JPH08340106A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH08340106A
JPH08340106A JP14472095A JP14472095A JPH08340106A JP H08340106 A JPH08340106 A JP H08340106A JP 14472095 A JP14472095 A JP 14472095A JP 14472095 A JP14472095 A JP 14472095A JP H08340106 A JPH08340106 A JP H08340106A
Authority
JP
Japan
Prior art keywords
film
substrate
silicon
etching
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14472095A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakaoka
弘明 中岡
Shin Hashimoto
伸 橋本
Bunji Mizuno
文二 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14472095A priority Critical patent/JPH08340106A/en
Publication of JPH08340106A publication Critical patent/JPH08340106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To prevent generation of rugged surface of a silicide film and disconnection of wirings by a method wherein an orientation (111) is exposed to silicon surface by etching, a high melting point metal film is formed, and an alloy of a semiconductor and a high melting point metal is formed by heat treatment. CONSTITUTION: A field oxide film 2 is formed on a substrate 1, and an orientation (111) face 8 is exposed to the surface of the substrate 1 using anisotropic etching. Subsequently, a high melting point titanium film 9 is formed on the whole surface of the substrate 1. Then, silicification is generated on the part which comes in contact with the silicon of the titanate film 9 by conducting heat treatment on the substrate 1 in a nitride atmosphere, and a titanium silicide film 10 is selectively formed on the part which comes in contact with silicon. The titanium film 9, which is left by making no reaction, is removed by oxidizing treatment. Consequently, as the substrate 1 is processed on the preferential orientation (111) face in advance in conformity with the progress of silicification on the orientation (111) face of a silicide fine wire, a low resistance value can be obtained to the region where wire width is narrow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁ゲート電界効果型
トランジスタ(以下、MOSトランジスタと称する)を
集積して形成される半導体装置の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device formed by integrating insulated gate field effect transistors (hereinafter referred to as MOS transistors).

【0002】[0002]

【従来の技術】近年、集積回路の集積密度は年々増加し
ている。集積回路の集積度を増加させるには、回路を構
成する素子の寸法を小さくすることが必要である。MO
Sトランジスタの場合、寸法が小さくなると短チャネル
効果の問題が発生し、さらに、これを抑さえるために拡
散層を浅くする方法がある。しかしながら、このような
方法を用いると拡散層の抵抗が大きくなって回路動作が
遅くなるという問題が生じることになる。
2. Description of the Related Art In recent years, the integration density of integrated circuits has been increasing year by year. In order to increase the degree of integration of integrated circuits, it is necessary to reduce the size of the elements that form the circuits. MO
In the case of the S transistor, the problem of the short channel effect occurs when the size is reduced, and there is a method of making the diffusion layer shallow in order to suppress the problem. However, if such a method is used, the resistance of the diffusion layer becomes large and the circuit operation becomes slow.

