JPH0380871B2 - - Google Patents

Info

Publication number
JPH0380871B2
JPH0380871B2 JP19969783A JP19969783A JPH0380871B2 JP H0380871 B2 JPH0380871 B2 JP H0380871B2 JP 19969783 A JP19969783 A JP 19969783A JP 19969783 A JP19969783 A JP 19969783A JP H0380871 B2 JPH0380871 B2 JP H0380871B2
Authority
JP
Japan
Prior art keywords
gas
substrate
radiation
reaction chamber
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19969783A
Other languages
Japanese (ja)
Other versions
JPS6092475A (en
Inventor
Atsushi Sekiguchi
Takashi Hiraga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP19969783A priority Critical patent/JPS6092475A/en
Publication of JPS6092475A publication Critical patent/JPS6092475A/en
Publication of JPH0380871B2 publication Critical patent/JPH0380871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation

Description

【発明の詳細な説明】 本発明は、所定の気体を基板表面に吸着させ、
その吸着分子を用いて膜堆積を行なうことによ
り、成膜層を微妙に制御することを可能にする新
規の光化学的薄膜製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention allows a predetermined gas to be adsorbed onto the surface of a substrate,
The present invention relates to a novel photochemical thin film production method that allows fine control of the deposited layer by depositing the film using the adsorbed molecules.

気体を光化学的反応により活性化し基板表面に
目的とする物質を堆積し薄膜化する方法は、処理
が低温で可能であること、荷電粒子の衝撃による
損傷がないこと、光化学的選択性により従来に無
い処理が可能になること、反応過程の選択及び成
膜の制御が容易であることなどから近年急速な進
展をみせている。
The method of activating a gas through a photochemical reaction and depositing the target substance on the substrate surface to form a thin film is superior to conventional methods because it can be processed at low temperatures, there is no damage due to the impact of charged particles, and it has photochemical selectivity. In recent years, rapid progress has been made in recent years due to the fact that it has become possible to perform non-invasive treatments, and it is easy to select the reaction process and control film formation.

従来の光化学的薄膜製造方法は大別して2つの
方法に分けられる。すなわち、放射線により基板
を加熱し所定の気体を熱分解することにより堆積
をはかる基板加熱法と、所定の気体を光分解し堆
積をはかる光分解法の二つの方法である。
Conventional photochemical thin film manufacturing methods can be roughly divided into two methods. That is, there are two methods: a substrate heating method in which deposition is achieved by heating a substrate with radiation and thermally decomposing a predetermined gas, and a photodecomposition method in which deposition is achieved by photolyzing a predetermined gas.

基板加熱法では、放射線により基板加熱するこ
とが原則となる。このことは、光化学反応の最も
重要な利点とされる処理過程の低温化に反するも
のであり、そのためこの方法を用いる利益はあま
り期待できない。
In the substrate heating method, the principle is to heat the substrate with radiation. This is contrary to the most important advantage of photochemical reactions, which is the low temperature of the treatment process, and therefore the benefits of using this method cannot be expected to be significant.

一方、光分解法では、所定の気体が充填されて
いる空間中の放射線の通過する部分で分解反応が
生じ分解生成物が基板表面に堆積するのを利用す
る。従つて膜成長の本質は本来表面反応で進めら
るべきに対し、光分解法による反応は空間分解反
応となつており、そのためこの方法では本質的に
膜の生成を制御することが極めて困難である。
On the other hand, the photodecomposition method utilizes the fact that a decomposition reaction occurs in a space filled with a predetermined gas through which radiation passes, and decomposition products are deposited on the substrate surface. Therefore, while the essence of film growth should originally proceed as a surface reaction, the reaction by photolysis is a spatially resolved reaction, and for this reason it is essentially extremely difficult to control film formation with this method. be.

基板加熱法及び光分解法どちらの場合でも、膜
のエピタキシヤル成長は言うまでもなく、膜厚、
膜質の制御がともに困難であり、これらの方法で
は付加価値の高い膜を得ることは到底望めない。
In both the substrate heating method and the photolysis method, it goes without saying that the epitaxial growth of the film, as well as the film thickness,
Control of membrane quality is difficult in both cases, and it is impossible to obtain membranes with high added value using these methods.

現在良質のエピタキシヤル膜の作成には、非常
に高価な装置と極めて高度な技術を必要とするこ
とが常識となつており、装置のイニシアルコスト
及びランニングコストは非常に高価なものとなつ
ている。そしてその対策が焦眉の急となつてい
る。
Currently, it is common knowledge that creating high-quality epitaxial films requires extremely expensive equipment and extremely advanced technology, and the initial cost and running cost of the equipment are extremely high. . And countermeasures have become urgent.

