JP3214154B2 - Cleaning method using dielectric barrier discharge lamp - Google Patents
Cleaning method using dielectric barrier discharge lampInfo
- Publication number
- JP3214154B2 JP3214154B2 JP12316193A JP12316193A JP3214154B2 JP 3214154 B2 JP3214154 B2 JP 3214154B2 JP 12316193 A JP12316193 A JP 12316193A JP 12316193 A JP12316193 A JP 12316193A JP 3214154 B2 JP3214154 B2 JP 3214154B2
- Authority
- JP
- Japan
- Prior art keywords
- cleaned
- dielectric barrier
- barrier discharge
- discharge lamp
- cleaning method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Surface Treatment Of Glass (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、シリコンウエハ、ガラ
ス、セラミックス、プラスチックス等に付着した数分子
から数十分子層の汚染物を、紫外線照射下において、洗
浄、除去する、いわゆる光洗浄方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called photo-cleaning method for cleaning and removing contaminants from several molecules to several tens of nanometers attached to silicon wafers, glass, ceramics, plastics, etc. under ultraviolet irradiation. About.
【0002】[0002]
【従来の技術】本発明に関連した技術としては、例え
ば、日本国公開特許公報平1─144560号があり、
そこには、誘電体バリヤ放電(別名オゾナイザ放電ある
いは無声放電。電気学会発行改定新版「放電ハンドブッ
ク」平成1年6月再版7刷発行第263ページ参照)を
使用したランプについて記載されている。また、オゾン
雰囲気において紫外線を照射することにより、有機物を
除去出来ることは古くから知られており、低圧水銀ラン
プを紫外線光源とした洗浄方法が実用されている。これ
らの従来の方法は、無機物を除去できない、大面積を均
一に洗浄しにくい、洗浄の速度が必ずしも十分ではない
等の問題があった。2. Description of the Related Art As a technique related to the present invention, there is, for example, Japanese Patent Application Laid-Open No. 1-144560.
It describes a lamp using a dielectric barrier discharge (also known as an ozonizer discharge or a silent discharge; see the revised edition of the “Discharge Handbook” published by the Institute of Electrical Engineers of Japan, reprinted 7th edition, June 1991, page 263). It has long been known that organic matter can be removed by irradiating ultraviolet rays in an ozone atmosphere, and a cleaning method using a low-pressure mercury lamp as an ultraviolet light source has been put to practical use. These conventional methods have problems such as the inability to remove inorganic substances, difficulty in uniformly cleaning a large area, and insufficient cleaning speed.
【0003】[0003]
【発明が解決しようとする課題】本発明の課題は、大面
積の被処理物を均一に、かつ、高速で、無機物からなる
汚染物を除去出来る洗浄方法を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a cleaning method capable of uniformly and quickly removing a large-area object to be processed from inorganic contaminants.
【0004】[0004]
【課題を解決するための手段】上記本発明の目的は、被
洗浄物を塩素雰囲気下に配置し、放電用ガスとしてキセ
ノンと塩素の混合ガスを用い、nm単位で表した波長範
囲300から320の波長範囲に放射光を有する誘電体
バリヤ放電ランプから放射される紫外線で該被洗浄物を
照射して該被洗浄物を洗浄する事によって達成される。SUMMARY OF THE INVENTION The object of the present invention is to dispose an object to be cleaned in a chlorine atmosphere, use a mixed gas of xenon and chlorine as a discharge gas, and provide a wavelength range of 300 to 320 expressed in nm. This is achieved by irradiating the object to be cleaned with ultraviolet rays radiated from a dielectric barrier discharge lamp having radiation light in the wavelength range described above to clean the object to be cleaned.