【0003】上記の様な問題を解決する方法としてソー
ス、ドレインその他拡散層表面及び多結晶シリコン膜か
らなるゲート電極表面に選択的に金属シリサイド膜を形
成して抵抗を下げる技術が知られている。これは、必要
なシリコン表面を露出させた状態で基板全面に例えばチ
タンなどの高融点金属膜を被着し、熱処理を行ってシリ
コン表面に接した金属とシリコンを反応させてシリサイ
ド膜を形成し、絶縁膜上ではシリコンと未反応の金属膜
を除去するものである。この場合、MOSトランジスタ
のゲート電極とソース、ドレイン領域とに形成される金
属シリサイド膜が自動的に分離して形成されるように、
金属膜を被着する前に予めゲート電極側壁部に選択的に
絶縁膜を形成しておくことが行われる。これにより、ソ
ース、ドレインその他の拡散層およびゲート電極上に自
己整合的に金属シリサイド膜を形成して、それらの領域
の拡散層の抵抗を小さいものとすることができる。
As a method for solving the above problems, there is known a technique of selectively forming a metal silicide film on the surface of a source, a drain and other diffusion layers and the surface of a gate electrode formed of a polycrystalline silicon film to lower the resistance. . This is because a refractory metal film such as titanium is deposited on the entire surface of the substrate with the necessary silicon surface exposed, and heat treatment is performed to react the metal in contact with the silicon surface with silicon to form a silicide film. The metal film that has not reacted with silicon on the insulating film is removed. In this case, the metal silicide film formed on the gate electrode and the source / drain region of the MOS transistor is automatically formed separately.
Before depositing the metal film, an insulating film is selectively formed on the side wall of the gate electrode in advance. As a result, the metal silicide film can be formed in a self-aligned manner on the source, drain and other diffusion layers and the gate electrode, and the resistance of the diffusion layer in those regions can be reduced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、LSIの微細化が進み金属膜や拡散層が
薄くなったり、金属シリサイド領域が細くなった線状部
では、不均一なシリサイド化反応の影響を受け、金属シ
リサイド表面の凹凸の発生、ひいては抵抗増大と、ま
た、細線では断線に至るという問題が存在していた。こ
れは、LSIに用いられる基板がトランジスタ性能を向
上させるために111面以外の、例えば、100面が用
いられることと、シリサイド化反応が面方位111面に
優先的に進むことに起因している。そこで、本発明は上
記問題点に鑑み、シリサイド膜厚が薄くても表面凹凸が
無く、細線においても断線が発生しない均一性の良いシ
リサイド膜を提供することを目的とする。
However, in the above-mentioned structure, the miniaturization of the LSI progresses, the metal film and the diffusion layer become thin, and the metal silicide region becomes thin. There has been a problem that the reaction is affected and unevenness is generated on the surface of the metal silicide, resulting in an increase in resistance, and a break in the thin wire. This is because the substrate used for the LSI has a plane other than the 111 plane, for example, 100 plane, in order to improve the transistor performance, and the silicidation reaction preferentially proceeds to the plane orientation 111 plane. . Therefore, in view of the above problems, it is an object of the present invention to provide a silicide film which has no surface unevenness even when the silicide film thickness is thin and which does not cause disconnection even in a thin wire and has good uniformity.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の半導体装置の製造方法は、基板全面を異方
性エッチングによりシリコン表面に面方位111面を出
す工程と、基板全面に高融点金属膜を形成する工程と、
熱処理を行って前記ソース、ドレイン領域及びゲート電
極上の前記金属膜をシリコンと反応させてソース、ドレ
イン領域及びゲート電極上に金属シリサイド膜を形成す
る工程と、この工程で反応せずに残された前記金属膜を
除去する工程を含む構成を備えたものである。
In order to solve the above problems, a method of manufacturing a semiconductor device according to the present invention comprises a step of forming a plane orientation 111 on a silicon surface by anisotropic etching of the entire surface of the substrate, and a method of forming the entire surface of the substrate. A step of forming a refractory metal film,
A step of performing a heat treatment to react the metal film on the source / drain region and the gate electrode with silicon to form a metal silicide film on the source / drain region and the gate electrode; In addition, it has a configuration including a step of removing the metal film.

【0006】[0006]

【作用】本発明は上記した構成によってシリサイド化を
起こすシリコン表面を一般にシリサイド反応が安定して
進む方位である面方位111とすることによりシリサイ
ド化反応が均一でスムーズに進行することとなる。
According to the present invention, the silicidation reaction proceeds uniformly and smoothly by setting the silicon surface which causes silicidation to the plane orientation 111 which is the orientation in which the silicidation reaction generally proceeds stably.

【0007】[0007]

【実施例】【Example】

(実施例1)以下に本発明第1の実施例における半導体
装置の製造方法について、図面を参照しながら説明す
る。
(Embodiment 1) A method for manufacturing a semiconductor device according to a first embodiment of the present invention will be described below with reference to the drawings.

【0008】図1(a)〜(d)は本発明第1の実施例
におけるシリサイドの製造方法を示したものである。ま
ず図1(a)に示すように、p型シリコン基板1にフィ
ールド酸化膜2を形成し、次に図1(b)に示すように
異方性ウエットエッチングを用いて基板表面に111面
8を露出させる。この後、図1(c)に示すように基板
全面に高融点金属、例えばチタンをスパッタリング法を
用いてチタン膜9を約50nm堆積する。そしてこの基板
を例えば600℃の窒素雰囲気中で熱処理して、チタン
膜9のうちシリコンと接する部分5でシリサイド化反応
を起こさせる。これにより、図1(d)に示すようにシ
リコンと接する部分に選択的にチタンシリサイド膜10
を形成する。本実施例の場合、これらのシリサイド膜は
約80nmとした。上記のシリサイド化反応の工程で反応
せずに残ったチタン膜9は酸処理により除去する。
FIGS. 1A to 1D show a method of manufacturing a silicide in the first embodiment of the present invention. First, as shown in FIG. 1A, a field oxide film 2 is formed on a p-type silicon substrate 1, and then, as shown in FIG. Expose. Thereafter, as shown in FIG. 1C, a titanium film 9 is deposited to a thickness of about 50 nm on the entire surface of the substrate by using a refractory metal such as titanium by a sputtering method. Then, this substrate is heat-treated, for example, in a nitrogen atmosphere at 600 ° C. to cause a silicidation reaction in the portion 5 of the titanium film 9 in contact with silicon. As a result, as shown in FIG. 1D, the titanium silicide film 10 is selectively formed in the portion in contact with silicon.
To form. In the case of this embodiment, these silicide films have a thickness of about 80 nm. The titanium film 9 left unreacted in the silicidation reaction step is removed by acid treatment.