本発明は基板表面に吸着した所定の物質を光化
学反応により基板表面で分解し膜質化することで
成膜の制御性を高めかつ容易にすることを特徴と
し、その目的は膜厚、膜質の改善及び良質のエピ
タキシヤル膜の作成、超格子膜の作成等を容易な
らしめることにある。
The present invention is characterized by increasing and facilitating the controllability of film formation by decomposing a predetermined substance adsorbed on the substrate surface by a photochemical reaction on the substrate surface and forming a film.The purpose of this invention is to improve film thickness and film quality. Another object of the present invention is to facilitate the production of high-quality epitaxial films, superlattice films, etc.

本発明は、基板の表面に吸着された分子が、放
射線によつて分解されるとその場で膜質化される
という、本願の発明者の発見になる新しい知見に
基づいてなされたものであり、「脱ガスによる基
板表面の清浄化」、「清浄な基板表面への所望気体
の吸着」、「その吸着量の制御」、「基板表面の付近
辺からの不用分子の排除」、「放射線の照射による
吸着分子の膜質化」、という作業、またはその作
業の積み重ねによつて、膜厚が原子レベルにまで
コントロールされた成層膜、多層膜、結晶成長膜
または超格子膜等の作成を行なうものである。以
下、実施例を用いてその方法の詳細を説明する。
The present invention was made based on the new knowledge discovered by the inventor of the present application, that when molecules adsorbed on the surface of a substrate are decomposed by radiation, they form a film on the spot. "Cleaning the substrate surface by degassing", "Adsorption of desired gas to the clean substrate surface", "Controlling the amount of adsorption", "Elimination of unnecessary molecules from the vicinity of the substrate surface", "Irradiation of radiation This process involves the creation of layered films, multilayer films, crystal growth films, superlattice films, etc. whose film thickness is controlled down to the atomic level, through the process of "making adsorbed molecules into a film" or through the accumulation of such processes. be. The details of the method will be explained below using Examples.

第1図は本発明の一実施例を示すための膜式図
である。図において1は反応室2を排除するため
の排気系でありこの排気系1にはしばしば超高真
空まで排気出来るものが用いられる(例えば、ク
ライオポンプ、イオンポンプ等、これにターボ分
子ポンプ、油回転ポンプが重複使用され、反応室
の容積はそれらの機器の排気能力と、要求される
処理速度によつて決まる。後述のa−Si:Hの試
作ではこれらポンプの全部が内容積15の反応質
に対して用いられた)。排気速度は大きいもの程
良い 初期の基板表面には多くの気体が吸着している
が反応室2に基板3を導入した後、反応室2を
10-5Torr以下の圧力で、必要ならば温度制御機
構を付加するなどして、基板ホルダーを加熱する
ことにより、基板表面の初期の脱ガスを行なう
(本願の第1、2、3、4の発明のa過程)。
FIG. 1 is a membrane diagram showing one embodiment of the present invention. In the figure, 1 is an evacuation system for excluding the reaction chamber 2, and the evacuation system 1 is often one that can evacuate to an ultra-high vacuum (for example, a cryopump, an ion pump, etc., a turbo molecular pump, an oil pump, etc.). Rotary pumps are used redundantly, and the volume of the reaction chamber is determined by the pumping capacity of these devices and the required processing speed. (used for quality). The higher the pumping speed, the better.A lot of gas is adsorbed on the initial substrate surface, but after introducing the substrate 3 into the reaction chamber 2,
Initial degassing of the substrate surface is performed by heating the substrate holder at a pressure of 10 -5 Torr or less, with the addition of a temperature control mechanism if necessary (see Sections 1, 2, 3, and 4 of this application). A process of the invention).

吸着分子の全くない表面を作ることは不可能で
あるが、実用上支障のないいわゆる「清浄表面」
は高真空中で基板を加熱し吸着分子の「昇温脱
離」を行なうことにより得られ、これに関する文
献は極めて多く、(例えば、「超高真空の物理」富
永五郎訳、岩波書店)、慣用された技術である。
Although it is impossible to create a surface completely free of adsorbed molecules, it is possible to create a so-called "clean surface" that poses no practical problems.
can be obtained by heating the substrate in a high vacuum and performing "temperature-programmed desorption" of the adsorbed molecules, and there is an extremely large amount of literature on this (for example, "Physics of Ultra-High Vacuum", translated by Goro Tominaga, Iwanami Shoten), It is a commonly used technique.

