JPH049373B2 - - Google Patents

Info

Publication number
JPH049373B2
JPH049373B2 JP57204571A JP20457182A JPH049373B2 JP H049373 B2 JPH049373 B2 JP H049373B2 JP 57204571 A JP57204571 A JP 57204571A JP 20457182 A JP20457182 A JP 20457182A JP H049373 B2 JPH049373 B2 JP H049373B2
Authority
JP
Japan
Prior art keywords
cleaned
ultraviolet
cleaning
lamp
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57204571A
Other languages
Japanese (ja)
Other versions
JPS5994823A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57204571A priority Critical patent/JPS5994823A/en
Publication of JPS5994823A publication Critical patent/JPS5994823A/en
Publication of JPH049373B2 publication Critical patent/JPH049373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は洗浄効果の優れた紫外線洗浄装置に関
するものである。 紫外線ランプより発生するオゾンを利用して汚
染物を分解洗浄することが従来より行なわれてい
る。例えばシリコンウエハーに感光レジストを塗
布する際の前処理として、シリコンウエハーに付
着した大気中の有機汚染物を塗布直前に追加洗浄
することにより分解したり、電子ビームによるス
パツタリング蒸着の際に基体に付着した真空ポン
プの油などによる有機汚染物と同じく追加洗浄す
ると塗布膜或は蒸着膜の密着性を著しく向上する
ことができることが明らかになつている。 ところで紫外線ランプ、例えば低圧水銀ランプ
を点灯すると、主として波長が254nmの水銀共鳴
線の紫外線が外部に放出され、従として185nmの
紫外線が、更には他の波長のものがわずかに放出
される。そしてこれらの紫外線によるオゾンの生
成機構とその洗浄作用は次のように考えられてい
る。 h〓(185nm)+O2(空気)→O+O (1) O+O2(空気)→O3 (2) h〓(254nm)+O3→O*+O2 (3) O*+CmHnOl(有機汚染物) →CO,CO2,H2O(ガス化して飛散) (4) 即ち、波長185nmの紫外線によつてオゾンが生
成し、次にこのオゾンが波長254nmの紫外線によ
り分解されて発生基の酸素が生成し、この発生基
の酸素が有機汚染物を分解してガス状態で飛散さ
せるものである。従つて(4)式の反応を効率良く高
速度で行せるには(1),(3)式のh〓(185nm)とh〓
(254nm)の強度が相互に調和のとれたものの方
が良いと思われる。つまり、これらの強度をそれ
ぞれI185,I254としたとき、これらの比α=I185
I254は紫外線洗浄の効率上重要な因子と思われ
る。しかるに、従来実用化された装置や研究報告
によればαの値がいずれも小さな、そして限られ
た範囲のものであり、例えばその値が0.03(「洗浄
設計」近代編集社1981年秋季号)であり、また
0.05(昭和57年応用物理学会報告28a−V−3)
であつて、必ずしも広範囲にわたつて調査研究し
たうえでの最適値とは言い難いことが分つた。 そこで本発明は、紫外線ランプの光でオゾンを
発生させ、このオゾンの分解により生成される酸
素により物体の表面に付着した有機汚染物や気体
中に浮遊する有機汚染物などを、消費電力が少
く、かつ著しく効率よく高速で分解して洗浄する
ことが可能な紫外線洗浄装置を提供することを目
的とし、本発明者らがαの値を従来にない広範囲
にわたつて変化させて鋭意調査研究した結果、α
の最適範囲を見い出して本発明を完成したもので
ある。有機汚染物の付着した被洗浄体や有機汚染
物を含む被洗浄気体が酸素ガスと共存し、波長が
185nmと254nmの光を放射する紫外線ランプが有
機汚染物と酸素ガスとに対置され、このランプの
185nmと254nmの光の出力をそれぞれI185とI254
した時、この比α=I185/I254が0.08から0.3の範
囲に設定されたことを特徴とするものである。な
お、α=I185/I254の測定はランプ発光部の中央
点より軸の垂直方向に発光点の10倍以上離れた位
置での軸に平行な面上でのエネルギー密度の比で
近似させた。そして185nmの紫外線は空気に吸収
されるので真空中から非吸収雰囲気中で測定し
た。 以下に図面により本発明の実施例を具体的に説
明する。 図面は本発明の紫外線洗浄装置を簡略化して横
式的に示したものであるが、第1図において箱状
の本体1内にはベルトコンベヤー2が張設され、
このコンベヤー2上にはフイルター3を介して低
圧水銀灯の紫外線ランプ4が設置されている。そ
して入口1aからコンベヤー2上に載せられた被
洗浄体5はランプ4で照射されて洗浄されながら
進み、ランプ4の下を通過し終るときには洗浄が
完了して出口1bより取り出される。本体1の下
方には吸引フアン6が設けられ、冷却空気やオゾ
ン、更には分解された気体状の汚染物などが排出
される。第2図は被洗浄体が酸素ガスと共存した
気体であり、その内に汚染物が浮遊している場合
に用いられる実施例を示したものであり、内部を
被洗浄体が所定速度で流動する管体7には合成石
英製の窓孔7aが設けられ、その上部にランプ4
が設置されて窓孔7aを通して紫外線が管体7内
に照射される。そして被洗浄体が窓孔7aの部分
を通過し終ると洗浄が完了するようになつてい
る。 次にαを広範囲にわたつて変化させて洗浄効果
を調査した結果を説明すると、使用したランプ4
は管径20mm、アーク長100cmの450W低圧水銀灯で
あり、αの値は低圧水銀灯の最冷点温度の制御と
フイルター3の波長185nm光の透過率を変えるこ
とにより変化させた。被洗浄体5は直径10mmの石
英板であり、これをエチルアルコール中で30分間
超音波洗浄した後に、更に16MΩcmの純水で洗つ
て乾燥し、有機汚染物として染料(ローダミン
B)をエチルアルコールで溶かしてこれを石英板
上に塗布した。そしてこの被洗浄体5がランプ4
の下を5分間で通過するようにし、照射の前後に
おける633nm光の透過率の変化を測定して洗浄効
果の代用特性とした。その測定結果を第1表に示
す。ここで、各被洗浄体5の照射前の透過率は96
%であり、照射後が100%のものを◎印、約99%
のものを〇印、約98%のものを△印、約97%もの
を×印で表示した。
The present invention relates to an ultraviolet cleaning device with excellent cleaning effects. Conventionally, ozone generated from ultraviolet lamps has been used to decompose and clean contaminants. For example, as a pre-treatment when applying a photoresist to a silicon wafer, organic contaminants in the atmosphere that have adhered to the silicon wafer can be decomposed by additional cleaning immediately before application, or they can adhere to the substrate during sputtering deposition using an electron beam. It has been found that additional cleaning can significantly improve the adhesion of coated or deposited films, as in the case of organic contaminants such as oil from vacuum pumps. By the way, when an ultraviolet lamp, such as a low-pressure mercury lamp, is turned on, ultraviolet rays of the mercury resonance line with a wavelength of 254 nm are mainly emitted to the outside, and ultraviolet rays of 185 nm and a small amount of other wavelengths are also emitted. The mechanism by which ozone is produced by these ultraviolet rays and its cleaning action are thought to be as follows. h〓 (185nm) + O 2 (air) → O + O (1) O + O 2 (air) → O 3 (2) h〓 (254nm) + O 3 → O * +O 2 (3) O * +CmHnOl (organic contaminant) → CO, CO 2 , H 2 O (gasifies and scatters) (4) That is, ozone is generated by ultraviolet rays with a wavelength of 185 nm, and then this ozone is decomposed by ultraviolet rays with a wavelength of 254 nm, producing oxygen as a generating group. However, the oxygen of this generating group decomposes organic contaminants and scatters them in a gaseous state. Therefore, in order to carry out the reaction of equation (4) efficiently and at high speed, h〓 (185 nm) and h〓 of equations (1) and (3) are required.