【0009】以上の実施例により得られたシリサイド細
線は、111方位面に優先的にシリサイド化が進むのに
合わせて予め基板を111面に加工しているため、従来
よりも線幅の狭い領域まで低い抵抗値が得られることと
なる。なお本発明は上記実施例に限られるものでは無
く、例えばシリサイド形成のために金属膜としてチタン
の他に、コバルト、タングステン、モリブデン、ニッケ
ル、プラチナ等を用いても同様の効果を得ることができ
る。
In the thin silicide wire obtained by the above embodiment, since the substrate is processed in advance to the 111 surface in accordance with the preferential silicidation in the 111 azimuth plane, the line width is narrower than in the conventional case. A low resistance value can be obtained. The present invention is not limited to the above-described embodiment, and similar effects can be obtained by using, for example, titanium, cobalt, tungsten, molybdenum, nickel, platinum or the like as the metal film for forming silicide. .

【0010】(実施例2)以下に本発明の第2の実施例
における半導体装置の製造方法について、図面を参照し
ながら説明する。
(Second Embodiment) A semiconductor device manufacturing method according to a second embodiment of the present invention will be described below with reference to the drawings.

【0011】図2(a)〜(f)は本発明第2の実施例
におけるMOSトランジスタの製造工程を示したもので
ある。まず図2(a)に示すように、通常の工程に従っ
てp型シリコン基板1にフィールド絶縁膜2を形成し、
続いてゲート酸化膜3を介してリンドープ多結晶シリコ
ン膜によるゲート電極4を形成する。そして上記のゲー
ト電極4をマスクとして例えば砒素をイオン注入してn
+型のソース、ドレイン領域5、6を形成する。この後
図2(b)に示すように、基板全面に絶縁膜として例え
ばCVD法により200nmのシリコン酸化膜7を堆積
し、続いて異方性のドライエッチング法、例えばリアク
ティブインエッチングまたはスパッタエッチング等によ
り酸化膜をその膜厚分エッチングして、図2(c)に示
すようにゲ−ト電極4の側壁部にのみ酸化膜7を残す。
こうしてソ−ス、ドレイン領域5、6及びゲ−ト電極4
の表面が露出した状態が得られる。
FIGS. 2A to 2F show a manufacturing process of a MOS transistor according to the second embodiment of the present invention. First, as shown in FIG. 2A, a field insulating film 2 is formed on a p-type silicon substrate 1 according to a normal process,
Subsequently, a gate electrode 4 made of a phosphorus-doped polycrystalline silicon film is formed via the gate oxide film 3. Then, using the gate electrode 4 as a mask, for example, arsenic is ion-implanted to n.
+ Type source and drain regions 5 and 6 are formed. After that, as shown in FIG. 2B, a 200 nm silicon oxide film 7 is deposited as an insulating film on the entire surface of the substrate by, for example, a CVD method, and then an anisotropic dry etching method, for example, reactive in etching or sputter etching is performed. Etching of the oxide film is performed by the above method to leave the oxide film 7 only on the side wall of the gate electrode 4 as shown in FIG.
Thus, the source, drain regions 5 and 6 and the gate electrode 4 are formed.
The surface of is exposed.