基板3の表面から脱ガスを十分に行なつたの
ち、気体導入系5から所定の気体を反応室2に導
入すると、その気体を基板表面に吸着せしめるこ
とができる(本願の第1、2の発明のb過程)。
このとき、基板の温度と所定の気体の圧力を制御
することにより吸着量を制御できる(本願の第
1、2、3、4の発明のc過程)。
After sufficiently degassing the surface of the substrate 3, when a predetermined gas is introduced into the reaction chamber 2 from the gas introduction system 5, the gas can be adsorbed onto the substrate surface (see the first and second aspects of the present application). b process of invention).
At this time, the amount of adsorption can be controlled by controlling the temperature of the substrate and the pressure of the predetermined gas (step c of the first, second, third, and fourth inventions of the present application).

周知のように、物質表面の気体の吸着量Vは一
般に温度Tとガス圧力Pで規定され、TとPを設
定することで吸着量Vが制御出来ることが知られ
ている。(例えばD.O.HAYWARD
“CHEMISORPTION”(Btterworth&Co.Ltd.)
p160,p13) 次いで、その吸着分子を除く残りの気体を排気
系1により取り除き、吸着分子以外の残留気体は
真空ポンプにより排気することが可能である(本
願の第1、2の発明のd過程)。吸着・離脱過程
のポテンシヤルエネルギーに関する議論は、前記
のD.O.HAYWARD“CHEMISORPTION”
(Butterworth&Co.Ltd.)p88に詳しい。) 反応室内を再び10-3Torr以下の圧力とする。
As is well known, the adsorption amount V of gas on the surface of a substance is generally defined by the temperature T and the gas pressure P, and it is known that the adsorption amount V can be controlled by setting T and P. (For example, DOHAYWARD
“CHEMISORPTION” (Btterworth & Co. Ltd.)
p160, p13) Next, the remaining gas excluding the adsorbed molecules is removed by the exhaust system 1, and the remaining gas other than the adsorbed molecules can be evacuated by a vacuum pump (step d of the first and second inventions of the present application). ). For a discussion on the potential energy of adsorption/desorption processes, see DOHAYWARD “CHEMISORPTION” above.
(Butterworth & Co. Ltd.) Familiar with p88. ) The pressure inside the reaction chamber is reduced to 10 -3 Torr or less again.

さて、気体が吸着される速度は高速で、一方吸
着された気体が離脱する速度は極めて遅い。本発
明の方法はこの自明に近い現象を巧みに利用する
ものである。
Now, the rate at which gas is adsorbed is high, while the rate at which the adsorbed gas is released is extremely slow. The method of the present invention takes advantage of this near-obvious phenomenon.

この状態で、必要のときは基板3を温度制御し
ながら、光源6から適当な放射線を光学窓7を通
して基板上に照射すると、基板上にて吸着されて
いるその所定の気体の分解が生じ、これが膜質化
される(本願の第1、2、3、4の発明のe過
程)。
In this state, when appropriate radiation is irradiated from the light source 6 onto the substrate through the optical window 7 while controlling the temperature of the substrate 3 when necessary, the predetermined gas adsorbed on the substrate is decomposed. This is turned into a film (step e of the first, second, third, and fourth inventions of the present application).

この、基板表面における気体の分解と膜質化が
本願の発明者の見いだした新しい現象である。
This decomposition of gas and formation of a film on the substrate surface is a new phenomenon discovered by the inventor of the present application.

「吸着分子また物質表面」が、放射線を吸収し
て吸着分子を分解するプロセスそのものは光触媒
の分野で広く知られている(例えば、日本化学会
編、化学総説、No.39“無機光化学”)。ただし、分
解後にこれが膜質化されるプロセスに関しての文
献は見あたらない。(ただし、もしこれが「遊離
している気体分子」の場合であれば、気体が放射
光を吸収して分解して基板表面に薄膜を堆積する
プロセスは良く知られており、現在すでに光
CVD装置で使用されている。) 膜質化で生じる膜の膜質は導入される気体の種
類およびその成分比率に依存し、膜質化で生ずる
膜の膜厚は先に吸着していた気体の量に正しく依
存する。
The process in which "adsorbed molecules or material surfaces" absorb radiation and decompose the adsorbed molecules is widely known in the field of photocatalysis (for example, Chemical Society of Japan, Chemistry Review, No. 39 "Inorganic Photochemistry"). . However, no literature has been found regarding the process by which it becomes a film after decomposition. (However, if this is a case of "free gas molecules," the process in which gases absorb synchrotron radiation and decompose to deposit a thin film on the substrate surface is well known, and it is already possible to
Used in CVD equipment. ) The quality of the film produced by film formation depends on the type of gas introduced and its component ratio, and the thickness of the film produced by film formation depends on the amount of previously adsorbed gas.