【0005】[0005]
【作用】放電用ガスとしてキセノンと塩素の混合ガスを
用い、ガスの圧力、放電ギャップ長、放電電力密度など
の放電条件を適当にして誘電体バリヤ放電を行うことに
より、キセノンと塩素のエキシマ分子が形成され、nm
単位で表した波長308に最大値を有し波長範囲300
から320に放射光を有する誘電体バリヤ放電ランプが
得られる。塩素を含んだ雰囲気下において、放電用ガス
としてキセノンと塩素の混合ガスを用いた誘電体バリヤ
放電ランプから放射される紫外線で該被洗浄物を照射す
ると、308nm付近の紫外線は、塩素分子を解離して
活性な塩素原子を生成し、この活性な塩素原子が該被洗
浄物に付着した汚染物と反応して蒸気圧の高い塩化物と
なるため、汚染物質を除去することが出来、洗浄が可能
になる。308の紫外線は、塩素原子の生成に加えて、
汚染物に直接作用する事によって汚染物を活性化あるい
は分解し、洗浄速度を加速する。The excimer molecule of xenon and chlorine is obtained by using a mixed gas of xenon and chlorine as a discharge gas and performing a dielectric barrier discharge under appropriate discharge conditions such as gas pressure, discharge gap length, and discharge power density. Is formed and nm
Has a maximum value at a wavelength 308 expressed in units and has a wavelength range of 300
To 320 provide a dielectric barrier discharge lamp with radiation. When the object to be cleaned is irradiated with ultraviolet light emitted from a dielectric barrier discharge lamp using a mixed gas of xenon and chlorine as a discharge gas in an atmosphere containing chlorine, the ultraviolet light at about 308 nm dissociates chlorine molecules. To generate active chlorine atoms, and the active chlorine atoms react with the contaminants attached to the object to be cleaned to form chlorides having a high vapor pressure, so that the contaminants can be removed and the cleaning can be performed. Will be possible. The ultraviolet light of 308, in addition to the generation of chlorine atoms,
Activates or decomposes contaminants by acting directly on them, accelerating the cleaning rate.
【0006】該誘電体バリヤ放電ランプが放射する30
8nm付近の狭い波長範囲の単色光的な紫外線は、従来
の低圧水銀放電ランプでは発生不可能である。また、該
誘電体バリヤ放電ランプは、ランプの温度を低くでき
る、ランプの形状の自由度が大きい等の特徴を有してい
るため、被洗浄物に近接して任意形状の誘電体バリヤ放
電ランプを設置することが可能になり、従来の低圧水銀
放電ランプや高圧アーク放電ランプだけの組み合わせで
は得ることの出来ない特徴ある分光分布の光を、大面積
に、均一に、高効率で照射することが可能になる。従っ
て小型の装置で高効率、高速で、大面積を均一に洗浄す
ることが可能になる。また、本発明のように308nm
付近の紫外線だけを使用する洗浄方法は、308nm付
近の紫外線が従来から使用されている低圧水銀ランプの
放出光である254nm,185nmに比較してエネル
ギーが小さいので、紫外線照射による半導体ウエハの損
傷が少なく、また、ガラスに歪みを発生させないなど、
高品位の洗浄が可能になる。The dielectric barrier discharge lamp radiates 30
Monochromatic ultraviolet light in a narrow wavelength range around 8 nm cannot be generated by a conventional low-pressure mercury discharge lamp. In addition, since the dielectric barrier discharge lamp has features such as lowering the temperature of the lamp and a large degree of freedom in the shape of the lamp, the dielectric barrier discharge lamp having an arbitrary shape close to the object to be cleaned. To irradiate a large area, uniformly, and efficiently with light with a characteristic spectral distribution that cannot be obtained with conventional low-pressure mercury discharge lamps or high-pressure arc discharge lamps alone. Becomes possible. Therefore, it is possible to clean a large area uniformly with high efficiency and high speed using a small apparatus. Further, as in the present invention, 308 nm
In the cleaning method using only ultraviolet light in the vicinity, ultraviolet light in the vicinity of 308 nm has lower energy than 254 nm and 185 nm, which are emission light of a conventionally used low-pressure mercury lamp. Less, and does not cause distortion in the glass,
High quality cleaning becomes possible.
