JPH0569909B2 - - Google Patents
Info
- Publication number
- JPH0569909B2 JPH0569909B2 JP1157572A JP15757289A JPH0569909B2 JP H0569909 B2 JPH0569909 B2 JP H0569909B2 JP 1157572 A JP1157572 A JP 1157572A JP 15757289 A JP15757289 A JP 15757289A JP H0569909 B2 JPH0569909 B2 JP H0569909B2
- Authority
- JP
- Japan
- Prior art keywords
- electrical steel
- less
- steel sheets
- magnetic properties
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 claims description 20
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 39
- 229910052742 iron Inorganic materials 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 229910000831 Steel Inorganic materials 0.000 description 15
- 239000010959 steel Substances 0.000 description 15
- 229910000976 Electrical steel Inorganic materials 0.000 description 13
- 239000002244 precipitate Substances 0.000 description 8
- 238000005097 cold rolling Methods 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 5
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 239000011162 core material Substances 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Description
(産業上の利用分野)
本発明は、Si含有量が1.0〜4.0%のいわゆる中
〜高級無方向性電磁鋼板に関し、特に圧延板面内
における磁気特性の異方性が小さい無方向性電磁
鋼板に関するものである。
(従来の技術)
無方向性電磁鋼板は、主にモーターやトランス
の鉄心材料として用いられるもので、JIS規格
(C−2552改)に従い板厚と鉄損値で種類分けさ
れる。鉄損は、鉄を磁化する時に発生する熱損失
を表し、この値は小さいほど良いことはもちろん
であるが、経済性と機器のサイズなどから目的に
応じたグレードが選ばれる。一般に機器が大きく
なると、鉄損による発熱量は体積に比例して増加
するのに対し、放熱量は表面積にしか比例しない
ので、機器の冷却が難しくなる。このため大型の
機器になるほど鉄損の低い材料が必要とされるの
である。
鉄損は、渦電流損とヒステリシス損の2つの要
因に支配される。渦電流損は、磁化によつて誘起
される渦電流による損失で、板厚と鋼の電気抵抗
に依存する。板厚は薄いほうが良いが、あまり薄
いと鉄心の積層作業に手間が掛かるなどの問題が
でてくるので、JISでは0.65、0.50、0.35mmの3種
が規定されている。鋼の電気抵抗は高いほど良好
で、合金元素としては単位添加量あたりの電気抵
抗増加率が大きくしかも安価であることからSiが
多く用いられる。電磁鋼板が別名珪素鋼板と呼ば
れるのはこのためで、Si含有量が多いほど鉄損の
低い高級電磁鋼板となる。同様の目的で、Alや
Mnなども必要に応じて添加される。
一方、ヒステリシス損は、磁化の過程において
磁壁の移動を妨げる微細な析出物や結晶粒界が少
ないほど小さくなる。従つて、できるだけ高純度
の鋼を用いた上で結晶粒を成長させることがポイ
ントとなる。TiやNb、V等は、微細な炭窒化物
を生成し、しかもそれらの析出物が結晶粒成長を
阻害するため、磁気特性を著しく劣化される。こ
のため電磁鋼板ではこれらの炭窒化物形成元素の
添加は厳重に制限されている。Alも微細なAlN
を生成し、同じような悪影響を与えるので、低級
電磁鋼板では一般に添加しない。中〜高級電磁鋼
板では、電気抵抗を上げるためAlを添加するが、
この場合には通常0.1%以上の多量添加を行い、
析出物を粗大化することにより、ヒステリシス損
への悪影響を避けている。すなわちAlに関して
は全く添加しないか、あるいは逆に多量に含有さ
せるのがよいというのが一般的な常識となつてい
る。
これに対して、ボロン(B)を添加するとAl含有
量が0.1%以下であつても良好な磁気特性が得ら
れるという報告がなされている(例えば、特公昭
59−20731公報)。その理由は明らかではないが、
鋼中の窒素(N)量と一定の関係においてバランスさ
せる必要があるとされている。即ち、B/Nの比
が0.5〜2.5の範囲が適当とされることなどからみ
て、BNの析出と密接な関係があるものと推定さ
れる。この場合、Al含有量が0.1%以上となると