清浄表面に所定の気体が吸着するとその表面は
最早や清浄表面ではなくなり、表面状態は異なつ
たものとなる。このため単分子層を吸着するとそ
の後はもはや吸着を生じないか、弱い吸着しか生
じない。従つて、吸着層を単分子層でコントロー
ル出来る。(Langmuirの単分子吸着理論。実際
に銀表面上の一酸化炭素、アルゴン、窒素ではこ
の理論はよく一致する。) それ故に、膜質化で生じる膜厚は原子レベルで
コントロール出来ることになる。
When a predetermined gas is adsorbed onto a clean surface, the surface is no longer a clean surface and the surface condition becomes different. Therefore, after a monomolecular layer is adsorbed, no adsorption occurs or only weak adsorption occurs. Therefore, the adsorption layer can be controlled by a monomolecular layer. (Langmuir's monomolecular adsorption theory. In fact, this theory agrees well with carbon monoxide, argon, and nitrogen on the silver surface.) Therefore, the film thickness produced by film formation can be controlled at the atomic level.

従つて、気体導入、排気、放射線照射の条件を
適当にして、上記を適当な回数繰り返すときは各
層の膜厚を全て原子レベルでコントロール出来る
ことになる。
Therefore, when the conditions of gas introduction, exhaust, and radiation irradiation are set appropriately and the above steps are repeated an appropriate number of times, the thickness of each layer can be controlled at the atomic level.

実験によれば、所定の気体として、ジシランガ
スを採用し、光源6として低圧水銀ランプ
(185nm)を配置し、光学窓7として合成石英ガ
ラスを用いることによつて、本方法によりa−
Si:H膜を作成することが可能であり、その膜厚
の制御も容易であつた。
According to experiments, by employing disilane gas as the predetermined gas, arranging a low-pressure mercury lamp (185 nm) as the light source 6, and using synthetic quartz glass as the optical window 7, this method has shown that a-
It was possible to create a Si:H film, and the film thickness could be easily controlled.

最新の文献(Jpn.J.Appl.Phys.22(8月)L544
(1983))には、a−Si0.2C0.8:H/a−Si:H/
a−Si0.2C0.8:Hのヘテロ構造中の薄い、a−
Si:H層(約10Å、25Å、50Å)で、量子サイズ
効果によりそのバンドギヤツプが変化することが
示されている。これは将来アモルフアス型の超格
子構造が有用となる可能性を暗示するものであ
る。上記の論文には、この薄いヘテロ構造をプラ
ズマCVD装置で作成したとの記載があるが、こ
のプラズマCVD方法では安定して目的の膜厚を
得ることが難しく、10、25、50Åのうち理論的に
最もその有用性が期待されている10Åの膜厚は実
現できていない。
Latest literature (Jpn.J.Appl.Phys.22 (August) L544
(1983)), a-Si 0.2 C 0.8 :H/a-Si:H/
a-Si 0.2 C 0.8 : Thin a- in the heterostructure of H
It has been shown that the bandgap of Si:H layers (approximately 10 Å, 25 Å, and 50 Å) changes due to quantum size effects. This suggests that amorphous superlattice structures may become useful in the future. The above paper states that this thin heterostructure was created using a plasma CVD device, but it is difficult to stably obtain the desired film thickness with this plasma CVD method, and the theoretical thickness of 10, 25, and 50 Å is The film thickness of 10 Å, which is expected to be the most useful, has not been achieved.

さてシリコンの格子定数が5.4Åであることか
ら考えると、2原子層で約10Å、4〜5原子層で
約25Åとなる。
Now, considering that the lattice constant of silicon is 5.4 Å, it becomes about 10 Å for two atomic layers and about 25 Å for 4 to 5 atomic layers.

本発明の実施例で作成されるa−Si:H多層膜
は、上記した通り膜厚のコントロールが容易で、
1原子層毎にも行なうことができるため、上記文
献に示されたようなヘテロ構造の多層膜の実現を
容易に可能にするものであり、その効果が期待さ
れる。
As mentioned above, the a-Si:H multilayer film created in the example of the present invention can easily control the film thickness.
Since it can be performed for each atomic layer, it is possible to easily realize a multilayer film with a heterostructure as shown in the above-mentioned document, and its effects are expected.

さて、本発明では次のことに注目すべきであ
る。即ち、図中8は赤外線放射板であり、この装
置は基板表面加熱および/又は光学窓7に吸着し
た分子の加熱立ガスに用いられる(本願の第、
2、4の発明のh過程)。ただし、光学窓7の脱
ガスのためには赤外線放射板8のほかに光学窓加
熱用ヒーター9による伝導熱加熱を利用すること
もできる。両加熱は併用することで一層の効果を
あげることができる。光学窓7の脱ガスは光学窓
上への膜堆積による光学窓のくもりを防止する上
で本発明の場合重要であり、光学窓の脱ガスは本
発明の大きい特徴となる。
Now, the following points should be noted in the present invention. That is, 8 in the figure is an infrared radiation plate, and this device is used to heat the substrate surface and/or to heat the molecules adsorbed on the optical window 7 (see Section 8 of this application).
2, h process of the invention of 4). However, in order to degas the optical window 7, in addition to the infrared radiation plate 8, conductive heating by the optical window heating heater 9 can also be used. Further effects can be achieved by using both types of heating together. Degassing of the optical window 7 is important in the present invention in order to prevent fogging of the optical window due to film deposition on the optical window, and degassing of the optical window is a major feature of the present invention.

