JPH0653234A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0653234A
JPH0653234A JP20145692A JP20145692A JPH0653234A JP H0653234 A JPH0653234 A JP H0653234A JP 20145692 A JP20145692 A JP 20145692A JP 20145692 A JP20145692 A JP 20145692A JP H0653234 A JPH0653234 A JP H0653234A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon layer
type
semiconductor device
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20145692A
Other languages
Japanese (ja)
Inventor
Katsuyuki Takahashi
克幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20145692A priority Critical patent/JPH0653234A/en
Publication of JPH0653234A publication Critical patent/JPH0653234A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent that a spontaneous oxide film and a water mark are formed on the surface of a polycrystalline silicon layer and to solve a problem that the interface between a high-melting-point metal silicide and the polycrystalline silicon layer is stripped by a method wherein a thin undoped polycrystalline silicon layer is formed on an n-type polycrystalline silicon layer. CONSTITUTION:After a gate insulating film 2 has been formed on a semiconductor substrate 1, a polycrystalline silicon layer 3 is formed, an n-type doping operation is performed and an n-type polycrystalline silicon layer 3 is formed. Then, after an undoped polycrystalline silicon layer 4 in 1000Angstrom or lower has been formed, a high-melting-point metal 5 is formed. For example, a polycrystalline silicon layer 3 is formed, by an LPCVD method, on a P-type semiconductor substrate 1 via a gate oxide film 2, and an n<+> type polycrystalline silicon layer 3 is formed by a POCl3 thermal diffusion method. Then, an undoped polycrystalline silicon layer 4 having a thickness of 200Angstrom is formed by an LPCVD method, a spontaneous oxide film is removed by dilute HF and, after that, a WSi2 layer 5 is formed by a CVD method by using WF6 and SiH4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高融点金属のシリサイ
ドと多結晶シリコンの界面の剥離を防止した半導体装置
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device in which separation of the interface between a refractory metal silicide and polycrystalline silicon is prevented.

【0002】[0002]

【従来の技術】高融点金属例えばWSi2 と多結晶シリ
コンとからなるポリサイドゲートを有する半導体装置に
おいて、ポリサイド形成後の高温熱処理により、WSi
2 と多結晶シリコンとの界面が剥離するという問題があ
った。剥離する原因は多結晶シリコンがn+ 型となって
おり、多結晶シリコン表面に自然酸化膜及びウォーター
マークが形成されるからである。
2. Description of the Related Art In a semiconductor device having a polycide gate made of a refractory metal such as WSi 2 and polycrystalline silicon, WSi is formed by high temperature heat treatment after polycide formation.
There was a problem that the interface between 2 and polycrystalline silicon peeled off. The reason for peeling is that the polycrystalline silicon is of n + type, and a natural oxide film and a watermark are formed on the surface of the polycrystalline silicon.

【0003】[0003]

【発明が解決しようとする課題】本発明は、多結晶シリ
コンの表面に自然酸化膜及びウォーターマークが形成さ
れるのを防止し、高融点金属のシリサイドと多結晶シリ
コンの界面が剥離するという問題点を解決した半導体装
置の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention prevents the formation of a natural oxide film and a watermark on the surface of polycrystalline silicon, and the interface between the refractory metal silicide and the polycrystalline silicon is separated. An object of the present invention is to provide a semiconductor device manufacturing method that solves the above problems.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題点を
解決するために次の技術手段から構成されている。 (a)半導体基板にゲート絶縁膜を形成する工程 (b)多結晶シリコン層を形成しn型ドープすることに
よりn型多結晶シリコン層を形成する工程 (c)1000Å以下の非ドープ多結晶シリコン層を形
成する工程 (d)高融点金属を形成する工程。
The present invention comprises the following technical means for solving the above problems. (A) Step of forming a gate insulating film on a semiconductor substrate (b) Step of forming an n-type polycrystalline silicon layer by forming a polycrystalline silicon layer and n-type doping (c) Undoped polycrystalline silicon of 1000 Å or less Step of forming layer (d) Step of forming refractory metal.

【0005】上記方法において、前記n型多結晶シリコ
ン層のn型をPOCl3 を使用した熱拡散法又はn型不
純物イオン−インプランテーション法により形成すると
好ましく、また、前記n型多結晶シリコン層をシランフ
ォスフィン法により形成すると好適である。なお、前記
高融点金属は、CVD法によって形成するのが最も好ま
しい。
In the above method, the n-type of the n-type polycrystalline silicon layer is preferably formed by a thermal diffusion method using POCl 3 or an n-type impurity ion-implantation method. Further, the n-type polycrystalline silicon layer is formed. It is preferable to form it by the silanephosphine method. The refractory metal is most preferably formed by the CVD method.

