JPH056995A - High melting point metal silicide film and its formation method - Google Patents

High melting point metal silicide film and its formation method

Info

Publication number
JPH056995A
JPH056995A JP15656691A JP15656691A JPH056995A JP H056995 A JPH056995 A JP H056995A JP 15656691 A JP15656691 A JP 15656691A JP 15656691 A JP15656691 A JP 15656691A JP H056995 A JPH056995 A JP H056995A
Authority
JP
Japan
Prior art keywords
silicide film
melting point
high melting
point metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15656691A
Other languages
Japanese (ja)
Inventor
Kazuhisa Koyama
和久 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15656691A priority Critical patent/JPH056995A/en
Publication of JPH056995A publication Critical patent/JPH056995A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an electrode, which is stable and low in layer resistance value, by making high melting point metal and Si and Ge exist mixedly in a high melting point metal silicide film, that is, by mixing Ge uniformly in the high melting point metal die silicide film which is rich in Si. CONSTITUTION:For a high melting point metal silicide film, SiGe mixed crystal is epitaxially grown on an Si substrate by solid source MBE. Next, a natural oxide film is removed by HF treatment, and then Ti is deposited on SiGe mixed crystal by sputter deposition method. This structure of substrate is heat-treated, and this heat-treated substrate is checked to be in the structure shown in the figure by section SEM observation and sputter Auger electron spectral method. That is, a TiSiGe mixed layer 1 is made on an Si layer 2. Hereby, the high melting point metal silicide film becomes stable, and the layer resistance value can be made lower than that of a conventional high melting point metal silicide film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランジスタ等に使わ
れる高融点金属シリサイド膜とその形成方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory metal silicide film used in transistors and the like and a method for forming the same.

【0002】[0002]

【従来の技術とその課題】従来、電極として用いられて
いた多結晶Si膜は最も安定で特性に優れた電極材であ
ったが、LSIの微細化高集積化が進展するに従い、細
く長い多結晶Siを伝播する電気信号のスピードが、高
い層抵抗のために急激に低下してLSIの高速動作を妨
げるため、比抵抗が1桁低い高融点シリサイド膜が有効
である。図2に高融点シリサイド膜の一例を示す。2は
Si層、3はTiシリサイド層である。しかし、高融点
金属シリサイド膜を電極として用いた場合、Siリッチ
(ダイシリサイド)にすると膜としての安定性がよくな
るが、層抵抗値が高くなってしまう。また、メタルリッ
チ(メタルリッチシリサイド)にしてしまうと層抵抗値
は低くなるが、膜としての安定性がよくない(Siリッ
チになろうとする)という問題がある。
2. Description of the Related Art Conventionally, a polycrystalline Si film used as an electrode has been the most stable and excellent electrode material, but as the miniaturization and high integration of LSI progresses, it becomes thin and long. Since the speed of the electric signal propagating through the crystalline Si is drastically reduced due to the high layer resistance and the high speed operation of the LSI is hindered, a high melting point silicide film having a specific resistance lower by one digit is effective. FIG. 2 shows an example of a high melting point silicide film. 2 is a Si layer and 3 is a Ti silicide layer. However, when a refractory metal silicide film is used as an electrode, if it is made Si-rich (disilicide), the stability of the film is improved, but the layer resistance value is increased. Further, if the layer is metal-rich (metal-rich silicide), the layer resistance value becomes low, but there is a problem that the stability as a film is not good (it tends to become Si-rich).

【0003】本発明の目的は、このような問題を解決し
た高融点金属シリサイド膜とその形成方法を提供するこ
とにある。
An object of the present invention is to provide a refractory metal silicide film and a method for forming the same, which solves the above problems.

【0004】[0004]

【課題を解決するための手段】本発明の高融点金属シリ
サイド膜は、高融点金属とSiとGeが混在することを
特徴とする。
The refractory metal silicide film of the present invention is characterized in that refractory metal, Si and Ge are mixed.

【0005】また本発明の高融点金属シリサイド膜の形
成方法は、SiGe混晶層上に高融点金属を堆積し、熱
処理することを特徴とする。
The method of forming a refractory metal silicide film of the present invention is characterized in that a refractory metal is deposited on the SiGe mixed crystal layer and heat-treated.

【0006】また本発明の高融点金属シリサイド膜の形
成方法は、高融点金属とSiとGeを同時に堆積させる
ことを特徴とする。
The method of forming a refractory metal silicide film of the present invention is characterized in that the refractory metal, Si and Ge are simultaneously deposited.

【0007】[0007]

【作用】Siリッチにした高融点金属ダイシリサイド膜
中に均一にGeを混ぜることにより、安定でしかも層抵
抗値が低い電極が形成できる。
By uniformly mixing Ge into the Si-rich refractory metal disilicide film, a stable electrode having a low layer resistance value can be formed.

【0008】[0008]

【実施例】図1に本発明の高融点金属シリサイド膜構造
を示す。この高融点金属シリサイド膜は、次のようにし
て形成される。まず、図3に示すように、Si(10
0)基板上にSiGe混晶(Ge=30%)を固体ソー
スMBEによりエピタキシャル成長する。2はSi層、
5はSiGe層である。
EXAMPLE FIG. 1 shows a refractory metal silicide film structure of the present invention. This refractory metal silicide film is formed as follows. First, as shown in FIG. 3, Si (10
0) SiGe mixed crystal (Ge = 30%) is epitaxially grown on the substrate by solid source MBE. 2 is a Si layer,
5 is a SiGe layer.

【0009】次に、HF処理により自然酸化膜を除去し
た後、SiGe混晶上にスパッタ蒸着法によりTiを堆
積する。この基板を断面SEM観察し、図3のような構
造になっていることを確認した。4はTi層である。
Next, after removing the natural oxide film by HF treatment, Ti is deposited on the SiGe mixed crystal by the sputter deposition method. This substrate was observed by cross-section SEM, and it was confirmed that it had a structure as shown in FIG. 4 is a Ti layer.

【0010】この構造の基板を、600℃で20分間の
熱処理する。この熱処理した基板を断面SEM観察、ス
パッタオージェ電子分光法により、図1のような構造に
なっていることを確認した。1はTiSiGe混在層で
ある。
The substrate having this structure is heat-treated at 600 ° C. for 20 minutes. It was confirmed by a cross-sectional SEM observation and a sputter Auger electron spectroscopy of this heat-treated substrate that the structure was as shown in FIG. 1 is a TiSiGe mixed layer.

【0011】また、図4に熱処理前と熱処理後のスパッ
タオージェ電子分光のGeのPEAK−TO−PEAK
の結果を示す。この結果から、熱処理前はSiGe層5
のみにGeが存在しているのに対し、熱処理後は層1中
に均一に存在していることがわかる。このような方法で
形成した膜の層抵抗値を測定してみると8〜10μΩc
mであり、Tiダイシリサイドの層抵抗値13〜16μ
Ωcmに比べ低くなっていた。
FIG. 4 shows the PEAK-TO-PEAK of Ge by sputter Auger electron spectroscopy before and after the heat treatment.
The result is shown. From this result, before the heat treatment, the SiGe layer 5 was formed.
It can be seen that Ge is present only in the layer 1, whereas it is uniformly present in the layer 1 after the heat treatment. When the layer resistance value of the film formed by such a method is measured, it is 8 to 10 μΩc.
m, and the layer resistance value of Ti disilicide is 13 to 16 μm.
It was lower than Ωcm.

【0012】以上のように形成される高融点金属シリサ
イド膜を用いて、図5に示す様な構造をもったPN接合
のダイオードを作成した。8はN型Si層、9はP型S
i層、1はTiSiGe混在層、7はSiO2 層、6は
Al層である。このダイオードは正常にオーミックがと
れており、正常なダイオード特性を示した。
Using the refractory metal silicide film formed as described above, a PN junction diode having a structure as shown in FIG. 5 was prepared. 8 is an N-type Si layer, 9 is a P-type S layer
i layer, 1 is a TiSiGe mixed layer, 7 is a SiO 2 layer, and 6 is an Al layer. This diode was normally ohmic and showed normal diode characteristics.

【0013】次に、本発明の他の形成方法について説明
する。この方法では、Si(100)基板上にTi,S
i,Geを同時に蒸着する共蒸着法によって形成した。
この基板の断面SEM観察、スパッタオージェ分光法に
より、図1のような構造になっていることを確認した。
Ti,Si,Ge原子の存在比はそれぞれ35%,60
%,5%であった。また、図6にGeのスパッタオージ
ェ電子分光のPEAK−TO−PEAKの結果を示す。
この結果から、Geが膜中に均一に存在していることが
わかる。この時の層抵抗値を測定してみると、Tiダイ
シリサイドの層抵抗値13〜16μΩcmに比べ低くな
っていた。
Next, another forming method of the present invention will be described. In this method, Ti, S is deposited on a Si (100) substrate.
It was formed by a co-evaporation method in which i and Ge are simultaneously vapor-deposited.
It was confirmed by a cross-sectional SEM observation and sputter Auger spectroscopy of this substrate that the structure was as shown in FIG.
The abundance ratios of Ti, Si, and Ge atoms are 35% and 60, respectively.
% And 5%. Moreover, the result of PEAK-TO-PEAK of sputter Auger electron spectroscopy of Ge is shown in FIG.
From this result, it can be seen that Ge is uniformly present in the film. When the layer resistance value at this time was measured, it was lower than the layer resistance value of Ti disilicide of 13 to 16 μΩcm.

【0014】実際に共蒸着法によって形成する高融点金
属シリサイド膜を用いて、図5に示す様な構造をもった
PN接合のダイオードを作成した。このダイオードは正
常にオーミックがとれており、正常なダイオード特性を
示した。
A PN junction diode having a structure as shown in FIG. 5 was prepared by using a refractory metal silicide film actually formed by the co-evaporation method. This diode was normally ohmic and showed normal diode characteristics.

【0015】また、Ti以外に高融点金属であるW,M
oについても行ったが、Tiと同じく層抵抗値の低い膜
を得ることができた。
In addition to Ti, W and M which are refractory metals
As for Ti, a film having a low layer resistance value like Ti was obtained.

【0016】[0016]

【発明の効果】本発明の高融点金属シリサイド膜は安定
した膜で、従来の安定な高融点金属ダイシリサイド膜よ
り層抵抗値を低くすることが可能である。従ってLSI
の配線、コンタクト電極、SiGeHBTのベース電極
等に用いれば著しい効果がある。
The refractory metal silicide film of the present invention is a stable film and can have a lower layer resistance value than the conventional stable refractory metal disilicide film. Therefore, LSI
If it is used for the wiring, the contact electrode, the base electrode of SiGe HBT, and the like, a remarkable effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構造断面図である。FIG. 1 is a structural cross-sectional view of an embodiment of the present invention.

【図2】従来の高融点金属シリサイド膜の構造断面図で
ある。
FIG. 2 is a structural cross-sectional view of a conventional refractory metal silicide film.

【図3】熱処理前の構造断面図である。FIG. 3 is a structural cross-sectional view before heat treatment.

【図4】熱処理で形成されたシリサイド膜のオージェ電
子分光GeピークのPEAK−TO−PEAKの結果を
示す図である。
FIG. 4 is a diagram showing the result of PEAK-TO-PEAK of Auger electron spectroscopy Ge peak of a silicide film formed by heat treatment.

【図5】PN接合ダイオードの断面図である。FIG. 5 is a sectional view of a PN junction diode.

【図6】同時蒸着で形成されたシリサイド膜のオージェ
電子分光GeピークのPEAK−TO−PEAKの結果
を示す図である。
FIG. 6 is a diagram showing a result of PEAK-TO-PEAK of Auger electron spectroscopy Ge peak of a silicide film formed by simultaneous vapor deposition.

【符号の説明】[Explanation of symbols]

1 Ti,Si,Ge混在層(Siリッチ) 2 Si層 3 Tiシリサイド層 4 Ti層 5 SiGe層 6 Al層 7 SiO2 層 8 N型Si層 9 P型Si層1 Ti, Si, Ge mixed layer (Si rich) 2 Si layer 3 Ti silicide layer 4 Ti layer 5 SiGe layer 6 Al layer 7 SiO 2 layer 8 N-type Si layer 9 P-type Si layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高融点金属とSiとGeが混在することを
特徴とする高融点金属シリサイド膜。
1. A refractory metal silicide film in which refractory metal, Si and Ge are mixed.
【請求項2】SiGe混晶層上に高融点金属を堆積し、
熱処理することを特徴とする高融点金属シリサイド膜の
形成方法。
2. A refractory metal is deposited on the SiGe mixed crystal layer,
A method of forming a refractory metal silicide film, characterized by heat treatment.
【請求項3】高融点金属とSiとGeを同時に堆積させ
ることを特徴とする高融点金属シリサイド膜の形成方
法。
3. A method for forming a refractory metal silicide film, which comprises depositing a refractory metal, Si and Ge at the same time.
JP15656691A 1991-06-27 1991-06-27 High melting point metal silicide film and its formation method Pending JPH056995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15656691A JPH056995A (en) 1991-06-27 1991-06-27 High melting point metal silicide film and its formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15656691A JPH056995A (en) 1991-06-27 1991-06-27 High melting point metal silicide film and its formation method

Publications (1)

Publication Number Publication Date
JPH056995A true JPH056995A (en) 1993-01-14

Family

ID=15630587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15656691A Pending JPH056995A (en) 1991-06-27 1991-06-27 High melting point metal silicide film and its formation method

Country Status (1)

Country Link
JP (1) JPH056995A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644166A (en) * 1995-07-17 1997-07-01 Micron Technology, Inc. Sacrificial CVD germanium layer for formation of high aspect ratio submicron VLSI contacts
US6093968A (en) * 1996-06-26 2000-07-25 Micron Technology, Inc. Germanium alloy contact to a silicon substrate
US6239029B1 (en) 1995-07-17 2001-05-29 Micron Technology, Inc. Sacrificial germanium layer for formation of a contact
US6541336B1 (en) 2002-05-15 2003-04-01 International Business Machines Corporation Method of fabricating a bipolar transistor having a realigned emitter
US6903462B2 (en) 1998-02-25 2005-06-07 Micron Technology, Inc. Chemical vapor deposition of titanium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143461A (en) * 1985-12-18 1987-06-26 Hitachi Ltd N-type gaas ohmic electrodes
JPS6396965A (en) * 1986-10-14 1988-04-27 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS6489446A (en) * 1987-09-30 1989-04-03 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143461A (en) * 1985-12-18 1987-06-26 Hitachi Ltd N-type gaas ohmic electrodes
JPS6396965A (en) * 1986-10-14 1988-04-27 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS6489446A (en) * 1987-09-30 1989-04-03 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644166A (en) * 1995-07-17 1997-07-01 Micron Technology, Inc. Sacrificial CVD germanium layer for formation of high aspect ratio submicron VLSI contacts
US6239029B1 (en) 1995-07-17 2001-05-29 Micron Technology, Inc. Sacrificial germanium layer for formation of a contact
US6309967B1 (en) 1995-07-17 2001-10-30 Micron Technology, Inc. Method of forming a contact
US6597042B1 (en) 1995-07-17 2003-07-22 Micron Technology, Inc. Contact with germanium layer
US6093968A (en) * 1996-06-26 2000-07-25 Micron Technology, Inc. Germanium alloy contact to a silicon substrate
US6229213B1 (en) 1996-06-26 2001-05-08 Micron Technology, Inc. Germanium alloy electrical interconnect structure
US6331482B1 (en) 1996-06-26 2001-12-18 Micron Technology, Inc. Method of VLSI contact, trench, and via filling using a germanium underlayer with metallization
US6903462B2 (en) 1998-02-25 2005-06-07 Micron Technology, Inc. Chemical vapor deposition of titanium
US6940172B2 (en) 1998-02-25 2005-09-06 Micron Technology, Inc. Chemical vapor deposition of titanium
US6541336B1 (en) 2002-05-15 2003-04-01 International Business Machines Corporation Method of fabricating a bipolar transistor having a realigned emitter

Similar Documents

Publication Publication Date Title
US4398341A (en) Method of fabricating a highly conductive structure
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
JPH088224B2 (en) Method of forming contact and internal connection line of integrated circuit
EP1754253A2 (en) A method of base formation in a bicmos process
JPH056995A (en) High melting point metal silicide film and its formation method
JPS63318779A (en) Manufacture of semiconductor device
JP2001518716A (en) Heterojunction bipolar transistor with wide bandgap low interdiffusion base-emitter junction
KR940004450B1 (en) Method of making semiconductor device
JP2955814B2 (en) Silicide plug formation method
JP2797200B2 (en) Polycrystalline silicon electrode and method of manufacturing the same
JP2702293B2 (en) Method for manufacturing semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPH01124253A (en) Semiconductor device
JPH0684926A (en) Bipolar transistor and its production
JPS63198373A (en) Semiconductor device and its manufacture
JPH08306913A (en) Manufacture of semiconductor device
JPH0242719A (en) Manufacture of semiconductor device
JP2650972B2 (en) Method for manufacturing semiconductor device
JPH0653234A (en) Manufacture of semiconductor device
JPS6038026B2 (en) Manufacturing method of semiconductor device
JPH10223561A (en) Manufacture of semiconductor device
JPS6032349B2 (en) Manufacturing method of semiconductor device
JP3131986B2 (en) Bipolar transistor
JPS58166739A (en) Semiconductor device and its manufacture
JPH05160023A (en) Manufacture of semiconductor device