放射光について言えば、従来法でも、赤外放射
光が利用されていない訳ではない。しかしそれは
基板加熱のための光学としてであつて、光学窓の
加熱を意図するものではなく、光もCO2レーザの
赤外光等が用いられており、対向する光学窓には
この赤外光の透過を良くする目的で、窓材として
専らNaCl等の赤外光を吸収しにくい材質が選定
されている。(参考文献Appl.Phys.Lett.,32,
254(1978)) これに対し本発明では、赤外線放射板として例
えば荏原実業株式会社製赤外線ヒーター「サニー
ビーム」を用い、光学窓としては例えば東芝セラ
ミツクス株式会社製の厚さ10mmの合成石英ガラス
「T−4040」を用いる。即ちこれら両者の発光ス
ペクトルAと吸収スペクトルBを第2図に示すよ
うに、相互には重複部分をもたせ赤外線放射板か
らの赤外放射光が充分に光学窓に吸収されて光学
窓の加熱に利用されるよう配慮されるものであ
る。
Regarding synchrotron radiation, infrared synchrotron radiation is not unused in conventional methods. However, it is used as an optical device for heating the substrate, and is not intended to heat the optical window.The light used is infrared light from a CO 2 laser, and the opposite optical window is exposed to this infrared light. In order to improve the transmission of light, materials such as NaCl that do not easily absorb infrared light are selected as window materials. (References Appl. Phys. Lett., 32,
254 (1978)) In contrast, in the present invention, an infrared heater "Sunny Beam" manufactured by Ebara Jitsugyo Co., Ltd., for example, is used as the infrared radiation plate, and a synthetic quartz glass "10 mm thick" manufactured by Toshiba Ceramics Corporation is used as the optical window. T-4040" is used. In other words, as shown in Figure 2, the emission spectrum A and absorption spectrum B of both of them have an overlapping part, so that the infrared radiation from the infrared radiation plate is sufficiently absorbed by the optical window, and the optical window is heated. Consideration will be given to ensuring that it is used.

本発明は、この赤外光光源と光学窓材の取り合
わせ及び/又は光学窓の伝導加熱の点に、従来に
ない著しい特徴を有する。
The present invention has significant features not found in the prior art in the combination of the infrared light source and the optical window material and/or the conductive heating of the optical window.

なお、上述で明らかなように本発明では中間工
程の排気を省略しさえすれば、従来行なわれてき
た光学薄膜製造方法も行なうことができる。従つ
て成膜の際に、付加価値のあまり重要ではない部
分は従来の方法で加工処理し、付加価値の重要な
部分は本方法で用いるという、新旧両方法の組み
合わせが可能である。さらにまた、気体導入、排
気、放射線照射の繰り返しの際に、途中から所定
の気体の成分を変えることも可能で、これによる
と、いわゆる超格子の作成等も可能となる。
As is clear from the above, in the present invention, conventional optical thin film manufacturing methods can be used as long as the intermediate step of evacuation is omitted. Therefore, when forming a film, it is possible to combine both the old and new methods, in which the parts with less added value are processed using the conventional method, and the parts with more important added value are processed with the present method. Furthermore, during the repetition of gas introduction, exhaust, and radiation irradiation, it is also possible to change the components of a predetermined gas midway through, thereby making it possible to create a so-called superlattice.

また本発明において、所定の気体を導入する際
排気系を作動したまま適当な間隔のパルスの繰り
返しの形で該気体を導入し(本願の第3、4の発
明のg過程)、該放射線を照射したまま、およ
び/又は適当な間隔のパルスの繰り返しの形で基
板を照射することにより(例えば、エキシマレー
ザの放射線はそれ自身パルス状である)、気体導
入、排気、放射線照射を交互に繰り返し行つた前
記過程で得るのと同様の効果で良質の膜をうるこ
とができる。この場合の成膜は一層高速となる。
Further, in the present invention, when introducing a predetermined gas, the gas is introduced in the form of repeated pulses at appropriate intervals while the exhaust system is operating (step g of the third and fourth inventions of the present application), and the radiation is emitted. Alternately repeat gas introduction, evacuation, and irradiation by irradiating the substrate with continuous irradiation and/or in the form of repeating appropriately spaced pulses (e.g., excimer laser radiation is itself pulsed). A film of good quality can be obtained with the same effect as obtained in the above-mentioned process. Film formation in this case becomes even faster.