価格の上昇を招くだけでBの添加効果が十分に得
られなくなるとされている。このように、Bは窒
化物形成元素であるにもかかわらず磁気特性への
悪影響が比較的少ない元素と考えられるが、その
作用と効果については必ずしも十分に明らかにさ
れていない。
鉄損の低いいわゆる中〜高級無方向性電磁鋼板
においては、特に磁気特性の板面内における異方
性が小さいことが要求される。即ち、モーターや
トランスの鉄心中では磁力線は板面内の色々な方
向に流れるため、ある方向の磁気特性が悪いとそ
れが機器全体の性能を律することになる。
無方向性電磁鋼板の磁気特性の評価は、通常、
圧延方向(L方向)とそれに直角な方向(T方
向)の平均値を用いて行われるが、中〜高級電磁
鋼板になると平均値だけで機器を設計することは
危険である。鉄損の平均値がそのグレードの管理
範囲に入つていても、L方向とT方向での差が大
きければ、機器の性能は悪い方向の特性に引きず
られることになる。一般には、L方向に比べてT
方向の磁気特性が悪いのが普通である。低級無方
向性電磁鋼板の場合は鉄損のレベルが高いので多
少の異方性は問題にならないが、鉄損の低い中〜
高級無方向性電磁鋼板では僅かの異方性でもその
差が相対的に大きくなり問題となるのである。
無方向性電磁鋼板は本来、異方性が無いことを
前提に使われるものである。これに対して、方向
性電磁鋼板の場合は、二次再結晶を利用して結晶
粒の向きを特定の方向に揃え異方性を最大限につ
けることで、L方向の磁気特性を極限まで改良し
たものである。方向性電磁鋼板を用いる機器では
L方向の特性のみを利用するように設計される。
つまり、方向性電磁鋼板と無方向性電磁鋼板とは
一般に用途が異なる。
無方向性電磁鋼板の鉄損を下げるため、前述の
ごとくSi等の合金元素を添加して渦電流損を小さ
くしたり、鋼の高純度化などでヒステリシス損の
低減をはかる工夫がなされている。しかしなが
ら、中〜高級無方向性電磁鋼板になると、これら
の手段のみで所望の低鉄損を得ることは難しく、
特殊な合金元素の添加や製造条件の工夫で集合組
織(結晶粒の向き)を制御する方法が種々検討さ
れている。無方向性電磁鋼板の場合は、方向性電
磁鋼板のような強い集合組織はできないが、ある
程度磁化容易軸である{100}方位の揃つた集合
組織を形成させることは可能である。しかしなが
ら従来の方法では、磁気特性の平均値を向上させ
ることはできるが、板面内の異方性が大きくなる
という致命的な欠点を含む場合が多い。即ち従来
の集合組織制御では、L方向の特性が改善される
ことにより全体の特性が向上するのであつて、T
方向の特性はほとんど変わらなかつたり、むしろ
僅かに劣化することが多い。
このように、低鉄損の中〜高級無方向性電磁鋼
板では、板面内の異方性も小さくすることが要望
されているにもかかわらず、それを実現するため
の有効な手段を持つていないのが現状である。
(発明が解決しようとする課題)
本発明は上記の状況に鑑み、板面内の異方性が
小さくしかも低鉄損の中〜高級無方向性電磁鋼板
を提供することを目的とするものである。
(課題を解決するための手段)
本発明者は、電磁鋼板を構成する各種の合金元
素の作用について詳細な検討を行つた。その結
果、Si、Alをはじめとする各成分の含有量を適
正な範囲におさめた上、ある含有量の範囲でBを
添加することにより前記の目的が達成されること
を見出した。
本発明の要旨は、次の無方向性電磁鋼板にあ
る。
重量%で、
C:0.005%以下、
Si:1.0%を超え4.0%未満、
Mn:0.1%を超え1.5%未満、
P:0.1%以下、
S:0.002%以下、
Al:0.10%を超え1.0%未満、
N:0.004%以下、
B:0.0003%を超え0.0015%未満、
を含み、残部はFeおよび不可避的不純物からな
ることを特徴とする面内異方性の小さい無方向性
電磁鋼板。
従来、BはBN析出を通じて効果を現すと考え
られており、N含有量との関係が重視されてい
る。即ち、化学当量的にNをある程度固定するに
足りる量(望ましくは完全に固定するに足りる
量)のBを添加することが必要とされる。従つ
て、この場合Bは基本的にはAlと同様にN固定
の働きをするのであつて、ただ析出物のBNが
AlNに比べて磁気特性に対する悪影響が少ない
ので、電磁鋼板に用いられるに過ぎないのであ
る。AlとBを複合添加した場合の析出物の詳細
については必ずしも十分明らかにされていない
が、BNを核にしてAlNが析出することが考えら
れ、結果的に比較的Al含有量の少ない鋼でも微
細なAlNの析出が抑えられ磁気特性が改善され
ると理解される。
これに対して本発明者らは、SiやAl含有量の
多い中〜高級電磁鋼板を対象に、異方性に及ぼす
B添加の効果に着目して検討した。その結果、
Al含有量が0.10%を超える高Al鋼に少量のBを
添加すると、磁気特性の異方性が著しく減少する
ことを見出したのである。この場合、NはAlに
よりほぼ完全に固定されており、固溶Nは実質上
零に近いので、Bの効果は固溶したBによるもの
と考えられる。詳細な機構は未だ不明であるが、
おそらく固溶Bが結晶粒界等に偏析することで、
冷間圧延およびその後の再結晶焼鈍の過程で、異
方性の小さい集合組織の形成に寄与するものと推
定される。
(作用)
以下、本発明の電磁鋼板における合金元素の作
用効果を含有量の限定理由とともに説明する。
C:
Cは炭化物を生成して、あらゆる磁気特性を
劣化させる元素であり、できるだけ低くするこ
とが望ましい。特に磁気時効を防止するため、