It would be better if the intensities of (254nm) were in harmony with each other. In other words, when these intensities are respectively I 185 and I 254 , their ratio α=I 185 /
I 254 appears to be an important factor in the efficiency of UV cleaning. However, according to devices and research reports that have been put into practical use so far, the value of α is small and in a limited range, for example, the value is 0.03 ("Cleaning Design", Kindai Editorial Publishing, Autumn 1981 issue). and also
0.05 (1982 Japan Society of Applied Physics Report 28a-V-3)
However, it has been found that it is not necessarily the optimal value based on extensive research and research. Therefore, the present invention generates ozone with the light of an ultraviolet lamp, and uses the oxygen generated by the decomposition of this ozone to remove organic pollutants attached to the surface of objects and organic pollutants floating in gases with low power consumption. With the aim of providing an ultraviolet cleaning device that can be disassembled and cleaned extremely efficiently and at high speed, the present inventors have conducted intensive research by varying the value of α over an unprecedented wide range. The result, α
The present invention was completed by finding the optimal range of . The object to be cleaned with organic contaminants and the gas to be cleaned that contains organic contaminants coexist with oxygen gas, and the wavelength
An ultraviolet lamp emitting light at 185 nm and 254 nm is placed against organic contaminants and oxygen gas;
When the outputs of 185 nm and 254 nm light are I 185 and I 254 , respectively, this ratio α=I 185 /I 254 is set in the range of 0.08 to 0.3. The measurement of α = I 185 / I 254 is approximated by the ratio of the energy density on a plane parallel to the axis at a position more than 10 times the distance from the center of the lamp's light emitting part in the direction perpendicular to the axis. Ta. Since 185 nm ultraviolet light is absorbed by air, the measurement was performed in a vacuum or in a non-absorbing atmosphere. Embodiments of the present invention will be specifically described below with reference to the drawings. The drawing is a simplified horizontal view of the ultraviolet cleaning device of the present invention, and in FIG. 1, a belt conveyor 2 is stretched inside a box-shaped main body 1.
An ultraviolet lamp 4, which is a low-pressure mercury lamp, is installed on the conveyor 2 via a filter 3. The object to be cleaned 5 placed on the conveyor 2 from the entrance 1a advances while being irradiated and cleaned by the lamp 4, and when it finishes passing under the lamp 4, the cleaning is completed and it is taken out from the exit 1b. A suction fan 6 is provided below the main body 1 to exhaust cooling air, ozone, and further decomposed gaseous pollutants. Figure 2 shows an example used when the object to be cleaned is a gas coexisting with oxygen gas and contaminants are floating in it, and the object to be cleaned flows inside at a predetermined speed. A window hole 7a made of synthetic quartz is provided in the tube body 7, and a lamp 4 is mounted on the upper part of the window hole 7a.
is installed, and ultraviolet rays are irradiated into the tube body 7 through the window hole 7a. When the object to be cleaned finishes passing through the window hole 7a, the cleaning is completed. Next, I will explain the results of investigating the cleaning effect by varying α over a wide range.
is a 450W low-pressure mercury lamp with a tube diameter of 20 mm and an arc length of 100 cm, and the value of α was changed by controlling the coldest point temperature of the low-pressure mercury lamp and changing the transmittance of filter 3 for light with a wavelength of 185 nm. The object to be cleaned 5 is a quartz plate with a diameter of 10 mm, which is ultrasonically cleaned in ethyl alcohol for 30 minutes, further washed with 16 MΩcm pure water and dried, and dye (rhodamine B) as an organic contaminant is removed with ethyl alcohol. This was melted and applied on a quartz plate. This object to be cleaned 5 is the lamp 4.
The change in the transmittance of 633 nm light before and after irradiation was measured and used as a proxy for the cleaning effect. The measurement results are shown in Table 1. Here, the transmittance of each object to be cleaned 5 before irradiation is 96
%, 100% after irradiation is marked ◎, approximately 99%
Those with 98% are marked with △, those with about 97% are marked with ×.

【表】 第1表から明らかな様に、αが0.08から0.3の
範囲では優れた洗浄効果を示し、ことに0.1から
0.2の範囲ではほとんど完全に洗浄することが出
来た。これに対してαが0.08未満や0.3を越える
ところではh〓(185)とh〓(254)の調和が崩れて洗
浄効果が低下し、効率が悪い。 従つて本発明の紫外線洗浄装置の光源系のαを
従来試みられていない0.08から0.3の範囲に設定
することにより、洗浄効果が優れ、このため消費
電力が少く、かつ高速で処理できる紫外線洗浄装
置を提供することができる。
[Table] As is clear from Table 1, the cleaning effect is excellent when α is in the range of 0.08 to 0.3, and especially from 0.1 to 0.3.
Almost complete cleaning was possible within the range of 0.2. On the other hand, when α is less than 0.08 or exceeds 0.3, the harmony between h〓(185) and h〓(254) is lost, and the cleaning effect decreases, resulting in poor efficiency. Therefore, by setting α of the light source system of the ultraviolet cleaning device of the present invention in the range of 0.08 to 0.3, which has not been attempted before, the ultraviolet cleaning device has excellent cleaning effects, consumes less power, and can process at high speed. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図
は他の実施例を示す断面図である。 1……本体、2……ベルトコンベヤー、3……
フイルター、4……ランプ、5……被洗浄体。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing another embodiment. 1...Main body, 2...Belt conveyor, 3...
Filter, 4...Lamp, 5...Object to be cleaned.

Claims (1)

【特許請求の範囲】[Claims] 1 有機汚染物の付着した被洗浄体や有機汚染物
を含む被洗浄気体が酸素ガスと共存し、波長が
185nmと254nmの光を放射する紫外線ランプが有
機汚染物と酸素ガスとに対置され、該185nmと
254nmの光の出力をそれぞれI185とI254とした時、
この比α=I185/I254が0.08から0.3の範囲に設定
されたことを特徴とする紫外線洗浄装置。
1 The object to be cleaned with organic contaminants and the gas to be cleaned containing organic contaminants coexist with oxygen gas, and the wavelength
An ultraviolet lamp emitting light at 185 nm and 254 nm is placed opposite the organic contaminant and oxygen gas;
When the output of 254nm light is I 185 and I 254 respectively,
An ultraviolet cleaning device characterized in that this ratio α=I 185 /I 254 is set in a range of 0.08 to 0.3.
JP57204571A 1982-11-24 1982-11-24 Ultraviolet purifier Granted JPS5994823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57204571A JPS5994823A (en) 1982-11-24 1982-11-24 Ultraviolet purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57204571A JPS5994823A (en) 1982-11-24 1982-11-24 Ultraviolet purifier

Publications (2)

Publication Number Publication Date
JPS5994823A JPS5994823A (en) 1984-05-31
JPH049373B2 true JPH049373B2 (en) 1992-02-20

Family

ID=16492671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57204571A Granted JPS5994823A (en) 1982-11-24 1982-11-24 Ultraviolet purifier

Country Status (1)

Country Link
JP (1) JPS5994823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168270A1 (en) * 2017-03-14 2018-09-20 本田技研工業株式会社 Laser machining apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659453B2 (en) * 1986-06-06 1994-08-10 株式会社東芝 Method of applying resist to substrate
JPH0644976B2 (en) * 1989-04-26 1994-06-15 松下電器産業株式会社 Photocatalyst regeneration method and photocatalyst deodorizing device
JPH02299287A (en) * 1989-05-15 1990-12-11 Shin Etsu Chem Co Ltd Cleaning of printed circuit board
JPH03254192A (en) * 1990-03-02 1991-11-13 Matsushita Electric Works Ltd Multilayer wiring board
JPH1190370A (en) * 1997-09-22 1999-04-06 Iwasaki Electric Co Ltd Surface treating device and its treatment
WO2009088984A1 (en) * 2008-01-08 2009-07-16 Newport Corporation Novel optical filters for use with mercury arc lamp monitoring applications
JP6967487B2 (en) 2018-05-24 2021-11-17 本田技研工業株式会社 Laser processing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168270A1 (en) * 2017-03-14 2018-09-20 本田技研工業株式会社 Laser machining apparatus
US11285566B2 (en) 2017-03-14 2022-03-29 Honda Motor Co., Ltd. Laser machining apparatus

Also Published As

Publication number Publication date
JPS5994823A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
EP0661110B1 (en) Process for oxidation of an article surface
US6533902B1 (en) Ultraviolet processing apparatus and ultraviolet processing method
JP6242333B2 (en) Pre- and post-cleaning of masks, wafers and optical surfaces to avoid contamination before and after inspection
JPH049373B2 (en)
JP2001185089A (en) Excimer irradiation device
JP3214153B2 (en) Cleaning method using dielectric barrier discharge lamp
JP2003344601A (en) Device and method for cleaning optical element and method for manufacturing it
US5262902A (en) Filter for a low-pressure mercury vapor lamp
JPS5994824A (en) Ultraviolet purifier
JPS59161824A (en) Light irradiating device
JPH06343938A (en) Adhering substance cleaning method and apparatus therefor
JP3085128B2 (en) Light cleaning method
JPS6012128A (en) Photochemical surface treating apparatus
JP3457059B2 (en) Container cleaning method and cleaning device
Sosnin Areas in which vacuum ultraviolet excilamps are used
JP2000011960A (en) Surface treatment device and method using dielectric barrier discharge lamp
JP3303389B2 (en) Processing method using dielectric barrier discharge lamp
JPH0768162A (en) Method for cleaning off deposit and device therefor
JP3214154B2 (en) Cleaning method using dielectric barrier discharge lamp
JP2002346378A (en) Treatment method using dielectric barrier discharge lamp
JP2023163746A (en) Ultraviolet irradiation device, and ultraviolet irradiation method
RU2099811C1 (en) Removal of surface impurities from substrate surface and device for its implementation
JPH04307734A (en) Ashing apparatus
JPS61163633A (en) Method for surface treatment by discharge lamp
JPH07105346B2 (en) Radical beam photo CVD equipment