【0007】上記のような波長範囲の紫外線を放射させ
る事により、高効率、高品位の洗浄が達成される。なぜ
なら、上記の波長範囲の紫外線は、主たる発光用ガスと
してキセノンと塩素の混合ガスを使用することにより、
キセノンと塩素のエキシマ分子によって発光可能である
が、これらのガスを使用することにより、発光用ガスの
劣化が少なく、かつ光取り出し窓の劣化が少ない状態を
実現できるからである。By radiating ultraviolet rays in the above wavelength range, high efficiency and high quality cleaning can be achieved. The reason is that the ultraviolet light in the above wavelength range is obtained by using a mixed gas of xenon and chlorine as a main luminescent gas.
Although light can be emitted by excimer molecules of xenon and chlorine, use of these gases makes it possible to realize a state in which the emission gas is less deteriorated and the light extraction window is less deteriorated.
【0008】[0008]
【実施例】本発明の実施例である半導体ウエハの洗浄方
法の概略図を図1に示す。洗浄ダクト3内に誘電体バリ
ヤ放電ランプ4a,4b,4c,4d,4eが被洗浄物
であるシリコンウエハ8に近接して設けられている。シ
リコンウエハ8は支持具5によって支持されており、該
支持具5は、該被洗浄物の温度を変えるための通常の手
段、例えば電気ヒータ等と、該被洗浄物と該誘電体バリ
ヤ放電ランプ4a,4b,4c,4d,4eとの間の距
離を調整するための移動機構を有している。FIG. 1 is a schematic view of a semiconductor wafer cleaning method according to an embodiment of the present invention. Dielectric barrier discharge lamps 4a, 4b, 4c, 4d and 4e are provided in the cleaning duct 3 in proximity to the silicon wafer 8 to be cleaned. The silicon wafer 8 is supported by a support 5, and the support 5 includes a conventional means for changing the temperature of the object to be cleaned, such as an electric heater, and the object to be cleaned and the dielectric barrier discharge lamp. There is a moving mechanism for adjusting the distances between 4a, 4b, 4c, 4d, and 4e.
【0009】実施例に使用した同軸円筒形誘電体バリヤ
放電ランプの概略図を図2に示す。放電容器13は石英
ガラス製で内側管14と外側管15を同軸に配置して中
空円筒状にしたもので、外側管15は誘電体バリヤ放電
の誘電体バリヤと光取り出し窓を兼用しており、その外
面に光を透過する金属網からなる電極17が設けられて
いる。内側管14の内径部には紫外線の反射板を兼ねた
円筒状の金属電極16が設けられている。円筒状の金属
電極16の内側には冷却用流体19が流され、誘電体バ
リヤ放電ランプ全体の温度を低下させる。放電容器13
の一端にリング状のゲッター18が設けられている。放
電空間20に誘電体バリヤ放電によってエキシマ分子を
形成する放電用ガスを封入して、誘電体15の表面に設
けられた金属網からなる透明電極17と内側管14の内
径部には紫外線の反射板を兼ねた円筒状の金属電極16
に交流電源26によって電圧を印加すると、放電空間2
0内にいわゆる誘電体バリヤ放電、別名オゾナイザ放電
あるいは無声放電が発生して、誘電体15、透明電極1
7を通して、高効率で紫外線が放射される。図には示し
ていないが、必要に応じて、透明電極17の表面を紫外
線透過性の樹脂、ガラスなどで覆い電気的に絶縁する。
また、被洗浄物あるいは処理用流体に直接接触する外側
の電極17は、アース電位で使用することが望ましい。FIG. 2 is a schematic diagram of a coaxial cylindrical dielectric barrier discharge lamp used in the embodiment. The discharge vessel 13 is made of quartz glass and has an inner tube 14 and an outer tube 15 arranged coaxially to form a hollow cylinder. The outer tube 15 also serves as a dielectric barrier for a dielectric barrier discharge and a light extraction window. An electrode 17 made of a metal net that transmits light is provided on the outer surface thereof. A cylindrical metal electrode 16 also serving as an ultraviolet reflector is provided on the inner diameter of the inner tube 14. A cooling fluid 19 flows inside the cylindrical metal electrode 16 to lower the temperature of the entire dielectric barrier discharge lamp. Discharge vessel 13
Is provided with a ring-shaped getter 18 at one end. The discharge space 20 is filled with a discharge gas for forming excimer molecules by a dielectric barrier discharge. The transparent electrode 17 made of a metal mesh provided on the surface of the dielectric 15 and the inner diameter of the inner tube 14 reflect ultraviolet light. Cylindrical metal electrode 16 also serving as plate
Is applied to the discharge space 2 by the AC power supply 26.