0.005%以下とする必要があり、さらには0.003
%以下とすることが望ましい。
Si:
Siは中〜高級無方向性電磁鋼板として必要な
鉄損を得るため1.0%を超える含有量とする。
Siが1.0%以下では渦電流損が大きく鉄損が目
標どおりに低くならない。一方、Siが4.0%以
上含まれると冷間圧延性が著しく劣化する。
Mn:
MnはSによる熱間脆性を防ぐため0.1%を超
える量含有させる。また、Mnは電気抵抗を増
して渦電流損を小さくするのにも有効である。
しかし、Mn含有量が1.5%以上になると鋼が脆
化し結晶粒の成長性も悪化するので、これ未満
とする。
P:
Pは強度調整と電気抵抗増加の目的で0.1%
まで含有させてもよいが、これを超えると冷間
圧延性が劣化する。
S:
Sは硫化物系の析出物を生じ、磁気特性を劣
化させるので0.002%以下に抑えるのがよい。
Al:
中〜高級無方向性電磁鋼板では、一般に電気
抵抗の増加とAlNの粗大化の目的で0.1%以上
含有させることが多いが、本発明でもこれらの
効果に加えてNを完全に固定し、Bの作用効果
を十分に発揮させるため0.10%を超える量含有
させる。一方、1.0%以上含有させても効果が
飽和し、価格の上昇を招くだけなのでこれ未満
とする。
N:
Nは窒化物を生成して磁気特性を損なうの
で、0.004%以下、望ましくは0.002%以下とす
る。
B:
Bは磁気特性の異方性を低減するため0.0003
%を超える量含有させる。0.0003%以下では固
溶Bの量が不十分で異方性が大きくなる。一
方、0.0015%を超えて含有させても異方性低減
の効果が飽和するだけでなく、析出物の増加で
むしろ全体の磁気特性が劣化する傾向を示す。
磁気特性の異方性の減少に対する少量のB添
加の効果はAl含有量の多い場合にのみ有効で
ある。即ち、Alを前記のように十分に添加し、
併せて少量のBを添加することが必要不可欠の
要件である。通常は、Bは0.0008〜0.0012%の
範囲で含有させるのが適当である。
上記のとおりの組成を有する本発明の電磁鋼板
は、下記のような方法で製造することができる。
熱間圧延工程におけるスラブ加熱温度は1100〜
1250℃の範囲とする。MnSの微細析出による磁
気特性劣化を防ぐには低温加熱の方がよいが、熱
延仕上温度を確保するために、余り低温にはでき
ない。1150〜1200℃程度が好適である。熱延仕上
温度は高いほうがよく、800℃以上、望ましくは
850℃以上とする。巻取りも高温の方がよいが、
酸洗性との兼ね合いで550〜650℃が適当な巻取り
温度になる。
熱間圧延の後、熱延の加工組織を再結晶させる
ため、750℃以上、望ましくは850℃以上で熱延板
焼鈍を行う。ただし、この温度があまり高温にな
ると結晶粒が粗大化し、次の冷間圧延の際に割れ
が発生しやすくなるから1050℃以下に抑える方が
よい。通常は900〜1000℃で5分以内の連続焼鈍
を行うが800〜900℃での箱焼鈍でもよい。
冷間圧延の圧下率は60〜90%の範囲である。磁
気特性の点からは1回冷延法で75〜85%程度の圧
下を行うのが適当である。鉄損を小さくすること
を重視する場合は、中間焼鈍を含む2回以上の冷
間圧延を行つてもよい。最終焼鈍は850℃以上で
3分以内の焼鈍を連続焼鈍法で行うのが望まし
い。
(実施例)
第1表に示す組成の鋼を実験室で溶解し、次の
製造工程で0.5mm厚さの薄板とした。即ち、熱間
圧延の加熱温度は1150℃、圧延仕上げ温度は850
℃とし、圧延後600℃まで空冷した後、600℃に保
持した炉中に投入して炉冷した。これは熱延コイ
ルの巻取りに相当する熱処理である。熱延板の板
厚は2.3mmで、酸洗後更に950℃で3分の熱処理を
加えた。これは熱延板の組織を再結晶させるため
に行うものである。Si含有量が多い鋼は、熱延板
で加工組織が残り易く、冷間圧延時に表面形状が
悪化するのでこのような熱延板の熱処理を施すの
である。その後、78%の圧下率で0.5mm厚まで冷
間圧延した。この冷延板に950℃×1分の再結晶
焼鈍を施した後、L方向とT方向より試験片を打
ち抜きで採取し、磁気特性の測定を行つた。
測定の結果を第2表に示す。本発明(イ、ニ、
ト)は、いずれもL方向とT方向との差が小さ
く、しかも平均的な特性も優れていることが明ら
かである。これに対して、高Al含有量の鋼でも
Bを含まない鋼(ロ、ホ、チ)やBを添加しても
Al含有量の少ない鋼(ハ、リ)では異方性が大
きく、本発明の目的が達成されていない。また、
B含有量が多すぎる鋼(ヘ)では、磁気異方性が
若干大きくなり、平均値も悪くなる。
(Industrial Application Field) The present invention relates to so-called medium to high-grade non-oriented electrical steel sheets with a Si content of 1.0 to 4.0%, particularly non-oriented electrical steel sheets with small anisotropy of magnetic properties in the plane of the rolled plate. It is related to. (Prior Art) Non-oriented electrical steel sheets are mainly used as iron core materials for