第3図は、本発明の実験に用いた光化学的薄膜
製造装置の概略図である。各部材の符号は第1図
に合わせてある。
FIG. 3 is a schematic diagram of a photochemical thin film manufacturing apparatus used in experiments of the present invention. The reference numerals of each member are the same as in FIG.

排気系1としては、通常排気に用いられている
ターポ分子ポンプ11と、その補助排気用油回転
ポンプおよび高真空排気用のイオンポンプを用い
た。
As the evacuation system 1, a tarpo molecular pump 11 which is normally used for evacuation, an oil rotary pump for auxiliary evacuation, and an ion pump for high vacuum evacuation were used.

ターボ分子ポンプ11には、約400〜500/
secの排気量をもち粘性流領域でも十分に有効な
排気特性をもつS.G.P(Screw Grooved Pump)
の内蔵の、一般にHi−Qターボ分子ポンプとし
て知られている日電アネルバ(株)製のものを用い、
油回転ポンプ12には、アルカテル社製のT2063
型(排気速度約1200/min)、イオンポンプ1
3には、日電アネルバ(株)製の排気速度約500の
装置を用いた。
The turbo molecular pump 11 has about 400~500/
SGP (Screw Grooved Pump) with a displacement of sec and sufficiently effective exhaust characteristics even in the viscous flow region.
Using a built-in pump manufactured by Nichiden Anelva Co., Ltd., which is generally known as a Hi-Q turbo molecular pump,
The oil rotary pump 12 is T2063 manufactured by Alcatel.
Type (pumping speed approx. 1200/min), ion pump 1
For No. 3, a device manufactured by Nichiden Anelva Co., Ltd. with a pumping speed of approximately 500 was used.

基板ホルダー4内にはヒーター22と熱電対2
1が内蔵されており、図示しないサイリスタユニ
ツトを用いて、PID制御またはPI制御によりヒー
ター22に流す電流を制御し基板3の温度を所定
のものに保つた。図示しないが、基板を冷却した
い場合にそなえて冷却機構も内蔵している。
A heater 22 and a thermocouple 2 are placed inside the substrate holder 4.
1 is built in, and the temperature of the substrate 3 is maintained at a predetermined level by controlling the current flowing through the heater 22 by PID control or PI control using a thyristor unit (not shown). Although not shown, a cooling mechanism is also built in in case it is desired to cool the substrate.

反応室2としては、直径D=20cm、流さL=45
cmの円筒形のものを用いている。
For reaction chamber 2, diameter D = 20 cm, flow length L = 45
A cylindrical one with a diameter of cm is used.

本発明が半導体装置の製造に寄与するところは
大きく、工業上有益な発明ということができる。
The present invention greatly contributes to the manufacture of semiconductor devices, and can be said to be an industrially useful invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の模式図であ
る。第2図はその場合の、発光スペクトルと吸収
スペクトルを示す。第3図は、本発明を実験した
装置の概略図を示す。 1……排気系、6……光源、2……反応室、7
……光学窓、3……基板、8……赤外線放射板、
4……基板ホルダー、9……光学窓加熱用ヒータ
ー、5……気体導入系。
FIG. 1 is a schematic diagram of an apparatus for implementing the present invention. FIG. 2 shows the emission spectrum and absorption spectrum in that case. FIG. 3 shows a schematic diagram of the apparatus in which the present invention was tested. 1...Exhaust system, 6...Light source, 2...Reaction chamber, 7
...Optical window, 3...Substrate, 8...Infrared radiation plate,
4... Substrate holder, 9... Optical window heating heater, 5... Gas introduction system.

Claims (1)

4 前記特許請求の範囲第1項記載のd項におけ
る気体の排出が、真空容器内を10−3Torr以下に
するものであることを特徴とする光化学的薄膜製
造方法。 5 前記特許請求の範囲第1項記載のe項におけ
る該放射線の照射が、所定間隔で間欠的に行なわ
れるものであることを特徴とする光化学的薄膜製
造方法。 6 気体を反応室内において基板表面に吸着さ
せ、吸着分子および/又は該基板表面を放射線お
よび/又は熱により活性化し、該基板表面に目的
とする物質を堆積せしめる方法であつて、 下記のa、b、c、d、e、h過程を含むこと
を特徴とする光化学的薄膜製造方法。 a 該反応室を真空に引いて、該基板表面に吸着
している分子を脱ガスする過程。 b 該基板表面の脱ガス後気体を吸着させるため
に、該反応室を該気体で充填する過程と、 c 該気体の吸着量を制御するため、該基板を所
定の温度に保つ過程。 d 該基板表面に該気体が吸着した後、該反応室
内に残留する該気体を排出する過程。 e ランプ、レーザおよび/又は赤外線放射板等
の光源から発する選定された波長および/又は
波長帯の放射線で適温に制御された該基板を照
射し目的とする物質を該基板表面に堆積せしめ
る過程。 h 気体を10−3Torr以下に排気し、10−3Torr
以下の圧力下で放射線を照射するか及び/又は
熱伝導の方法によつて放射線の通過する光学窓
を加熱し、該光学窓の反応室側壁面に吸着され
た気体の脱ガスを行なう過程。 7 気体を反応室内において基板表面に吸着さ
せ、吸着分子および/又は該基板表面を放射線お
よび/又は熱により活性化し、該基板表面に目的
とする物質を堆積せしめる方法であつて、 下記のa、g、c、e過程を含むことを特徴と
する光化学的薄膜製造方法。 a 該反応室を真空に引いて、該基板表面に吸着
している分子を脱ガスする過程。 g 該気体を適当な間隔を置いて間欠的に繰り返
し導入する過程と、 c 該気体の吸着量を制御するため、該基板を所
定の温度に保つ過程。 e ランプ、レーザおよび/又は赤外線放射板等
の光源から発する選定された波長および/又は
波長帯の放射線で適温に制御された該基板を照
射し目的とする物質を該基板表面に堆積せしめ
る過程。 8 前記特許請求の範囲第7項記載のa過程にお
ける脱ガスが、反応室の真空度を10−5Torr以下
の圧力にするものであることを特徴とする光化学
的薄膜製造方法。 9 前記特許請求の範囲第7項記載のa過程にお
ける脱ガスが、基板を100℃以上に加熱して行な
われるものであることを特徴とする光化学的薄膜
製造方法。 10 前記特許請求の範囲第7項記載のe項にお
ける該放射線の照射が、所定間隔で間欠的に行な
われるものであることを特徴とする光化学的薄膜
製造方法。 11 気体を反応室内において基板表面に吸着さ
せ、吸着分子および/又は該基板表面を放射線お
よび/又は熱により活性化し、該基板表面に目的
とする物質を堆積せしめる方法であつて、 下記のa、g、c、e、h過程を含むことを特
徴とする光化学的薄膜製造方法。 a 該反応室を真空に引いて、該基板表面に吸着
している分子を脱ガスする過程。 g 該気体を適当な間隔を置いて間欠的に繰り返
し導入する過程と、 c 該気体の吸着量を制御するため、該基板を所
定の温度に保つ過程。 e ランプ、レーザおよび/又は赤外線放射板等
の光源から発する選定された波長および/又は
波長帯の放射線で適温に制御された該基板を照
射し目的とする物質を該基板表面に堆積せしめ
る過程。 h 気体を10−3Torr以下に排気し、10−3Torr
以下の圧力下で放射線を照射するか及び/又は
熱伝導の方法によつて放射線の通過する光学窓
を加熱し、該光学窓の反応室側壁面に吸着され
た気体の脱ガスを行なう過程。
4. A method for producing a photochemical thin film, characterized in that the discharge of gas in item d of claim 1 reduces the pressure inside the vacuum container to 10-3 Torr or less. 5. A method for producing a photochemical thin film, characterized in that the radiation irradiation in item e of claim 1 is performed intermittently at predetermined intervals. 6. A method of adsorbing a gas onto a substrate surface in a reaction chamber, activating the adsorbed molecules and/or the substrate surface with radiation and/or heat, and depositing a target substance on the substrate surface, comprising: A method for producing a photochemical thin film, comprising steps b, c, d, e, and h. a. A step in which the reaction chamber is evacuated to degas molecules adsorbed on the substrate surface. b. A process of filling the reaction chamber with the gas in order to adsorb the gas after degassing the surface of the substrate; c) A process of maintaining the substrate at a predetermined temperature in order to control the amount of adsorption of the gas. d. A process of exhausting the gas remaining in the reaction chamber after the gas is adsorbed onto the surface of the substrate. e. A process of irradiating the temperature-controlled substrate with radiation of a selected wavelength and/or wavelength band emitted from a light source such as a lamp, laser, and/or infrared radiation plate to deposit a target substance on the surface of the substrate. h Exhaust the gas to below 10-3Torr,
A process of heating an optical window through which radiation passes by irradiating radiation and/or using a heat conduction method under the following pressure to degas the gas adsorbed on the side wall surface of the reaction chamber of the optical window. 7. A method in which a gas is adsorbed onto a substrate surface in a reaction chamber, the adsorbed molecules and/or the substrate surface are activated by radiation and/or heat, and a target substance is deposited on the substrate surface, comprising: A method for producing a photochemical thin film, comprising steps g, c, and e. a. A step in which the reaction chamber is evacuated to degas molecules adsorbed on the substrate surface. (g) A process of repeatedly introducing the gas intermittently at appropriate intervals; (c) A process of maintaining the substrate at a predetermined temperature in order to control the amount of adsorption of the gas. e. A process of irradiating the temperature-controlled substrate with radiation of a selected wavelength and/or wavelength band emitted from a light source such as a lamp, laser, and/or infrared radiation plate to deposit a target substance on the surface of the substrate. 8. A method for producing a photochemical thin film, characterized in that the degassing in step a described in claim 7 brings the degree of vacuum in the reaction chamber to a pressure of 10-5 Torr or less. 9. A photochemical thin film manufacturing method, characterized in that the degassing in step a as set forth in claim 7 is performed by heating the substrate to 100° C. or higher. 10. A photochemical thin film manufacturing method, characterized in that the radiation irradiation in item e of claim 7 is performed intermittently at predetermined intervals. 11. A method in which a gas is adsorbed onto a substrate surface in a reaction chamber, the adsorbed molecules and/or the substrate surface are activated by radiation and/or heat, and a target substance is deposited on the substrate surface, the method comprising: a. A method for producing a photochemical thin film, comprising steps g, c, e, and h. a. A step in which the reaction chamber is evacuated to degas molecules adsorbed on the substrate surface. (g) A process of repeatedly introducing the gas intermittently at appropriate intervals; (c) A process of maintaining the substrate at a predetermined temperature in order to control the amount of adsorption of the gas. e. A process of irradiating the temperature-controlled substrate with radiation of a selected wavelength and/or wavelength band emitted from a light source such as a lamp, laser, and/or infrared radiation plate to deposit a target substance on the surface of the substrate. h Exhaust the gas to below 10-3Torr,
A process of heating an optical window through which radiation passes by irradiating radiation and/or using a heat conduction method under the following pressure to degas the gas adsorbed on the side wall surface of the reaction chamber of the optical window.
JP19969783A 1983-10-25 1983-10-25 Method and device for photochemical thin film formation Granted JPS6092475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19969783A JPS6092475A (en) 1983-10-25 1983-10-25 Method and device for photochemical thin film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19969783A JPS6092475A (en) 1983-10-25 1983-10-25 Method and device for photochemical thin film formation

Publications (2)

Publication Number Publication Date
JPS6092475A JPS6092475A (en) 1985-05-24
JPH0380871B2 true JPH0380871B2 (en) 1991-12-26

Family

ID=16412105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19969783A Granted JPS6092475A (en) 1983-10-25 1983-10-25 Method and device for photochemical thin film formation

Country Status (1)

Country Link
JP (1) JPS6092475A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670442B2 (en) * 1986-03-31 1997-10-29 キヤノン株式会社 Crystal formation method
US7611930B2 (en) * 2007-08-17 2009-11-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing display device

Also Published As

Publication number Publication date
JPS6092475A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
TW200307762A (en) Deposition methods utilizing microwave excitation, and deposition apparatuses
JPH0380871B2 (en)
JPH01179410A (en) Method and apparatus for forming thin film by cvd
Greene et al. The role of ion/surface interactions and photo-induced reactions during film growth from the vapor phase
JPH07105350B2 (en) Light reaction device
JP2758247B2 (en) Organic metal gas thin film forming equipment
JPH0351675B2 (en)
JP2789922B2 (en) Method of forming gold film by CVD method
JP2726149B2 (en) Thin film forming equipment
JPS61183921A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPH057064B2 (en)
JP2509760B2 (en) Manufacturing method of X-ray mirror
Yoshimoto et al. In-situ reflection high-energy electron diffraction observation of laser-triggered GaP growth in chemical beam epitaxy
JP2840419B2 (en) Light treatment method and light treatment device
RU2472870C1 (en) Method for atomic layer growing of thin films of chemical compounds on substrates
Bäuerle Laser induced chemical vapor deposition
JPH0677184A (en) Etching method of semiconductor atomic layer
JPS63312978A (en) Thin film forming device
JPS61215287A (en) Method for forming thin film and apparatus therefor
JP2706705B2 (en) Method for producing organic thin film by ultraviolet laser
JP3059597B2 (en) Method and apparatus for manufacturing thin film
JPH04273434A (en) Optical cvd method
JPS6350474A (en) Formation of magnetic thin film
JPS61269305A (en) Semiconductor manufacturing equipment