【0006】[0006]

【作用】ポリサイドゲートの高融点金属と多結晶シリコ
ンとの境界に剥離やウォーターマークが生ずるのは、多
結晶シリコンがN+ 型であることによって、自然酸化膜
やウォーターマークを生じやすい状態にあるからと考え
られる。本発明はn型多結晶シリコン層上に、表面がN
+ 型でない薄い非ドープ多結晶シリコン層を形成するこ
とによって、多結晶シリコンの表面に自然酸化膜が生成
するのを妨げ高融点金属のシリサイドと多結晶シリコン
との界面の層間剥離を防止するものである。
The peeling or watermark is caused at the boundary between the refractory metal of the polycide gate and the polycrystalline silicon because the polycrystalline silicon is of the N + type, which easily causes a natural oxide film or a watermark. It seems that there is. The present invention has an N-type polycrystalline silicon layer with a surface of N
By forming a thin undoped polycrystalline silicon layer that is not + type, it prevents the formation of a natural oxide film on the surface of polycrystalline silicon and prevents delamination at the interface between the refractory metal silicide and polycrystalline silicon. Is.

【0007】本発明の対象となる高融点金属としては、
W,Ti,Mo,Ta,Nbをあげることができる。こ
れらの金属はそれぞれWSi2 ,TiSi2 ,MoSi
2 ,TaSi2 ,NbSi2 と多結晶シリコンとのシリ
サイドを形成する。本発明における非ドープ多結晶シリ
コン層は1000Å以下とし、200〜数百Åが好適で
ある。成膜可能な下限は100Åである。
The refractory metal to which the present invention is applied includes
W, Ti, Mo, Ta and Nb can be mentioned. These metals are WSi 2 , TiSi 2 , and MoSi, respectively.
A silicide of 2 , TaSi 2 , NbSi 2 and polycrystalline silicon is formed. The undoped polycrystalline silicon layer in the present invention has a thickness of 1000 Å or less, preferably 200 to several hundred Å. The lower limit of film formation is 100Å.

【0008】n型多結晶シリコン層をシランフォスフィ
ン法により形成する場合、CVDガスを当初シラン、フ
ォスフィンとし、その後シランのみに変更するようにす
ると、n型多結晶シリコン層の形成と非ドープ多結晶シ
リコン層の形成を同一装置による連続工程で実施するこ
とができる。
When the n-type polycrystalline silicon layer is formed by the silane phosphine method, if the CVD gas is initially silane and phosphine and then only silane is used, the formation of the n-type polycrystalline silicon layer and undoped polycrystalline silicon layer are performed. The formation of the crystalline silicon layer can be performed in a continuous process using the same device.

【0009】[0009]

【実施例】本発明の製造工程の一実施例を図1(a)〜
(c)によって説明する。 (a)P型半導体基板1上に、ゲート酸化膜2を形成
し、その上に、LPCVD法により厚さ1500Åの多
結晶シリコン層3を形成し、POCl3 の熱拡散法によ
り、前記多結晶シリコン層3をn型化し、生成されたP
SG膜をエッチングしn+ 型多結晶シリコン層3を形成
する。 (b)次に、LPCVD法により厚さ200Åの非ドー
プ多結晶シリコン層4を形成し、希釈HFにより、自然
酸化膜を除去し、次いで、CVD法によりWF6とSi
4 を使用し、厚さ2000ÅのWSi2 層5を形成す
る。 (c)その後、所定のパターンニング及びWSi2 /多
結晶シリコンエッチングを行い、Asのイオン注入によ
るN+ 型ソース電極6、N+ 型ドレイン電極7を形成す
る。
EXAMPLE One embodiment of the manufacturing process of the present invention is shown in FIG.
This will be described with reference to (c). (A) A gate oxide film 2 is formed on a P-type semiconductor substrate 1, a polycrystalline silicon layer 3 having a thickness of 1500 Å is formed on the gate oxide film 2 by the LPCVD method, and the polycrystalline film is formed by a thermal diffusion method of POCl 3. The P layer formed by converting the silicon layer 3 into an n-type
The SG film is etched to form the n + type polycrystalline silicon layer 3. (B) Next, a 200 Å-thick undoped polycrystalline silicon layer 4 is formed by the LPCVD method, the native oxide film is removed by diluted HF, and then WF 6 and Si are formed by the CVD method.
H 4 is used to form a WSi 2 layer 5 having a thickness of 2000Å. (C) After that, predetermined patterning and WSi 2 / polycrystalline silicon etching are performed to form the N + type source electrode 6 and the N + type drain electrode 7 by ion implantation of As.

【0010】以上のようにして製造した本発明の半導体
装置は非ドープ多結晶シリコン層がWSi2 と多結晶シ
リコンとの界面に介在しており自然酸化膜やウォーター
マークが形成されないから、界面が剥離する問題はなく
なった。試験例によれば従来ポリサイドゲートの高温熱
処理により剥離を起すものが約30%認められたが、実
施例では3%に減少した。
In the semiconductor device of the present invention manufactured as described above, the undoped polycrystalline silicon layer is present at the interface between WSi 2 and polycrystalline silicon, and no natural oxide film or watermark is formed. The problem of peeling is gone. According to the test example, about 30% of the conventional polycide gates caused delamination due to the high temperature heat treatment, but in the example, it was reduced to 3%.

【0011】[0011]

【発明の効果】本発明によれば高融点金属の下に非ドー
プの多結晶シリコン層を設けたので、酸化膜成長及びウ
ォーターマーク成長を抑制することができ、高融点金属
と多結晶シリコンとの界面で剥離しないので、高品質な
半導体装置を提供することができる。
According to the present invention, since the undoped polycrystalline silicon layer is provided under the refractory metal, the oxide film growth and the watermark growth can be suppressed, and the refractory metal and the polycrystalline silicon can be suppressed. Since it does not peel off at the interface of, it is possible to provide a high quality semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施工程を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a process of carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 ゲート酸化
膜 3 n+ 型多結晶シリコン層 4 非ドープ多
結晶シリコン層 5 WSi2 層 6 N+ 型ソー
ス電極 7 N+ 型ドレイン電極
1 substrate 2 gate oxide film 3 n + type polycrystalline silicon layer 4 undoped polycrystalline silicon layer 5 WSi 2 layer 6 N + type source electrode 7 N + type drain electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板にゲート絶縁膜を形成する工
程と、多結晶シリコン層を形成し、n型ドーピングして
n型多結晶シリコン層を形成する工程と、1000Å以
下の非ドープ多結晶シリコン層を形成する工程と、高融
点金属を形成する工程とからなることを特徴とする半導
体装置の製造方法。
1. A step of forming a gate insulating film on a semiconductor substrate, a step of forming a polycrystalline silicon layer, and an n-type doping to form an n-type polycrystalline silicon layer, and an undoped polycrystalline silicon of 1000 Å or less. A method of manufacturing a semiconductor device, comprising: a step of forming a layer; and a step of forming a refractory metal.
【請求項2】 前記n型多結晶シリコン層のn型をPO
Cl3 を使用した熱拡散又はn型不純物イオン・インプ
ランテーションにより形成することを特徴とする請求項
1記載の半導体装置の製造方法。
2. The n-type of the n-type polycrystalline silicon layer is PO
2. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is formed by thermal diffusion using Cl 3 or n-type impurity ion implantation.
【請求項3】 前記n型多結晶シリコン層をシランフォ
スフィン法により形成することを特徴とする請求項1記
載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the n-type polycrystalline silicon layer is formed by a silanephosphine method.
【請求項4】 前記高融点金属は、CVD法により形成
することを特徴とする請求項1記載の半導体装置の製造
方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the refractory metal is formed by a CVD method.
JP20145692A 1992-07-28 1992-07-28 Manufacture of semiconductor device Withdrawn JPH0653234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20145692A JPH0653234A (en) 1992-07-28 1992-07-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20145692A JPH0653234A (en) 1992-07-28 1992-07-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0653234A true JPH0653234A (en) 1994-02-25

Family

ID=16441398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20145692A Withdrawn JPH0653234A (en) 1992-07-28 1992-07-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0653234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939758A (en) * 1996-11-25 1999-08-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with gate electrodes having conductive films
JP2003209193A (en) * 2001-12-29 2003-07-25 Hynix Semiconductor Inc Method for forming gate electrode of semiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939758A (en) * 1996-11-25 1999-08-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with gate electrodes having conductive films
KR100259948B1 (en) * 1996-11-25 2000-06-15 다니구찌 이찌로오, 기타오카 다카시 Semiconductor device and manufacturing method thereof
JP2003209193A (en) * 2001-12-29 2003-07-25 Hynix Semiconductor Inc Method for forming gate electrode of semiconductor element

Similar Documents

Publication Publication Date Title
JPH0613403A (en) Self-aligned cobalt silicide on mos integrated circuit
US5552340A (en) Nitridation of titanium, for use with tungsten filled contact holes
JPH1055981A (en) Method for supplying si by preventing abnormal oxidization of wsix and forming homogeneous six when producing integrated circuit device
JPS6050920A (en) Manufacture of semiconductor device
US6291890B1 (en) Semiconductor device having a silicide structure
US6124202A (en) Methods of fabricating silicide layers and silicide contact structures in microelectronic devices
JPH0653234A (en) Manufacture of semiconductor device
JP3420104B2 (en) Manufacturing method of resistance element
JP3597275B2 (en) Method for manufacturing semiconductor device
JP2632159B2 (en) Method for manufacturing semiconductor device
JPH10303418A (en) Manufacture of semiconductor device
JPS6068656A (en) Manufacture of semiconductor device
JP2815170B2 (en) Method for manufacturing semiconductor device
JP2911172B2 (en) Method for manufacturing semiconductor device
JPH0536628A (en) Semiconductor device and its manufacture
JPS5947466B2 (en) Manufacturing method of semiconductor device
JPH0714847A (en) Semiconductor device and manufacture thereof
JPH08340106A (en) Manufacture of semiconductor device
JPS63265448A (en) Manufacture of mos type semiconductor device
JPH053172A (en) Semiconductor device and manufacture thereof
JPH1027902A (en) Formation of gate electrode
JPH0536629A (en) Manufacture of semiconductor device
JPS5867046A (en) Manufacture of semiconductor device
JPH05160066A (en) Semiconductor device and manufacture thereof
JPH02125615A (en) Forming method for semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005