A so-called dielectric barrier discharge, also known as an ozonizer discharge or a silent discharge, occurs in the dielectric material 15 and the transparent electrode 1.
7, ultraviolet rays are emitted with high efficiency. Although not shown in the figure, the surface of the transparent electrode 17 is covered with an ultraviolet-permeable resin, glass, or the like, as required, to be electrically insulated.
It is desirable that the outer electrode 17 that is in direct contact with the object to be cleaned or the processing fluid is used at the ground potential.
【0010】第1の実施例においては、誘電体バリヤ放
電ランプ4a,4b,4c,4d,4eの発光ガスの主
成分として200Torrのキセノンと塩素の混合ガス
が封入されており、308nm付近で最大値を有する3
00から320nmの波長範囲の紫外線を放出する。該
紫外線は、塩素分子を高効率で活性な塩素原子に分解
し、活性塩素原子を生成する。誘電体バリヤ放電ランプ
4a,4b,4c,4d,4eと被洗浄物であるシリコ
ンウエハ8との最短距離は3mmである。処理用流体供
給口2より注入されたガス1は、分圧で0.9気圧のア
ルゴンと0.1気圧の塩素ガスであって、洗浄ダクト3
内の予備空間6において誘電体バリヤ放電ランプから放
射される短波長の紫外線によって活性な塩素原子に分解
される。塩素ガスと活性な塩素原子の混合ガスが被洗浄
物8上に吹きつけられる。処理空間7において塩素分子
の分解により発生した塩素原子に加え、予備空間6にお
いて塩素ガスの分解によって発生した塩素原子によっ
て、大気中に曝されたことによって形成されているシリ
コンウエハ表面の酸化被膜層が高速で除去、洗浄され
る。さらに、308nmの紫外線が被洗浄物であるウエ
ハ8に到達するので、この紫外線によってシリコン表面
が活性化され、活性な塩素原子が活性なシリコン表面か
ら電子を受け取り、負の塩素イオンとなって正電荷を持
ったシリコン結晶格子中に引き込まれ、揮発性の塩化物
が生成され、したがって、より高速で被洗浄物を洗浄す
ることができる。In the first embodiment, a mixed gas of 200 Torr of xenon and chlorine is sealed as a main component of the luminescent gas of the dielectric barrier discharge lamps 4a, 4b, 4c, 4d, and 4e. 3 with value
It emits ultraviolet light in the wavelength range from 00 to 320 nm. The ultraviolet light decomposes chlorine molecules into active chlorine atoms with high efficiency to generate active chlorine atoms. The shortest distance between the dielectric barrier discharge lamps 4a, 4b, 4c, 4d and 4e and the silicon wafer 8 to be cleaned is 3 mm. The gas 1 injected from the processing fluid supply port 2 is argon at 0.9 atm and chlorine gas at 0.1 atm in partial pressure.