motors and transformers, and are classified into types according to sheet thickness and iron loss value according to the JIS standard (revised C-2552). Iron loss represents the heat loss that occurs when iron is magnetized.Of course, the smaller the value, the better, but the grade is selected depending on the purpose, such as economic efficiency and the size of the equipment. Generally, as equipment becomes larger, the amount of heat generated by iron loss increases in proportion to its volume, while the amount of heat dissipated is only proportional to its surface area, making it difficult to cool the equipment. For this reason, the larger the equipment, the more materials with low iron loss are required. Iron loss is dominated by two factors: eddy current loss and hysteresis loss. Eddy current loss is a loss due to eddy currents induced by magnetization, and depends on the plate thickness and the electrical resistance of the steel. The thinner the plate thickness, the better, but if it is too thin, problems such as the labor-intensive work of laminating the iron core will occur, so JIS specifies three types: 0.65, 0.50, and 0.35 mm. The higher the electrical resistance of steel, the better, and Si is often used as an alloying element because it has a large electrical resistance increase rate per unit addition amount and is inexpensive. This is why electrical steel sheets are also called silicon steel sheets; the higher the Si content, the lower the iron loss, resulting in higher-grade electrical steel sheets. For similar purposes, Al and
Mn and the like are also added as necessary. On the other hand, the hysteresis loss becomes smaller as the number of fine precipitates and grain boundaries that impede movement of domain walls during the magnetization process decreases. Therefore, it is important to grow crystal grains using steel of as high a purity as possible. Ti, Nb, V, and the like produce fine carbonitrides, and these precipitates inhibit crystal grain growth, resulting in significant deterioration of magnetic properties. For this reason, the addition of these carbonitride-forming elements to electrical steel sheets is strictly limited. Al is also fine AlN
It is generally not added to low-grade electrical steel sheets because it produces similar negative effects. In medium to high-grade electrical steel sheets, Al is added to increase electrical resistance.
In this case, a large amount of 0.1% or more is usually added.
By coarsening the precipitates, adverse effects on hysteresis loss are avoided. In other words, it is generally accepted that Al should not be added at all or, conversely, should be added in a large amount. On the other hand, it has been reported that when boron (B) is added, good magnetic properties can be obtained even if the Al content is less than 0.1% (for example,
59-20731). The reason is not clear, but
It is said that it is necessary to balance it in a certain relationship with the amount of nitrogen (N) in steel. That is, considering that a B/N ratio in the range of 0.5 to 2.5 is considered appropriate, it is presumed that there is a close relationship with the precipitation of BN. In this case, it is said that if the Al content is 0.1% or more, it will only increase the price and the effect of adding B will not be sufficiently obtained. As described above, although B is a nitride-forming element, it is considered to be an element that has relatively little adverse effect on magnetic properties, but its actions and effects have not been fully clarified. So-called medium to high-grade non-oriented electrical steel sheets with low iron loss are particularly required to have small in-plane anisotropy of magnetic properties. In other words, in the iron core of a motor or transformer, lines of magnetic force flow in various directions within the board surface, so if the magnetic properties are poor in a certain direction, this will affect the performance of the entire device. Evaluation of the magnetic properties of non-oriented electrical steel sheets is usually done by
This is done using average values in the rolling direction (L direction) and the direction perpendicular to it (T direction), but when it comes to medium to high-grade electrical steel sheets, it is dangerous to design equipment using only average values. Even if the average value of iron loss is within the control range of the grade, if the difference between the L direction and the T direction is large, the performance of the equipment will be affected by the characteristics in the bad direction. In general, compared to the L direction, T
Usually, the magnetic properties in the direction are poor. In the case of low-grade non-oriented electrical steel sheets, the level of iron loss is high, so some anisotropy is not a problem, but for medium to low iron loss
In high-grade non-oriented electrical steel sheets, even a slight anisotropy difference becomes relatively large and becomes a problem. Non-oriented electrical steel sheets are originally used on the premise that they have no anisotropy. On the other hand, in the case of grain-oriented electrical steel sheets, the magnetic properties in the L direction are maximized by aligning the crystal grains in a specific direction and maximizing anisotropy using secondary recrystallization. This is an improved version. Devices using grain-oriented electrical steel sheets are designed to utilize only the characteristics in the L direction.
In other words, grain-oriented electrical steel sheets and non-oriented electrical steel sheets generally have different uses. In order to reduce iron loss in non-oriented electrical steel sheets, as mentioned above, efforts have been made to reduce eddy current loss by adding alloying elements such as Si, and to reduce hysteresis loss by increasing the purity of the steel. . However, when it comes to medium to high-grade non-oriented electrical steel sheets, it is difficult to obtain the desired low iron loss using only these means.
Various methods are being studied to control the texture (orientation of crystal grains) by adding special alloying elements or modifying manufacturing conditions. In the case of a non-oriented electrical steel sheet, it is not possible to form a strong texture like that of a grain-oriented electrical steel sheet, but it is possible to form a texture that is aligned in the {100} direction, which is the axis of easy magnetization, to some extent. However, although conventional methods can improve the average value of magnetic properties, they often have the fatal drawback of increasing in-plane anisotropy. In other words, in conventional texture control, the overall properties are improved by improving the properties in the L direction, and the properties in the T direction are improved.
The directional characteristics often remain almost unchanged or even slightly degraded. In this way, although it is desired to reduce the in-plane anisotropy of medium to high-grade non-oriented electrical steel sheets with low iron loss, we have developed an effective means to achieve this. The current situation is that this is not the case. (Problems to be Solved by the Invention) In view of the above circumstances, the present invention aims to provide a medium to high-grade non-oriented electrical steel sheet with small in-plane anisotropy and low iron loss. be. (Means for Solving the Problems) The present inventor conducted a detailed study on the effects of various alloy elements constituting electrical steel sheets. As a result, it has been found that the above object can be achieved by keeping the content of each component including Si and Al within an appropriate range, and then adding B within a certain content range. The gist of the present invention resides in the following non-oriented electrical steel sheet. In weight%, C: 0.005% or less, Si: more than 1.0% and less than 4.0%, Mn: more than 0.1% and less than 1.5%, P: 0.1% or less, S: 0.002% or less, Al: more than 0.10% and less than 1.0%. N: 0.004% or less, B: more than 0.0003% and less than 0.0015%, and the balance is Fe and inevitable impurities. A non-oriented electrical steel sheet with small in-plane anisotropy. Conventionally, it has been thought that B exerts its effect through BN precipitation, and emphasis has been placed on its relationship with N content. That is, it is necessary to add B in an amount sufficient to chemically equivalently fix N to some extent (preferably, an amount sufficient to completely fix N). Therefore, in this case, B basically functions to fix N in the same way as Al, but the BN in the precipitate is
It has less negative impact on magnetic properties than AlN, so it is only used for electrical steel sheets. Although the details of precipitates when Al and B are added in combination are not fully clarified, it is thought that AlN precipitates with BN as the nucleus, and as a result, even in steels with relatively low Al content. It is understood that the precipitation of fine AlN is suppressed and the magnetic properties are improved. In response, the present inventors focused on and studied the effect of B addition on anisotropy, targeting medium to high-grade electrical steel sheets with high Si and Al contents. the result,
They discovered that when a small amount of B is added to high-Al steel with an Al content exceeding 0.10%, the anisotropy of magnetic properties is significantly reduced. In this case, N is almost completely fixed by Al, and the solid solution N is substantially close to zero, so it is considered that the effect of B is due to the solid solution B. Although the detailed mechanism is still unknown,
Probably due to segregation of solid solution B at grain boundaries, etc.
It is presumed that the process of cold rolling and subsequent recrystallization annealing contributes to the formation of a texture with low anisotropy. (Function) Hereinafter, the function and effect of the alloying elements in the electrical steel sheet of the present invention will be explained together with the reason for limiting the content. C: C is an element that forms carbides and deteriorates all magnetic properties, so it is desirable to reduce it as much as possible. Especially to prevent magnetic aging,
Must be less than 0.005% and even 0.003
% or less. Si: The Si content is set to exceed 1.0% in order to obtain the core loss necessary for a medium to high-grade non-oriented electrical steel sheet.
If Si is less than 1.0%, eddy current loss will be large and iron loss will not be as low as the target. On the other hand, if Si is contained in an amount of 4.0% or more, cold rolling properties are significantly deteriorated. Mn: Mn is contained in an amount exceeding 0.1% to prevent hot embrittlement caused by S. Mn is also effective in increasing electrical resistance and reducing eddy current loss.
However, if the Mn content exceeds 1.5%, the steel will become brittle and the growth of crystal grains will deteriorate, so it should be less than this. P: P is 0.1% for the purpose of adjusting strength and increasing electrical resistance.
However, if the content exceeds this range, cold rollability will deteriorate. S: S produces sulfide-based precipitates and deteriorates magnetic properties, so it is best to suppress it to 0.002% or less. Al: Generally, medium to high-grade non-oriented electrical steel sheets often contain 0.1% or more for the purpose of increasing electrical resistance and coarsening AlN, but in the present invention, in addition to these effects, N is completely fixed. , B is contained in an amount exceeding 0.10% in order to fully exhibit its effects. On the other hand, if the content exceeds 1.0%, the effect will be saturated and the price will only increase, so the content should be less than this. N: Since N forms nitrides and impairs magnetic properties, the content should be 0.004% or less, preferably 0.002% or less. B: B is 0.0003 to reduce the anisotropy of magnetic properties.
% or more. If it is less than 0.0003%, the amount of solid solution B will be insufficient and the anisotropy will increase. On the other hand, if the content exceeds 0.0015%, not only the effect of reducing anisotropy is saturated, but also the overall magnetic properties tend to deteriorate due to an increase in precipitates. The effect of adding a small amount of B on reducing the anisotropy of the magnetic properties is only effective when the Al content is high. That is, by sufficiently adding Al as described above,
It is also essential to add a small amount of B. Usually, it is appropriate to contain B in a range of 0.0008 to 0.0012%. The electrical steel sheet of the present invention having the composition as described above can be manufactured by the following method. The slab heating temperature in the hot rolling process is 1100~
The temperature should be within the range of 1250℃. Low temperature heating is better to prevent deterioration of magnetic properties due to fine precipitation of MnS, but in order to ensure hot rolling finishing temperature, the temperature cannot be lowered too low. A temperature of about 1150 to 1200°C is suitable. The hot rolling finishing temperature should be higher, preferably 800℃ or higher.
The temperature shall be 850℃ or higher. It is better to wind it at a high temperature,
A suitable winding temperature is 550 to 650°C, taking into account pickling properties. After hot rolling, the hot rolled sheet is annealed at 750°C or higher, preferably 850°C or higher, in order to recrystallize the worked structure of the hot rolled sheet. However, if this temperature becomes too high, the crystal grains will become coarse and cracks will easily occur during the next cold rolling, so it is better to keep it below 1050°C. Usually, continuous annealing is carried out at 900 to 1000°C for 5 minutes or less, but box annealing at 800 to 900°C may also be used. The reduction ratio of cold rolling is in the range of 60-90%. From the viewpoint of magnetic properties, it is appropriate to perform a one-time cold rolling process with a reduction of about 75 to 85%. When placing importance on reducing iron loss, cold rolling including intermediate annealing may be performed two or more times. It is desirable that the final annealing be performed at 850°C or higher for 3 minutes or less using a continuous annealing method. (Example) Steel having the composition shown in Table 1 was melted in a laboratory and made into a thin plate with a thickness of 0.5 mm in the next manufacturing process. In other words, the heating temperature for hot rolling is 1150℃, and the finishing temperature for rolling is 850℃.
After rolling, the material was air cooled to 600°C, and then placed in a furnace maintained at 600°C for furnace cooling. This is a heat treatment equivalent to winding a hot-rolled coil. The thickness of the hot-rolled plate was 2.3 mm, and after pickling, it was further heat-treated at 950°C for 3 minutes. This is done to recrystallize the structure of the hot rolled sheet. Steel with a high Si content tends to leave processed structures in hot-rolled sheets, and the surface shape deteriorates during cold rolling, which is why hot-rolled sheets are heat-treated in this way. Thereafter, it was cold rolled to a thickness of 0.5 mm at a reduction rate of 78%. After recrystallizing the cold-rolled sheet at 950° C. for 1 minute, specimens were punched out from the L direction and the T direction, and their magnetic properties were measured. The measurement results are shown in Table 2. The present invention (a, d,
It is clear that the difference between the L direction and the T direction is small in both cases, and the average characteristics are also excellent. On the other hand, even steels with high Al content, steels that do not contain B (B, E, and J), and even steels with B added,
Steels with low Al content (C and L) have large anisotropy, and the object of the present invention is not achieved. Also,
In steel (F) with too much B content, the magnetic anisotropy becomes slightly large and the average value becomes poor.
【表】【table】
【表】
(注):*印は本発明で規定する範囲外であることを示
す。
[Table] (Note): * indicates that it is outside the scope specified by the present invention.
【表】
(発明の効果)
本発明の無方向性電磁鋼板は、板面内における
磁気特性の異方性が極めて小さいものであり、し
かも安価に製造できるものである。本発明の電磁
鋼板は、モーターやトランスの鉄心材料などとし
てそれらの性能向上に大きく寄与する。[Table] (Effects of the Invention) The non-oriented electrical steel sheet of the present invention has extremely small anisotropy of magnetic properties within the sheet plane, and can be manufactured at low cost. The electrical steel sheet of the present invention greatly contributes to improving the performance of motors, transformers, etc. as iron core materials.
Claims (1)
え4.0%未満、Mn:0.1%を超え1.5%未満、P:
0.1%以下、S:0.002%以下、Al:0.10%を超え
1.0%未満、N:0.004%以下、B:0.0003%を超
え0.0015%未満を含み、残部はFeおよび不可避的
不純物からなることを特徴とする面内異方性の小
さい無方向性電磁鋼板。1% by weight, C: 0.005% or less, Si: more than 1.0% and less than 4.0%, Mn: more than 0.1% and less than 1.5%, P:
0.1% or less, S: 0.002% or less, Al: more than 0.10%
A non-oriented electrical steel sheet with small in-plane anisotropy, characterized in that it contains less than 1.0%, N: 0.004% or less, B: more than 0.0003% and less than 0.0015%, and the remainder consists of Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15757289A JPH0324250A (en) | 1989-06-19 | 1989-06-19 | Nonoriented silicon steel sheet reduced in in-plane anisotropy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15757289A JPH0324250A (en) | 1989-06-19 | 1989-06-19 | Nonoriented silicon steel sheet reduced in in-plane anisotropy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0324250A JPH0324250A (en) | 1991-02-01 |
JPH0569909B2 true JPH0569909B2 (en) | 1993-10-04 |
Family
ID=15652621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15757289A Granted JPH0324250A (en) | 1989-06-19 | 1989-06-19 | Nonoriented silicon steel sheet reduced in in-plane anisotropy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0324250A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2708682B2 (en) * | 1991-12-27 | 1998-02-04 | 新日本製鐵株式会社 | Non-oriented electrical steel sheet having extremely excellent magnetic properties and method for producing the same |
JPH08256773A (en) * | 1995-03-27 | 1996-10-08 | Bio Material:Kk | Carrier for immobilizing microorganism and conversion of nitrogen compound in liquid using the same |
CN104152800A (en) * | 2014-08-07 | 2014-11-19 | 河北钢铁股份有限公司 | Low-magnetic-anisotropy non-oriented silicon steel plate and preparation technology thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331518A (en) * | 1976-09-06 | 1978-03-24 | Kawasaki Steel Co | Method of making steel sheets with grown *100**lmn*texture |
JPS62180014A (en) * | 1986-02-04 | 1987-08-07 | Nippon Steel Corp | Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture |
-
1989
- 1989-06-19 JP JP15757289A patent/JPH0324250A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331518A (en) * | 1976-09-06 | 1978-03-24 | Kawasaki Steel Co | Method of making steel sheets with grown *100**lmn*texture |
JPS62180014A (en) * | 1986-02-04 | 1987-08-07 | Nippon Steel Corp | Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPH0324250A (en) | 1991-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102107439B1 (en) | Non-oriented electronic steel sheet | |
JP4126479B2 (en) | Method for producing non-oriented electrical steel sheet | |
TWI641702B (en) | Non-oriented electromagnetic steel sheet with excellent recyclability | |
JP4696750B2 (en) | Method for producing non-oriented electrical steel sheet for aging heat treatment | |
JP2019026891A (en) | Nonoriented magnetic steel sheet, and method of producing the same | |
KR100479992B1 (en) | A non-oriented steel sheet with excellent magnetic property and a method for producing it | |
CN115135794B (en) | Non-oriented electrical steel sheet and method for manufacturing same | |
JP2970423B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP5418469B2 (en) | Method for producing non-oriented electrical steel sheet for aging heat treatment | |
JP5614063B2 (en) | High tension non-oriented electrical steel sheet with excellent high-frequency iron loss | |
JP7245325B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JPH0569909B2 (en) | ||
JP4240736B2 (en) | Non-oriented electrical steel sheet with low iron loss and high magnetic flux density and method for producing the same | |
JPH055126A (en) | Production of nonoriented silicon steel sheet | |
KR101110257B1 (en) | Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof | |
JP3357602B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH0443981B2 (en) | ||
US20210071280A1 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
JP3533655B2 (en) | Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy | |
JP4192403B2 (en) | Electrical steel sheet used under DC bias | |
JP3937685B2 (en) | Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same | |
JP3934904B2 (en) | Low iron loss non-oriented electrical steel sheet excellent in workability and manufacturing method thereof | |
JPH03274247A (en) | Nonoriented silicon steel sheet excellent in magnetic property | |
KR100501000B1 (en) | Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method | |
JPH0580527B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |