン、トリシラン等と併用
することによつて、各種デバイス、センサー等に
用いるSiO2膜作製用の亜酸化窒素や、SiN膜用の
アンモニア等も、その大きな吸収帯は遠紫外領域
に存在する。(文献、J.Chem.Phys.Vol.80,
P.4718−4726やJ.Chem.Phys.Vol.78,P.4515−
4522参照) このように、薄膜の作製のみならず、食刻、清
浄化や表面改質においても、遠紫外光の利用こそ
が光化学表面処理装置には重要であるが、空気2
0の存在は遠紫外光の利用効率を著しく低下せし
め大きな障害と成る。
For example, silane, disilane, trisilane, etc. used to produce amorphous silicon films necessary for producing solar cells, TFT devices, photosensitive drums, etc. have large absorption bands in the deep ultraviolet region.
(Literature, Chemical Physics Letters Vol.1,
P.595-596 (1968), J.Chem.Phys.Vol.85,
(Refer to P.4867-4872 (1986)) In addition, when used in combination with silane, disilane, trisilane, etc., nitrous oxide for making SiO 2 films used in various devices and sensors, ammonia for SiN films, etc. However, its large absorption band exists in the far ultraviolet region. (Reference, J.Chem.Phys.Vol.80,
P.4718−4726 and J.Chem.Phys.Vol.78, P.4515−
4522) In this way, the use of deep ultraviolet light is important for photochemical surface treatment equipment, not only for the production of thin films but also for etching, cleaning, and surface modification.
The presence of 0 significantly reduces the utilization efficiency of deep ultraviolet light and becomes a major hindrance.

従来の光化学的表面処理は、対策として、処理
用ガスにガス状水銀を混入し、水銀ランプから放
射される253.7nm光を用いる「水銀増感反応」に
よつて、各種の表面処理を行なつていた。(特開
昭54−163792号公報「窒化シリコン膜の製造方
法」。特開昭57−154839号公報「光化学的気相被
着装置および方法」。特開昭56−96704号公報「酸
化物層の光学気相被着方法」。参照) しかし水銀ガスを用いると、水銀が堆積膜中に
混入して製品である半導体デバイスの性能を低下
させたり、公害上の問題を生じたりしていた。
Conventional photochemical surface treatment involves mixing gaseous mercury into the processing gas and performing various surface treatments using a ``mercury sensitization reaction'' that uses 253.7 nm light emitted from a mercury lamp. was. (Unexamined Japanese Patent Publication No. 54-163792, ``Method for manufacturing silicon nitride film''; JP-A No. 57-154839, ``Photochemical vapor phase deposition apparatus and method''; JP-A-56-96704, ``Oxide layer However, when mercury gas is used, mercury gets mixed into the deposited film, degrading the performance of the semiconductor device and causing pollution problems.

なお一部に、遠紫外光を直接用いる例が見られ
る。(特開昭56−96704号公報「酸化物層の光学気
相被着方法」の第13頁)。しかし、その場合も、
装置は、本発明の紫外光を選択透過させる気密室
もしくはこれに相当する構成を完全に欠除したも
のとなつている。これら従来の装置では空気20中
の酸素が紫外線を吸収してオゾンを発生するなど
があり異臭の発生、人体への悪影響が生じてい
る。このような従来装置を改良せんとして光源を
反応室に直接導入した場合には、反応気体に光源
が直接接触することになり、そのため光源自身の
劣化が急速に進行するなどの欠点がある。
Note that there are some cases where deep ultraviolet light is used directly. (Page 13 of JP-A-56-96704 ``Method for optical vapor phase deposition of oxide layer''). However, even in that case,
The apparatus completely lacks the airtight chamber of the present invention that selectively transmits ultraviolet light or a structure equivalent thereto. In these conventional devices, oxygen in the air absorbs ultraviolet rays and generates ozone, resulting in the generation of strange odors and adverse effects on the human body. If a light source is introduced directly into the reaction chamber in an attempt to improve such a conventional device, the light source will come into direct contact with the reaction gas, resulting in the disadvantage that the light source itself will rapidly deteriorate.

本発明はこれらの欠点を除去することを目的と
し、光源2と反応室光学窓3との間の光路を真空
とするかあるいは放射線の吸収のない気体で構成
することにより光源から発せられた放射線を能率
良く反応室に投入する新規の装置を提供するもの
である。
The purpose of the present invention is to eliminate these drawbacks by making the optical path between the light source 2 and the reaction chamber optical window 3 a vacuum or using a gas that does not absorb radiation, thereby reducing the amount of radiation emitted from the light source. The objective is to provide a new device for efficiently charging the reaction mixture into the reaction chamber.

第2図は本発明の一実施例を示すための模式図
である。図において1は光源2と反応室光学窓3
の間の光路を真空排気としあるいは紫外光の吸収
のない気体(例えば、アルゴン、ヘリウム、クリ
プトン等の不活性ガス、場合によつて乾燥窒素ガ
ス)を充填する気密室であり気密室排気系4およ
び気体導入系5が接続されている。
FIG. 2 is a schematic diagram showing one embodiment of the present invention. In the figure, 1 indicates the light source 2 and the reaction chamber optical window 3.
This is an airtight chamber in which the optical path between the two is evacuated or filled with a gas that does not absorb ultraviolet light (for example, an inert gas such as argon, helium, krypton, or dry nitrogen gas in some cases). and a gas introduction system 5 are connected.

光源2としては所望の波長領域を発光するラン
プあるいはレーザーが用いられる。光学窓3とし
ては紫外光を透過する石英、合成石英あるいはフ
ツ化リチウム等の光学剤が用いられる。10は反
応室であり気密室1とは相互に気密状態となつて
いる。反応室10には気体導入系6と反応室排気
系7が接続されており所望の反応気体が所望の圧
力および流量で反応室10に導入される。反応室
10内には支持台8上に被処理物9が設置され、
必要な場合には加熱あるいは冷却等の目的に応じ
て支持台8に温度調節機能をもたせる。反応気体
および放射線の波長を選択することにより被処理
物9の表面に薄膜の形成、食刻、洗浄化あるいは
表面改質など所望の表面処理を行なうことができ
る。
As the light source 2, a lamp or laser that emits light in a desired wavelength range is used. As the optical window 3, an optical agent such as quartz, synthetic quartz, or lithium fluoride that transmits ultraviolet light is used. Reference numeral 10 denotes a reaction chamber, which is airtight with the airtight chamber 1. A gas introduction system 6 and a reaction chamber exhaust system 7 are connected to the reaction chamber 10, and a desired reaction gas is introduced into the reaction chamber 10 at a desired pressure and flow rate. A workpiece 9 is installed on a support stand 8 in the reaction chamber 10,
If necessary, the support base 8 is provided with a temperature control function depending on the purpose of heating or cooling. By selecting the reaction gas and the wavelength of the radiation, desired surface treatments such as forming a thin film, etching, cleaning, or surface modification can be performed on the surface of the object 9 to be treated.

所定の波長の光以外の波長光によつて、望まし
くない副反応が生じる場合の、波長ほ選択する具
体的方法としては、例えば、周知の次記のものを
用いることができる。
When an undesirable side reaction occurs due to light having a wavelength other than the predetermined wavelength, the following well-known method can be used, for example, as a specific method for selecting the wavelength.

手段の一つに分光器を用いる方法があり、真空
紫外線用の各種の分光器、例えば、瀬谷−波岡方
式の装置が使用出来る。また、使用波長が固定さ
れている場合は、多層薄膜バンドパスフイルター
(例えば、アクトンリサーチ社製の市販品)の使
用が有利であり、水銀ランプの184.9nm用や、水
素の121.6nm用等々、目的の波長用のフイルター
を選定して、光源2と光学窓3との間に設置すれ
ばよい。
One of the methods is to use a spectrometer, and various spectrometers for vacuum ultraviolet rays, such as Seya-Namioka type equipment, can be used. In addition, when the wavelength used is fixed, it is advantageous to use a multilayer thin film bandpass filter (for example, a commercially available product manufactured by Acton Research), such as for 184.9 nm for mercury lamps, 121.6 nm for hydrogen, etc. A filter for the desired wavelength may be selected and installed between the light source 2 and the optical window 3.

以上説明したように本発明による装置によれば
光源からの放射線を途中の光路で損失することな
く反応室へ導入することができるため放射線の利
用効率を著しく増大する。また空気中の酸素が紫
外光を吸収することによるオゾンの発生なども防
止でき、その結果異臭の発生あるいは人体への悪
影響などの弊害も除去できる利点もある。工業上
極めて有益な発明ということができる。
As explained above, according to the apparatus according to the present invention, the radiation from the light source can be introduced into the reaction chamber without being lost along the optical path, thereby significantly increasing the radiation usage efficiency. Furthermore, it is possible to prevent the generation of ozone caused by oxygen in the air absorbing ultraviolet light, and as a result, it also has the advantage of eliminating harmful effects such as the generation of strange odors and adverse effects on the human body. This invention can be said to be extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置を示す模式図である。第2
図は本発明による装置の一実施例を示す模式図で
ある。 1……気密室、2……光源、3……光学窓、4
……気密室排気系、5……気体導入系、6……反
応気体導入系、7……反応室排気系、8……支持
台、9……被処理物、10……反応室。
FIG. 1 is a schematic diagram showing a conventional device. Second
The figure is a schematic diagram showing an embodiment of the device according to the present invention. 1...Airtight chamber, 2...Light source, 3...Optical window, 4
. . . Airtight chamber exhaust system, 5 . . . Gas introduction system, 6 . . . Reaction gas introduction system, 7 .

Claims (1)

【特許請求の範囲】 1 所定の気体を光化学的に活性化し基板表面に
所定の処理をする装置であつて、 a 該処理に使用できるように選定された50〜
200nmの波長帯に含まれる波長の放射線を通過
させる光学窓を有し気密に保つことのできる反
応室、 b 前記反応室に気体を導入する導入系及び気体
の排気系、 c 該選定された50〜200nmの波長帯に含まれる
波長の放射線を放出する光源、 d 前記光源と前記反応室との間に設けられて、
真空とするか、又は、該選定された50〜200nm
の波長帯に含まれる波長の放射線を透過する気
体を充填する気密室、 からなることを特徴とする光化学的表面処理装
置。
[Scope of Claims] 1. An apparatus for photochemically activating a predetermined gas to perform a predetermined treatment on a substrate surface, comprising: a.
a reaction chamber that has an optical window that allows radiation of a wavelength included in the 200 nm wavelength band to pass through and can be kept airtight; b. an introduction system for introducing gas into the reaction chamber and a gas exhaust system; c. a light source that emits radiation with a wavelength included in the wavelength band of ~200 nm, d provided between the light source and the reaction chamber,
Vacuum or the selected 50-200nm
A photochemical surface treatment device comprising: an airtight chamber filled with a gas that transmits radiation having wavelengths included in the wavelength band.
JP11410083A 1983-06-24 1983-06-24 Photochemical surface treatment device Granted JPS607936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11410083A JPS607936A (en) 1983-06-24 1983-06-24 Photochemical surface treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11410083A JPS607936A (en) 1983-06-24 1983-06-24 Photochemical surface treatment device

Publications (2)

Publication Number Publication Date
JPS607936A JPS607936A (en) 1985-01-16
JPH057064B2 true JPH057064B2 (en) 1993-01-28

Family

ID=14629111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11410083A Granted JPS607936A (en) 1983-06-24 1983-06-24 Photochemical surface treatment device

Country Status (1)

Country Link
JP (1) JPS607936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08270994A (en) * 1994-10-24 1996-10-18 Akira Kono Wind ship

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212226A (en) * 1984-04-06 1985-10-24 Ushio Inc Ultraviolet ray treatment method
JPS61271819A (en) * 1985-05-27 1986-12-02 Semiconductor Energy Lab Co Ltd Thin film forming method
JPH0655846B2 (en) * 1990-03-09 1994-07-27 工業技術院長 Etching method for polymer moldings
JPH0431423U (en) * 1990-06-30 1992-03-13

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4737008U (en) * 1971-05-11 1972-12-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4737008U (en) * 1971-05-11 1972-12-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08270994A (en) * 1994-10-24 1996-10-18 Akira Kono Wind ship

Also Published As

Publication number Publication date
JPS607936A (en) 1985-01-16

Similar Documents

Publication Publication Date Title
US4495218A (en) Process for forming thin film
JP3152593B2 (en) Ultraviolet enhanced dry stripping of silicon nitride films
JPH057064B2 (en)
JPS5982732A (en) Manufacture for semiconductor device
JPH049373B2 (en)
JPS6187338A (en) Method of dry cleaning silicon surface irradiated with multiple beams
JPS5819479A (en) Method and device for etching
JPH0697075A (en) Plasma cleaning of thin film deposition chamber
JPS6012128A (en) Photochemical surface treating apparatus
JP2686762B2 (en) Gettering method
Lampert et al. Evidence for SiH4 formation during the reaction of water with a silicon surface
JP2770578B2 (en) Photo CVD method
Kim et al. Removal of organic impurities from the silicon surface by oxygen and UV cleaning
JPS63207121A (en) Method and apparatus for manufacturing thin film by photo-cvd
JP3432013B2 (en) Method of forming oxide film
JPH0294430A (en) Photo-assisted cvd apparatus
JP2672594B2 (en) Microlens manufacturing method and microlens
JP2634051B2 (en) Thin film growth method
JPS59144122A (en) Optical annealing method
JPS6175528A (en) Si surface processing by irradiation of multiple laser beam
JPS605510A (en) Formation of thin film
JPH01188421A (en) Production of superconducting thin film
JPS63146440A (en) Etching method
Yoshimoto et al. In-situ reflection high-energy electron diffraction observation of laser-triggered GaP growth in chemical beam epitaxy
JPH0380871B2 (en)