In the preliminary space 6 in the inside, the ultraviolet light of short wavelength emitted from the dielectric barrier discharge lamp is decomposed into active chlorine atoms. A mixed gas of chlorine gas and active chlorine atoms is blown onto the object 8 to be cleaned. In addition to chlorine atoms generated by decomposition of chlorine molecules in the processing space 7 and chlorine atoms generated by decomposition of chlorine gas in the preliminary space 6, an oxide film layer on the surface of the silicon wafer formed by being exposed to the air. Are removed and washed at high speed. Further, since the 308 nm ultraviolet ray reaches the wafer 8 to be cleaned, the ultraviolet ray activates the silicon surface, and the active chlorine atoms receive electrons from the active silicon surface and become positive chlorine ions as negative chlorine ions. It is drawn into the charged silicon crystal lattice, and volatile chloride is generated. Therefore, the object to be cleaned can be cleaned at a higher speed.
【0011】円筒状の金属電極16の内側に冷却用流体
19を流し、誘電体バリヤ放電ランプ全体の温度を低下
させているので、誘電体バリヤ放電ランプによる被洗浄
物の加熱の心配がいらないので、被洗浄物と誘電体バリ
ヤ放電ランプ間の距離を十分に小さくすることが出来、
従って紫外線を高効率で照射する事が出来、高速で被洗
浄物を洗浄、除去することが出来る。また、誘電体バリ
ヤ放電ランプは、従来の低圧水銀ランプの場合と異なっ
て、その長さ、ランプ間の距離を変えても、放射効率な
どの光出力特性が変わらないので、大面積を均一に照射
できるようなランプ配置が可能であり、従って、大面積
の被洗浄物を高効率で、均一に洗浄できる。また、従来
の低圧水銀ランプの場合と異なって、ランプへの入力電
力を変化させることによって分光分布を変えること無く
光出力を変化できるので、ランプへの入力電力と誘電体
バリヤ放電ランプと被洗浄物の間の距離を調整する事に
より、被洗浄物8に照射される紫外線の量を制御でき
る。被洗浄物8に照射される紫外線の量を少なくするこ
とにより、紫外線による被洗浄物の損傷がより少なくな
り、高品質の洗浄が可能になる。被洗浄物8に照射され
る紫外線の量を多くすることにより、変質した洗浄しに
くい被洗浄物を高速で洗浄できる。本発明の洗浄方法
は、金属状の鉄、アルミニウム、ナトリウム、クロム
や、その酸化物を除去するのに最適である。Since the cooling fluid 19 flows inside the cylindrical metal electrode 16 to lower the temperature of the entire dielectric barrier discharge lamp, there is no need to worry about heating of the object to be cleaned by the dielectric barrier discharge lamp. The distance between the object to be cleaned and the dielectric barrier discharge lamp can be made sufficiently small,
Therefore, it is possible to irradiate ultraviolet rays with high efficiency, and it is possible to wash and remove an object to be cleaned at high speed. Also, unlike the conventional low-pressure mercury lamp, the dielectric barrier discharge lamp does not change the light output characteristics such as the radiation efficiency even if the length and the distance between the lamps are changed. It is possible to arrange the lamp so that irradiation can be performed, and therefore, it is possible to efficiently and uniformly clean a large-area object to be cleaned. Also, unlike the conventional low-pressure mercury lamp, the light output can be changed by changing the input power to the lamp without changing the spectral distribution. By adjusting the distance between the objects, the amount of ultraviolet light applied to the object to be cleaned 8 can be controlled. By reducing the amount of ultraviolet light applied to the object 8 to be cleaned, damage to the object to be cleaned due to ultraviolet light is further reduced, and high-quality cleaning can be performed. By increasing the amount of ultraviolet rays irradiated to the object 8 to be cleaned, the deteriorated object that is difficult to wash can be washed at high speed. The cleaning method of the present invention is most suitable for removing metallic iron, aluminum, sodium, chromium, and oxides thereof.