【0012】次に、図2(d)に示すように、例えば異
方性のウエットエッチングを用いてソ−ス、ドレイン領
域5、6の表面に111面8を露出させる。この後、図
2(e)に示すように基板全面に高融点金属、例えばチ
タンをスパッタリング法を用いてチタン膜9を約50nm
堆積する。そしてこの基板を例えば600℃の窒素雰囲
気中で熱処理して、チタン膜9のうちシリコンと接する
部分、つまりソース、ドレイン領域5、6およびゲート
電極4の上部のポリシリコン等でシリサイド化反応を起
こさせる。これにより、図2(f)に示すようにソ−
ス、ドレイン領域5、6及びゲ−ト電極4上のみを選択
的にチタンシリサイド膜10を形成する。本実施例のシ
リサイド膜はこの場合約80nmとした。なお、上記の工
程で反応せずに残ったチタン膜9は酸処理により除去す
る。
Next, as shown in FIG. 2D, the 111 plane 8 is exposed on the surfaces of the source and drain regions 5 and 6 by using, for example, anisotropic wet etching. After that, as shown in FIG. 2E, a titanium film 9 is formed to a thickness of about 50 nm on the entire surface of the substrate by using a refractory metal such as titanium by a sputtering method.
accumulate. Then, this substrate is heat-treated in, for example, a nitrogen atmosphere at 600 ° C. to cause a silicidation reaction in the portions of the titanium film 9 in contact with silicon, that is, the polysilicon on the source / drain regions 5 and 6 and the gate electrode 4. Let As a result, as shown in FIG.
The titanium silicide film 10 is selectively formed only on the drain and drain regions 5 and 6 and the gate electrode 4. In this case, the silicide film of this embodiment has a thickness of about 80 nm. Note that the titanium film 9 that remains without reacting in the above steps is removed by acid treatment.

【0013】以上の実施例により得られたシリサイド細
線は、上記の第1の実施例と同様に、111方位面に優
先的にシリサイド化が進むのに合わせて予め基板を11
1面に加工しているため、従来よりも線幅の狭い領域ま
で低い抵抗値が得られる。なお本発明は上記実施例に限
られるものでは無く、例えばシリサイド形成のために金
属膜としてチタンの他に、コバルト、タングステン、モ
リブデン、ニッケル、プラチナ等を用いても同様の効果
を得ることができる。
As in the first embodiment, the silicide thin wires obtained by the above-described embodiments are prepared by preliminarily removing the substrate 11 in accordance with the preferential silicidation in the 111 azimuth plane.
Since it is processed on one surface, a low resistance value can be obtained even in a region where the line width is narrower than in the conventional case. The present invention is not limited to the above-described embodiment, and similar effects can be obtained by using, for example, titanium, cobalt, tungsten, molybdenum, nickel, platinum or the like as the metal film for forming silicide. .

【0014】[0014]

【発明の効果】以上のように本発明は基板全面を異方性
エッチングにより表面をシリコンの面方位111面とす
る工程とを設けることにより、 シリサイド膜厚が薄く
ても表面凹凸が無く、細線においても断線が発生しない
均一性の良いシリサイド膜を提供するすることができ
る。
As described above, according to the present invention, by providing the step of anisotropically etching the entire surface of the substrate so that the surface has a silicon plane orientation of 111 planes, even if the silicide film thickness is thin, there is no surface irregularity In this case, it is possible to provide a silicide film with good uniformity in which disconnection does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1の実施例における半導体装置の製造
工程断面図
FIG. 1 is a sectional view of a manufacturing process of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明第2の実施例における半導体装置の製造
工程断面図
FIG. 2 is a sectional view of a manufacturing process of a semiconductor device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 p型シリコン基板 2 フィ−ルド絶縁膜 3 ゲ−ト酸化膜 4 ゲ−ト電極 5 ソ−ス領域 6 ドレイン領域 7 サイドウォ−ル 8 シリコン111面 9 チタン膜 10 チタンシリサイド膜 1 p-type silicon substrate 2 field insulating film 3 gate oxide film 4 gate electrode 5 source region 6 drain region 7 side wall 8 silicon 111 face 9 titanium film 10 titanium silicide film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板に素子分離領域を形成する工程
と、前記半導体基板の素子形成領域をエッチングして1
11方位面を露出させる工程と、前記エッチングの後に
前記半導体基板表面に金属膜を形成する工程と、熱処理
により前記金属膜を前記素子領域内の半導体基板と反応
させて半導体と金属の合金を形成する工程とを有する半
導体装置の製造方法。
1. A step of forming an element isolation region in a semiconductor substrate, and etching the element formation region of the semiconductor substrate to 1
11 exposing the azimuth plane, forming a metal film on the surface of the semiconductor substrate after the etching, and reacting the metal film with the semiconductor substrate in the element region by heat treatment to form an alloy of semiconductor and metal And a method of manufacturing a semiconductor device.
【請求項2】半導体基板にゲート絶縁膜を介してゲート
電極を形成する工程と、前記ゲート電極をマスクとして
不純物をドープしてソース、ドレイン領域を形成する工
程と、前記ゲート電極の側壁部に選択的に絶縁膜を形成
する工程と、前記ソース、ドレイン領域内の前記絶縁膜
の形成されていない部分をエッチングして111方位面
を露出させる工程と、前記半導体基板全面に金属膜を形
成する工程と、熱処理により前記ソース、ドレイン領域
及びゲート電極上の前記金属膜を前記半導体基板と反応
させてソース、ドレイン領域及びゲート電極上に金属シ
リサイド膜を形成する工程とを有する半導体装置の製造
方法。
2. A step of forming a gate electrode on a semiconductor substrate via a gate insulating film, a step of doping an impurity with the gate electrode as a mask to form source and drain regions, and a sidewall portion of the gate electrode. A step of selectively forming an insulating film, a step of etching a portion of the source and drain regions where the insulating film is not formed to expose a 111-oriented surface, and a metal film is formed on the entire surface of the semiconductor substrate. A method of manufacturing a semiconductor device, comprising: a step of reacting the metal film on the source, drain region and the gate electrode with the semiconductor substrate by heat treatment to form a metal silicide film on the source, drain region and the gate electrode. .
【請求項3】エッチングに異方性エッチングを用いるこ
とを特徴とする請求項1または2に記載の半導体装置の
製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein anisotropic etching is used for etching.
JP14472095A 1995-06-12 1995-06-12 Manufacture of semiconductor device Pending JPH08340106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14472095A JPH08340106A (en) 1995-06-12 1995-06-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14472095A JPH08340106A (en) 1995-06-12 1995-06-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH08340106A true JPH08340106A (en) 1996-12-24

Family

ID=15368749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14472095A Pending JPH08340106A (en) 1995-06-12 1995-06-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH08340106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010871A (en) * 2006-06-29 2008-01-17 Internatl Business Mach Corp <Ibm> Mosfets comprising source/drain recesses with slanted sidewall surfaces, and methods for fabricating the same
JP2012505547A (en) * 2008-10-10 2012-03-01 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device having faceted silicide contacts and associated manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010871A (en) * 2006-06-29 2008-01-17 Internatl Business Mach Corp <Ibm> Mosfets comprising source/drain recesses with slanted sidewall surfaces, and methods for fabricating the same
JP2012505547A (en) * 2008-10-10 2012-03-01 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device having faceted silicide contacts and associated manufacturing method

Similar Documents

Publication Publication Date Title
JP2857006B2 (en) Self-aligned cobalt silicide on MOS integrated circuits.
JPS58176975A (en) Method of producing integrated mos field effect transistor circuit
JPS58175846A (en) Manufacture of semicondutor device
US6858934B2 (en) Semiconductor device structures including metal silicide interconnect structures that extend at least partially over transistor gate structures and methods for making the same
JP2630292B2 (en) Method for manufacturing semiconductor device
US5059554A (en) Method for forming polycrystalline silicon contacts
US6218276B1 (en) Silicide encapsulation of polysilicon gate and interconnect
JPH09320988A (en) Semiconductor device and its manufacture
JPH08111527A (en) Preparation of semiconductor device with self-conformity silicide region
JPH08213610A (en) Field effect transistor and its manufacturing method
JP3168992B2 (en) Method for manufacturing semiconductor device
US5146309A (en) Method for forming polycrystalline silicon contacts
JP2833468B2 (en) Method for manufacturing semiconductor device
JPH1140679A (en) Semiconductor device and manufacture
JPH08204188A (en) Semiconductor device and its manufacture
JPH08264769A (en) Manufacture of semiconductor device
JPH08340106A (en) Manufacture of semiconductor device
JP2940492B2 (en) Semiconductor device and manufacturing method thereof
JP2819918B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3387518B2 (en) Semiconductor device
JP3444280B2 (en) Method for manufacturing semiconductor device
JPH07273197A (en) Semiconductor device and its fabrication
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JPH09162392A (en) Semiconductor device
JPH06232155A (en) Manufacture of semiconductor device