【0012】本発明の第2の実施例は、第1の実施例に
おける被洗浄物8を液晶表示パネル用のガラス板にした
もので、誘電体バリヤ放電ランプ4a,4b,4c,4
d,4eと被洗浄物であるガラス板との最短距離は2m
mにした。ガラス表面に付着したシリコン、ナトリウム
などの酸化物から成る埃が、効率よく除去、洗浄され
た。本実施例の被洗浄物のように可視光を透過する場合
には、微小な汚れが問題となり、本発明の効果がより発
揮される。したがって、同様に、サファイア板の洗浄な
どにも適用出来る。In a second embodiment of the present invention, the object 8 to be cleaned in the first embodiment is a glass plate for a liquid crystal display panel, and the dielectric barrier discharge lamps 4a, 4b, 4c, 4 are used.
The shortest distance between d and 4e and the glass plate to be cleaned is 2 m
m. Dust consisting of oxides such as silicon and sodium adhered to the glass surface was efficiently removed and cleaned. In the case where visible light is transmitted as in the case of the object to be cleaned according to the present embodiment, minute stains become a problem, and the effect of the present invention is further exhibited. Therefore, the present invention can be similarly applied to cleaning of a sapphire plate and the like.
【0013】本発明の第3の実施例を図3に示す。誘電
体バリヤ放電ランプの構造は図2と類似であるが、この
実施例においては、外側管15の外面に紫外線の反射板
を兼ねた金属電極16が設けられ、内側管14の内径部
には光を透過する金属網からなる電極17が設けられて
いる。被洗浄物であるプラスチックス、この例ではポリ
エチレン瓶22を塩素ガスとともに該誘電体バリヤ放電
ランプの内側管の内部を通過させると,該紫外線によっ
て発生した活性塩素原子と該紫外線の直接照射によっ
て、ポリエチレン瓶22の外面が洗浄される。誘電体バ
リヤ放電ランプが中空円筒状なので、円筒状の瓶に効率
よく紫外線を照射することが出来、高速、高効率の洗浄
が可能になる。FIG. 3 shows a third embodiment of the present invention. The structure of the dielectric barrier discharge lamp is similar to that of FIG. 2, but in this embodiment, a metal electrode 16 also serving as an ultraviolet reflector is provided on the outer surface of the outer tube 15, and an inner tube of the inner tube 14 is provided on the inner surface. An electrode 17 made of a metal net that transmits light is provided. When plastics, which is the object to be cleaned, in this example, a polyethylene bottle 22 and chlorine gas pass through the inside of the inner tube of the dielectric barrier discharge lamp, the active chlorine atoms generated by the ultraviolet rays and the direct irradiation of the ultraviolet rays cause The outer surface of the polyethylene bottle 22 is cleaned. Since the dielectric barrier discharge lamp has a hollow cylindrical shape, the cylindrical bottle can be efficiently irradiated with ultraviolet rays, and high-speed and high-efficiency cleaning becomes possible.
【0014】本発明の第4の実施例は、第3の実施例と
同様の誘電体バリヤ放電ランプを使用し、水晶振動子用
水晶片あるいはセラミックスからなる部材を洗浄するも
のである。水晶片あるいはセラミックスからなる部材の
全表面をほぼ均一に洗浄することが出来、特に金属付着
物を除去洗浄出来る。The fourth embodiment of the present invention uses the same dielectric barrier discharge lamp as the third embodiment, and cleans a quartz crystal blank or a member made of ceramics. The entire surface of a member made of a crystal piece or a ceramic can be almost uniformly cleaned, and in particular, metal adhered substances can be removed and cleaned.
【0015】以上の本発明の実施例の特長を、従来の低
圧水銀ランプと塩素ガスを使用した洗浄方法に比較して
まとめると、以下のようになる。(1)被洗浄物に対応
した形状の任意形状の照射装置とすることが出来るの
で、小型、簡便の洗浄方法が得られる。(2)高密度の
活性塩素原子を発生できるので、高速、高効率の洗浄が
可能になる。(3)低エネルギーの紫外線で被洗浄物を
照射できるので、被洗浄物を損傷すること無く高速で洗
浄が出来る。(4)誘電体バリヤ放電ランプによる被洗
浄物の加熱が少ないので、低温度での洗浄が可能にな
る。(5)大面積の被洗浄物を高効率で、均一に洗浄で
きる。(6)被洗浄物に照射される紫外線の量を制御す
る事が出来、従って高品位の洗浄が可能になる。The advantages of the above embodiment of the present invention are summarized below as compared with a conventional low-pressure mercury lamp and a cleaning method using chlorine gas. (1) Since the irradiation device can have an arbitrary shape corresponding to an object to be cleaned, a small and simple cleaning method can be obtained. (2) Since high-density active chlorine atoms can be generated, high-speed and high-efficiency cleaning becomes possible. (3) Since the object to be cleaned can be irradiated with low-energy ultraviolet rays, cleaning can be performed at high speed without damaging the object to be cleaned. (4) Since the object to be cleaned is hardly heated by the dielectric barrier discharge lamp, cleaning at a low temperature becomes possible. (5) A large-area object to be cleaned can be efficiently and uniformly cleaned. (6) The amount of ultraviolet light applied to the object to be cleaned can be controlled, so that high-quality cleaning can be performed.
【0016】[0016]
【発明の効果】上記説明したように、本発明によれば、
小型の方法で、大面積の被洗浄物を均一に、高速で洗浄
出来る洗浄方法を提供できる。As described above, according to the present invention,
A cleaning method capable of cleaning a large-area object to be cleaned uniformly and at a high speed by a small-sized method can be provided.
【図1】本発明の実施例の概要をしめす説明図である。FIG. 1 is an explanatory diagram showing an outline of an embodiment of the present invention.
【図2】本発明に使用する誘電体バリヤ放電ランプの一
例の説明図である。FIG. 2 is an explanatory diagram of an example of a dielectric barrier discharge lamp used in the present invention.
【図3】本発明の実施例の概要をしめす説明図である。FIG. 3 is an explanatory diagram showing an outline of an embodiment of the present invention.
1 処理用流体空気 2 処理用流体供給口 3 洗浄ダクト 4a,4b,4c,4d,4e 誘電体バリヤ放電ラ
ンプ 5 支持具 8 半導体ウエハ 14 内側管 15 外側管 16,17 電極 19 冷却用流体 20 放電空間 21 交流電源 22 ポリエチレン瓶1 Processing Fluid Air 2 Processing Fluid Supply Port 3 Cleaning Duct 4a, 4b, 4c, 4d, 4e Dielectric Barrier Discharge Lamp 5 Support 8 Semiconductor Wafer 14 Inner Tube 15 Outer Tube 16, 17 Electrode 19 Cooling Fluid 20 Discharge Space 21 AC power supply 22 Polyethylene bottle
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−7623(JP,A) 特開 昭63−162873(JP,A) 特開 平2−280831(JP,A) 特開 平4−229671(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 19/12 C03C 23/00 C04B 41/91 C08J 7/00 303 H01L 21/304 645 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-7623 (JP, A) JP-A-63-162873 (JP, A) JP-A-2-280831 (JP, A) JP-A-4- 229671 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 19/12 C03C 23/00 C04B 41/91 C08J 7/00 303 H01L 21/304 645
Claims (5)
用ガスとしてキセノンと塩素の混合ガスを含んだガスを
用い、nm単位で表した波長範囲300から320に放
射光を有する誘電体バリヤ放電ランプから放射される紫
外線で該被洗浄物を照射して該被洗浄物を洗浄する事を
特徴とする誘電体バリヤ放電ランプを使用した洗浄方
法。1. A dielectric having an object to be cleaned placed in a chlorine atmosphere, a gas containing a mixed gas of xenon and chlorine as a discharge gas, and having emission light in a wavelength range of 300 to 320 expressed in nm. A cleaning method using a dielectric barrier discharge lamp, comprising irradiating the object to be cleaned with ultraviolet rays emitted from a barrier discharge lamp to clean the object to be cleaned.
徴とした請求項1記載の誘電体バリヤ放電ランプを使用
した洗浄方法。2. A cleaning method using a dielectric barrier discharge lamp according to claim 1, wherein the object to be cleaned is a semiconductor wafer.
た請求項1に記載の誘電体バリヤ放電ランプを使用した
洗浄方法。3. The cleaning method using a dielectric barrier discharge lamp according to claim 1, wherein the object to be cleaned is glass.
特徴とした請求項1に記載の誘電体バリヤ放電ランプを
使用した洗浄方法。4. The cleaning method using a dielectric barrier discharge lamp according to claim 1, wherein the object to be cleaned is plastics.
徴とした請求項1に記載の誘電体バリヤ放電ランプを使
用した洗浄方法。5. A cleaning method using a dielectric barrier discharge lamp according to claim 1, wherein the object to be cleaned is a ceramic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12316193A JP3214154B2 (en) | 1993-04-28 | 1993-04-28 | Cleaning method using dielectric barrier discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12316193A JP3214154B2 (en) | 1993-04-28 | 1993-04-28 | Cleaning method using dielectric barrier discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06312131A JPH06312131A (en) | 1994-11-08 |
JP3214154B2 true JP3214154B2 (en) | 2001-10-02 |
Family
ID=14853697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12316193A Expired - Fee Related JP3214154B2 (en) | 1993-04-28 | 1993-04-28 | Cleaning method using dielectric barrier discharge lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3214154B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19503718A1 (en) * | 1995-02-04 | 1996-08-08 | Leybold Ag | UV lamp |
JP5979016B2 (en) * | 2013-01-21 | 2016-08-24 | ウシオ電機株式会社 | Excimer lamp |
-
1993
- 1993-04-28 JP JP12316193A patent/JP3214154B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06312131A (en) | 1994-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5677113A (en) | Method for ashing a photoresist resin film on a semiconductor wafer and an asher | |
JP3214153B2 (en) | Cleaning method using dielectric barrier discharge lamp | |
JP3346291B2 (en) | Dielectric barrier discharge lamp and irradiation device | |
TW200952031A (en) | Excimer-Lampe | |
JP2000260396A (en) | Excimer lamp, excimer irradiation device, and organic compond decomposition method | |
JP3214154B2 (en) | Cleaning method using dielectric barrier discharge lamp | |
JP2001300451A (en) | Ultraviolet irradiation device | |
JP2001185089A (en) | Excimer irradiation device | |
JP3653980B2 (en) | UV irradiation equipment | |
JP3178144B2 (en) | Ashing device using dielectric barrier discharge lamp | |
JP2598363B2 (en) | Static eliminator | |
JP3230315B2 (en) | Processing method using dielectric barrier discharge lamp | |
JP3211556B2 (en) | Xenon irradiation device and object surface modification device using it | |
US20020067130A1 (en) | Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source | |
JP2001129391A (en) | Apparatus for treatment using dielectric barrier discharge lamp | |
JP2001079387A (en) | Ultraviolet ray irradiation device and method thereof | |
JP3702852B2 (en) | Processing method using dielectric barrier discharge lamp | |
JP2000011960A (en) | Surface treatment device and method using dielectric barrier discharge lamp | |
JP2002352775A (en) | Excimer lamp, excimer irradiation device, and edge- cleaning method | |
JPH0586648B2 (en) | ||
JPS6075327A (en) | Ultraviolet ray generating device and material treating device using it | |
JPH09120950A (en) | Ultraviolet cleaning equipment | |
JPH05243138A (en) | Ultraviolet ray emitter and processing method using the same | |
JP3912139B2 (en) | Discharge lamp device | |
JPH0611347U (en) | Resist film ashing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080727 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090727 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100727 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |