JPS62180014A - Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture - Google Patents
Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufactureInfo
- Publication number
- JPS62180014A JPS62180014A JP61021105A JP2110586A JPS62180014A JP S62180014 A JPS62180014 A JP S62180014A JP 61021105 A JP61021105 A JP 61021105A JP 2110586 A JP2110586 A JP 2110586A JP S62180014 A JPS62180014 A JP S62180014A
- Authority
- JP
- Japan
- Prior art keywords
- less
- flux density
- magnetic flux
- rolling
- iron loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 57
- 229910052742 iron Inorganic materials 0.000 title claims description 29
- 230000004907 flux Effects 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 26
- 239000010959 steel Substances 0.000 claims abstract description 26
- 238000000137 annealing Methods 0.000 claims abstract description 23
- 229910052802 copper Inorganic materials 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 claims description 15
- 238000005096 rolling process Methods 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 238000005097 cold rolling Methods 0.000 claims description 4
- 229910000976 Electrical steel Inorganic materials 0.000 claims 2
- 239000010949 copper Substances 0.000 abstract description 19
- 229910052718 tin Inorganic materials 0.000 abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract 2
- 239000002253 acid Substances 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 23
- 229910001566 austenite Inorganic materials 0.000 description 6
- 239000011162 core material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 5
- 230000002301 combined effect Effects 0.000 description 4
- 230000005389 magnetism Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(座業上の利用分野)
本発明は電気機器鉄心材料として使用芒れる、鉄損が世
くかつ磁束密度の優れた無方向a電磁鋼板およびその製
造方法に関するものである。[Detailed description of the invention] (Field of sedentary use) The present invention relates to a non-oriented a-magnetic steel sheet with low iron loss and excellent magnetic flux density, which can be used as a core material for electrical equipment, and a method for manufacturing the same. be.
(従来の技術)
近年、電気機器の尚効率化は、世界的な電力・エネルギ
ー節減の動きの中で、強く侠望されている。このため、
モーターおよび中小型変圧器等の鉄心材料に広く使用さ
れている無方向性電磁鋼板においても、高い磁束密度ヲ
保ちながら、かつ鉄損が低いことへの鮫請が益々強まっ
てきている。(Prior Art) In recent years, increasing the efficiency of electrical equipment has been strongly desired amidst the worldwide movement to save electricity and energy. For this reason,
Non-oriented electrical steel sheets, which are widely used as iron core materials for motors, small and medium-sized transformers, etc., are increasingly in demand for their ability to maintain high magnetic flux density and have low iron loss.
従来の無方向性電磁鋼板では、鉄損を低くする手段とし
て一般に、固有抵抗増加による渦電流損低下の観点から
、Si、%るいはAl等の含有Bi’(r高める方法が
用いられてきた。しかし、この方法では、反面、磁束密
度が低下するという問題があった。In conventional non-oriented electrical steel sheets, a method of increasing the content of Bi'(r) such as Si, % or Al has been generally used as a means to lower iron loss, from the viewpoint of reducing eddy current loss due to increased specific resistance. However, this method has the problem that the magnetic flux density decreases.
1だ、単に、SiあるいはAlの含有鷹ヲ高めるのみで
なく、Cの低減、Sの低減、あるいは特開昭58−15
1453号に記載されているよりなりの添加などの成分
的な処置や、焼鈍温度を高くすること、仕上焼鈍前の冷
延圧下率を商くするなどの製造プロセス的な工夫がなさ
れてきたが、いずれも鉄損の低下は図られても、磁束密
度についてはそれ程の効果がなく、鉄損が低くかつ磁束
密度の優れた無方向a11磁鋼板を製造する装請に応え
ることはできなかった。1. Not only does it increase the content of Si or Al, but it also reduces C, S, or JP-A-58-15.
1453, as well as the manufacturing process, such as increasing the annealing temperature and increasing the cold rolling reduction before final annealing. Although both methods attempted to reduce iron loss, they did not have much effect on magnetic flux density, and could not meet the demand for producing non-oriented A11 magnetic steel sheets with low iron loss and excellent magnetic flux density. .
(発明が解決しようとする問題点)
上記に鑑み本発明は、鉄損が低くかつ磁束密度が高い無
方向性電磁鋼板およびその製造方法を提供するものであ
る。(Problems to be Solved by the Invention) In view of the above, the present invention provides a non-oriented electrical steel sheet with low core loss and high magnetic flux density, and a method for manufacturing the same.
(問題点を解決するだめの手段)
本発明者らは、微訛添加元累の積極的活用により、集合
組織を磁気的性質に望ましい[100]および(110
)集合組織に発達させ、かつ磁気的性質に好ましくない
(111)果合組織を抑制することにより、低鉄損かつ
高磁束密度の無方向性電磁鋼板が得られないかとの観点
から鋭意研究全型ねた。(Means for Solving the Problem) The present inventors have determined that the texture is desirable for magnetic properties [100] and (110) by actively utilizing a slightly accented material.
), and by suppressing the (111) texture, which is unfavorable for magnetic properties, we are conducting extensive research with the aim of obtaining non-oriented electrical steel sheets with low iron loss and high magnetic flux density. I molded it.
その結果、鋼にSnとCut同時に少故含有させること
により、鉄損を低くし、かつ磁束密度を高くできること
を究明した。As a result, it was found that iron loss can be lowered and magnetic flux density can be increased by simultaneously containing Sn and Cut in a small amount in steel.
不づら明はこの知見に基づいてなされたもので3bυ、
七の安旨は、1鼠%で、C:0.010%り下、Si:
0.1%以上、2.0%以下、Mn : 0.75 %
以下、Cu:0.1%以上、1.0%以下、S:0.0
05係以下を含み、(a)酸可溶性Al: 0.1%を
超え0.3係以下、あるいは(b)酸可溶性Al:0.
1%以下、N:0.007%以下、B:0.005係以
下でかつNとの重駄比B/Nで0.5〜1.5を含有し
、残部Feおよび不可避不純物元素より成る鉄損が低く
かつ磁束密度の優れた無方向性電磁鋼板にある。他の要
旨は前記成分金含有する鋼を、熱間圧延後、750℃以
上850℃以下の温度で捲取シ自己焼鈍するか、あるい
は熱間圧延後、750℃以上850℃以下の温度で熱延
板焼鈍し、次いで一回または中間焼鈍をはさんだ二回以
上の冷間圧延をし、連続焼鈍するところにある。さらに
他の鮫旨は、冷延板の前記連続焼鈍の後に、圧下率2〜
12%でスキンパス圧延をするところにある。Fuzuraaki was made based on this knowledge, 3bυ,
Seven's safety is 1%, C: 0.010% lower, Si:
0.1% or more, 2.0% or less, Mn: 0.75%
Below, Cu: 0.1% or more, 1.0% or less, S: 0.0
(a) acid-soluble Al: more than 0.1% and 0.3% or less, or (b) acid-soluble Al: 0.05% or less;
Contains 1% or less, N: 0.007% or less, B: 0.005 or less, and has a B/N ratio of 0.5 to 1.5, with the balance consisting of Fe and inevitable impurity elements. Non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density. Another gist is that after hot rolling, the steel containing gold is rolled and self-annealed at a temperature of 750°C or higher and 850°C or lower, or after hot rolling, it is heated at a temperature of 750°C or higher and 850°C or lower. The sheet is rolled and annealed, then cold rolled once or twice or more with intermediate annealing in between, and then continuously annealed. Still another feature is that after the continuous annealing of the cold-rolled sheet, the reduction rate is 2 to 2.
This is where skin pass rolling is performed at 12%.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
まず、本発明の鋼成分の限定理由について述べる。First, the reasons for limiting the steel components of the present invention will be described.
Cは鉄損金高める有害な成分で、磁気時効の原SIは周
知のように鉄損を低下させる作用のある成分であり、こ
の作用を奏するためには、0.1%以上含有させる心安
がおる。一方、その含有社が増えると前述のように磁束
密度が低下し、また圧延作業性が劣化し、1fcコスト
高ともなるので、′2.0係以下とする。C is a harmful component that increases iron loss, and as is well known, the original SI of magnetic aging is a component that has the effect of reducing iron loss, and in order to achieve this effect, it is safe to include it at 0.1% or more. . On the other hand, as the number of companies containing it increases, the magnetic flux density decreases as described above, rolling workability deteriorates, and the cost per fc increases, so the coefficient is set to be below 2.0.
AAは脱酸のために必快な成分でめるが、脱酸以外の目
的に使用する場合は、Siと同様に固■抵抗を高めて鉄
損を下げる効果がある。このためには、0.1%を超え
て含有させる必快がめシ、0.1%Lj下ではAlNの
生成により磁性が劣化する。また、0.3%を超えると
81同様に磁束密度が低下する。AA is an essential component for deoxidizing, but when used for purposes other than deoxidizing, it has the effect of increasing solid resistance and lowering iron loss, similar to Si. For this purpose, it is necessary to contain more than 0.1% of Lj, and under 0.1% Lj, the magnetism deteriorates due to the formation of AlN. Moreover, when it exceeds 0.3%, the magnetic flux density decreases similarly to 81.
ktf(脱酸のみの目的で使用する場合には、0,1%
以下とするが、この場合にはAlHの生成により磁性が
劣化するため、81に添加しBNi生成せしめAjHの
生成を抑制する心安がある。このためには、B/Nの比
が0.5〜1.5の範囲が最も有効である。ktf (0.1% when used only for deoxidizing purposes)
In this case, since the magnetism deteriorates due to the production of AlH, it is safe to add it to 81 to cause the production of BNi and suppress the production of AjH. For this purpose, a B/N ratio of 0.5 to 1.5 is most effective.
尚、Bの絶対的な含符遁は鋼片の割れの発生を防止する
ためにo、oos%以下とする。また、Nの絶対的な含
有にも、磁性に有害なAlNの生成全防止するために0
.007%以下とする。Incidentally, the absolute value of B is set to be less than o, oos% in order to prevent the occurrence of cracks in the steel billet. In addition, the absolute content of N is zero in order to completely prevent the formation of AlN, which is harmful to magnetism.
.. 007% or less.
Muは硫化物などの非金属介在物を生成し易いために、
従来は無方向性電磁鋼板の磁気特性向上に利用されてい
なかったが、高純度鋼製造技術の発展によってその利用
が可能になった。本発明者らの発見によれば、Mnは磁
気的性質に望ましい[100]および(110)集合粗
織を発達させ、か′)磁気特性には好1しくない[11
1:l乗置組織を抑制する作用を有する。Mnの含有ぼ
けこの作用をもたらすよう特開昭58−17828号に
て提案した様に、0.75%以上が必蟹である。また、
Mnはフェライト−オーステナイト変態温度を低下させ
るので。Since Mu tends to generate nonmetallic inclusions such as sulfides,
Until now, it has not been used to improve the magnetic properties of non-oriented electrical steel sheets, but the development of high-purity steel manufacturing technology has made it possible to use it. According to the findings of the present inventors, Mn develops [100] and (110) agglomerated textures that are desirable for magnetic properties, and [11] that are unfavorable for magnetic properties.
1:l Has the effect of suppressing the engrafted tissue. As proposed in Japanese Patent Application Laid-open No. 17828/1983, the content of Mn must be 0.75% or more to bring about this effect. Also,
Because Mn lowers the ferrite-austenite transformation temperature.
Mn含有社が1.5%を超えやと、熱延板焼鈍時にフェ
ライト−オーステナイト変Bが起こり、Mnの集合組織
改善効果が少なくなる。従って、Mnの含M鼠は0゜7
5%以上、1.5%以下とした。If the Mn content exceeds 1.5%, ferrite-austenite modification B occurs during hot-rolled sheet annealing, and the texture improving effect of Mn decreases. Therefore, the M content of Mn is 0°7
The content was set to be 5% or more and 1.5% or less.
Sは、磁性に有害なMnS等の非金属介在物を生成させ
るため、o、oos%以下にする必快がある。Since S generates non-metallic inclusions such as MnS that are harmful to magnetism, it is necessary to reduce the amount to less than o, oos%.
特に1Mn を0.75〜1.5%含有することにより
、フェライト−オーステナイト変態温度が低下するため
、比較的低温で十分な再結晶を行わせる必蟹があるが、
この目的のためにもS含有猷は低くすることが有効であ
る。In particular, by containing 0.75 to 1.5% of 1Mn, the ferrite-austenite transformation temperature is lowered, so it is necessary to perform sufficient recrystallization at a relatively low temperature.
For this purpose as well, it is effective to reduce the S content.
8nはCuとの複合官有により、鉄損を低くし、かつ磁
束密度を高める作用があるが、この作用を奏するために
は0.02%以上含有することが心安である。一方、こ
の含有が増えてもその作用は飽和し、逆に結晶粒成長抑
制等の悪影響金もたらし、またコスト高も招くので0.
20%以下とする。8n has the effect of lowering iron loss and increasing magnetic flux density due to its compound ownership with Cu, but in order to achieve this effect, it is safe to contain it at 0.02% or more. On the other hand, even if the content increases, its effect will be saturated, and on the contrary, it will cause negative effects such as suppression of crystal grain growth and increase costs, so it is 0.
20% or less.
Cuは上記のSnとの複合官有により、鉄損を低くし、
刀・つ磁束密度を高める作用を有するが、この作用を奏
するためには0.1%以上含有することが心安である。Cu lowers iron loss by combining with Sn mentioned above,
It has the effect of increasing the magnetic flux density, but in order to achieve this effect, it is safe to contain it at 0.1% or more.
一方、この含有が増えても、熱間脆性等を招き作業性、
加工性に問題が生じるので1.0%以下とする。On the other hand, even if this content increases, it may cause hot embrittlement, etc., resulting in poor workability.
Since problems arise in processability, the content should be 1.0% or less.
上述の成分以外は鉄および不可避不純物元素である。Components other than those mentioned above are iron and unavoidable impurity elements.
次に不発明の特徴とするSnとCuの複合作用について
説明する。Next, the combined effect of Sn and Cu, which is a feature of the invention, will be explained.
第1図は、第1−&に示した取分の鋼のスラブを熱間圧
延後、830℃の温度で巻取シ、自己焼鈍を行い、次い
で0.47m厚みに冷間圧延した後、850℃の温度で
40秒間、連続仕上焼鈍全施し、その後、エプスタイン
試料に切断し、790℃×1時間の歪取り焼鈍を行い、
磁気特性を測定した結果である。SnおよびCuをいず
れも含有しない鋼■に比べて、Snのみを含有した鋼■
、およびCuのみを含有した鋼■は鉄損の低下が認めら
れる。Figure 1 shows the steel slabs shown in Figure 1-& after being hot-rolled, coiled at a temperature of 830°C, self-annealed, and then cold-rolled to a thickness of 0.47m. Continuous finish annealing was performed at a temperature of 850°C for 40 seconds, and then the Epstein sample was cut and strain relief annealed at 790°C for 1 hour.
These are the results of measuring magnetic properties. Compared to steel ■ containing neither Sn nor Cu, steel ■ containing only Sn
, and steel (2) containing only Cu, a decrease in iron loss is observed.
しかし、SnとCuを複合官有した鋼■は、鋼■および
鋼■よりもさらに−J−の鉄損の低下があり、Snのみ
の効果およびCuのみの効果を単純に加え合わせたより
もはるかに太さな鉄損低下効果が認められる。しかも、
磁束密度も藺められる。すなわち、Cuのみを含有した
鋼■の場曾には、若干磁束密度が低下するのに対し、S
nとCuを複合官有した鋼■では、SnおよびCuf:
い丁れも倉荷しない鋼■およびSnのみを含有する鋼■
よりもさらに磁束密度が高められ、SnとCuの板台効
果が明らかである。However, steel ■ with a composite of Sn and Cu has an even lower core loss of -J- than steel ■ and steel ■, which is much greater than simply adding the effects of Sn alone and Cu alone. The effect of reducing iron loss in thickness is observed. Moreover,
The magnetic flux density can also be seen. In other words, in the case of steel (2) containing only Cu, the magnetic flux density slightly decreases, whereas in the case of steel (2) containing only Cu,
In the case of steel with a composite of n and Cu, Sn and Cuf:
Steel that is not stored at all■ and steel that only contains Sn■
The magnetic flux density is further increased, and the tabletop effect of Sn and Cu is clear.
このように、本発明の特徴は、SnとCuを同時に含有
することにより、その複合効果で、鉄損が低くかつ磁束
密度の爾い無方向性電磁鋼板を製造することにある。As described above, the feature of the present invention is that by containing Sn and Cu at the same time, a non-oriented electrical steel sheet with low iron loss and high magnetic flux density can be manufactured by the combined effect of the two.
(作用) 次に本発明の製造方法について説明する。(effect) Next, the manufacturing method of the present invention will be explained.
前記成分からなる鋼は、転炉あるいは電気炉などで溶製
され、連続鋳造めるいは造塊後分塊圧延によりスラブと
きれる。Steel made of the above components is melted in a converter or electric furnace, and is made into a slab by continuous casting or by ingot forming and then blooming rolling.
次いで熱間圧延されるが、この熱同圧延においては、熱
間圧延後に750℃以上の温度で捲取9、熱延コイルの
保有する熱で自己焼鈍させる。この自己焼鈍に際しては
、熱延コイルに熱の放射を防ぐ保熱カバーを被せると都
合が良い。この場合。The coil is then hot-rolled. In this hot rolling, the coil is wound 9 at a temperature of 750° C. or higher and self-annealed using the heat possessed by the hot-rolled coil. During this self-annealing, it is convenient to cover the hot-rolled coil with a heat-retaining cover that prevents radiation of heat. in this case.
捲取シ温度が750℃未満では、SnとCuの複曾効来
が少なく、鉄損を低くし、かつ磁束密度を高める作用が
少ない。また、Mnを0.75〜1.5%含有している
ことにより、850℃超ではフェライト−オーステナイ
ト変態により、効果が消失しやすい・
また、熱間圧延において、750℃以上の温度で捲取り
て自己焼鈍させるのに代えて、熱間圧延後750℃以上
850℃以下の温度で熱延板焼鈍する。これによっても
、 SnとCu(D”d合効果により、鉄損を低くし、
かつ磁束密度を高くすることができるが、熱延板焼鈍温
度が750℃未満では効果が少い。また、Mnを0.7
5〜1.5%含有していることにより、850℃超では
フェライト−オーステナイト変態が生じ、効果が消失し
やすい。When the winding temperature is less than 750° C., the combined effect of Sn and Cu is small, and the effect of lowering iron loss and increasing magnetic flux density is small. In addition, since it contains 0.75 to 1.5% Mn, the effect tends to disappear due to ferrite-austenite transformation at temperatures above 850°C.In addition, in hot rolling, rolling at temperatures above 750°C Instead of self-annealing, the hot-rolled sheet is annealed at a temperature of 750° C. or more and 850° C. or less after hot rolling. This also reduces iron loss due to the combined effect of Sn and Cu (D"d),
Although the magnetic flux density can be increased, the effect is small if the hot rolled sheet annealing temperature is less than 750°C. Also, Mn is 0.7
By containing 5 to 1.5%, ferrite-austenite transformation occurs at temperatures exceeding 850°C, and the effect tends to disappear.
次いで一回の冷間圧延または中間に中間焼鈍をはさんで
、二回以上の冷間圧延により所定の版厚とされる。Next, the plate is cold rolled once or twice or more with intermediate annealing in between to obtain a predetermined plate thickness.
次いで、フェライト−オーステナイト変態温度以下で、
+Il)結晶および結晶粒成長のための連続仕上焼鈍會
する。Then, below the ferrite-austenite transformation temperature,
+Il) Continuous finish annealing for crystal and grain growth.
以上で、無方向性電磁鋼板が製造されるが、次いでスキ
ンバスケ2〜12%の圧下ホで行い、所定の形状に打抜
き仮に歪取り焼鈍が施されるいわゆるセミグロセスタイ
プの無方向性′ム磁銅版が製造される。With the above steps, a non-oriented electrical steel sheet is produced.Next, it is subjected to a skin basket reduction of 2 to 12%, and then punched into a predetermined shape and subjected to a temporary strain relief annealing. Magnetic copper plates are manufactured.
スキンパス圧延での圧下塞を2〜12%とするのは、2
%未満では歪取シ焼鈍において磁気特性が良くなシ難い
からであシ、また上限を12%とするのは、これをこえ
ると磁気%性が劣化するからである。The reason why the rolling blockage in skin pass rolling is 2 to 12% is 2.
If it is less than 12%, it is difficult to obtain good magnetic properties during strain relief annealing, and the reason why the upper limit is set to 12% is because if it exceeds this, the magnetic properties will deteriorate.
(実施fl ) 次に本発明の実施例を示す。(Implementation fl) Next, examples of the present invention will be shown.
実施例1
第2表に示した成分の鋼を、同表に示す処理条件にて製
造し、エプスタイン試料に切断し、790℃×1時間の
歪取り焼鈍を行い、磁気特性を測定した。その測定結果
も併せて同表に示した。不発明により、著しく鉄損が低
く、かつ磁束密度の高い無方向性電磁鋼板の製造がh]
能であることが明らかである。Example 1 Steel having the components shown in Table 2 was manufactured under the treatment conditions shown in the same table, cut into Epstein samples, subjected to strain relief annealing at 790° C. for 1 hour, and magnetic properties were measured. The measurement results are also shown in the same table. Through non-invention, we have been able to manufacture non-oriented electrical steel sheets with extremely low iron loss and high magnetic flux density.
It is clear that he is capable of this.
以下余臼
実施例2
前記英施91」1で用いた鋼A11.12,13゜14
.15を0.50+m厚に冷間圧延し、850℃×40
秒の連続焼鈍を行い、次いで圧下厖6%でスキン・ンス
圧延を施し、0.47m+a厚とした。その後、エプス
タイン試料に切断し、790℃×1時間の歪取り焼鈍を
行い、磁気特性を測定した。その測定結果を第3表に示
す。本発明により、著しく鉄損が低く、かつ磁束密度の
高い無方向性電磁鋼板の製造が61能であることが明ら
かでめる。The following is a crossmill example 2 Steel A11.12, 13゜14 used in the above-mentioned Eishi 91''1
.. 15 was cold rolled to a thickness of 0.50+m and rolled at 850°C x 40
Continuous annealing was performed for 2 seconds, followed by skin rolling with a reduction of 6% to give a thickness of 0.47 m+a. Thereafter, it was cut into Epstein samples, subjected to strain relief annealing at 790° C. for 1 hour, and the magnetic properties were measured. The measurement results are shown in Table 3. It is clear that according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet with extremely low iron loss and high magnetic flux density.
第 3 表
(発明の効果)
以上のように、本発明によれば、鉄損が低くかつ磁束密
度の高い無方向性電磁鋼板が得られ、電気機器の高効率
化に伴い、その鉄心材料として用いられる無方向性電磁
鋼板に対する認諾に十分応えることができ、その工業的
効果は非常に太きい。Table 3 (Effects of the Invention) As described above, according to the present invention, a non-oriented electrical steel sheet with low core loss and high magnetic flux density can be obtained, and with the increasing efficiency of electrical equipment, it has become popular as a core material for electrical equipment. It can fully meet the requirements for the non-oriented electrical steel sheets used, and its industrial effects are extremely significant.
第1図は、比較材(■〜■〕と本発明材(■)の鉄損W
15150および磁束密度B5oの関係を示す図である
。Figure 1 shows the iron loss W of comparative materials (■ to ■) and the present invention material (■).
15150 and a diagram showing the relationship between magnetic flux density B5o.
Claims (1)
以上、2.0%以下、Mn:0.75%以上、1.5%
以下、Sn:0.02%以上、0.20%以下、Cu:
0.1%以上、1.0%以下、S:0.005%以下を
含み、(a)酸可溶性Al:0.1%を超え0.3%以
下、あるいは(b)酸可溶性Al:0.1%以下、N:
0.007%以下、B:0.005%以下でかつNとの
重量比B/Nで0.5〜1.5を含有し、残部Feおよ
び不可避不純物元素より成る鉄損が低くかつ磁束密度の
優れた無方向性電磁鋼板。 2、重量%で、C:0.010%以下、Si:0.1%
以上、2.0%以下、Mn:0.75%以上、1.5%
以下、Sn:0.02%以上、0.20%以下、Cu:
0.1%以上、1.0%以下、S:0.005%以下を
含み、(a)酸可溶性Al:0.1%を超え0.3%以
下、あるいは(b)酸可溶性Al:0.1%以下、N:
0.007%以下、B:0.005%以下でかつNとの
重量比B/Nで0.5〜1.5を含有し、残部Feおよ
び不可避不純物元素より成る鋼を、熱間圧延後750℃
以上850℃以下の温度で捲取り、自己焼鈍し、次いで
一回または中間焼鈍をはさんだ二回以上の冷間圧延をし
、連続焼鈍することを特徴とする鉄損が低くかつ磁束密
度の優れた無方向性電磁鋼板の製造方法。 3、冷間圧延後の連続焼鈍の後、2〜12%の圧下率で
スキンパス圧延することを特徴とする特許請求の範囲第
2項記載の鉄損が低くかつ磁束密度の優れた無方向性電
磁鋼板の製造方法。 4、重量%で、C:0.010%以下、Si:0.1%
以上、2.0%以下、Mn:0.75%以上、1.5%
以下、Sn:0.02%以上、0.20%以下、Cu:
0.1%以上、1.0%以下、S:0.005%以下を
含み、(a)酸可溶性Al:0.1%を超え0.3%以
下、あるいは(b)酸可溶性Al:0.1%以下、N:
0.007%以下、B:0.005%以下でかつNとの
重量比B/Nで0.5〜1.5を含有し、残部Feおよ
び不可避不純物元素より成る鋼を、熱間圧延後750℃
以上850℃以下の温度で熱延板焼鈍し、次いで一回ま
たは中間焼鈍をはさんだ二回以上の冷間圧延をし、連続
焼鈍することを特徴とする鉄損が低くかつ磁束密度の優
れた無方向性電磁鋼板の製造方法。 5、冷間圧延後の連続焼鈍の後、2〜12%の圧下率で
スキンパス圧延することを特徴とする特許請求の範囲第
4項記載の鉄損が低くかつ磁束密度の優れた無方向性電
磁鋼板の製造方法。[Claims] 1. In weight%, C: 0.010% or less, Si: 0.1%
or more, 2.0% or less, Mn: 0.75% or more, 1.5%
Hereinafter, Sn: 0.02% or more and 0.20% or less, Cu:
0.1% or more and 1.0% or less, S: 0.005% or less, (a) acid-soluble Al: more than 0.1% and 0.3% or less, or (b) acid-soluble Al: 0 .1% or less, N:
0.007% or less, B: 0.005% or less, and the weight ratio B/N with N is 0.5 to 1.5, and the balance is Fe and inevitable impurity elements. Low iron loss and magnetic flux density. Superior non-oriented electrical steel sheet. 2. In weight%, C: 0.010% or less, Si: 0.1%
or more, 2.0% or less, Mn: 0.75% or more, 1.5%
Hereinafter, Sn: 0.02% or more and 0.20% or less, Cu:
0.1% or more and 1.0% or less, S: 0.005% or less, (a) acid-soluble Al: more than 0.1% and 0.3% or less, or (b) acid-soluble Al: 0 .1% or less, N:
After hot rolling, a steel containing 0.007% or less, B: 0.005% or less, and a weight ratio of B/N with N of 0.5 to 1.5, with the balance consisting of Fe and unavoidable impurity elements. 750℃
Low iron loss and excellent magnetic flux density characterized by rolling and self-annealing at a temperature of 850°C or less, followed by cold rolling once or twice or more with intermediate annealing, and continuous annealing. A method for producing a non-oriented electrical steel sheet. 3. Non-directional with low core loss and excellent magnetic flux density as claimed in claim 2, characterized in that after continuous annealing after cold rolling, skin pass rolling is performed at a rolling reduction of 2 to 12%. Manufacturing method of electrical steel sheet. 4. In weight%, C: 0.010% or less, Si: 0.1%
or more, 2.0% or less, Mn: 0.75% or more, 1.5%
Hereinafter, Sn: 0.02% or more and 0.20% or less, Cu:
0.1% or more and 1.0% or less, S: 0.005% or less, (a) acid-soluble Al: more than 0.1% and 0.3% or less, or (b) acid-soluble Al: 0 .1% or less, N:
After hot rolling, a steel containing 0.007% or less, B: 0.005% or less, and a weight ratio of B/N with N of 0.5 to 1.5, with the balance consisting of Fe and unavoidable impurity elements. 750℃
A hot-rolled sheet annealed at a temperature of 850℃ or less, then cold rolled once or twice or more with intermediate annealing, and then continuously annealed. A method for manufacturing non-oriented electrical steel sheets. 5. Non-directional with low iron loss and excellent magnetic flux density as claimed in claim 4, characterized in that after continuous annealing after cold rolling, skin pass rolling is performed at a rolling reduction of 2 to 12%. Manufacturing method of electrical steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61021105A JPS62180014A (en) | 1986-02-04 | 1986-02-04 | Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61021105A JPS62180014A (en) | 1986-02-04 | 1986-02-04 | Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62180014A true JPS62180014A (en) | 1987-08-07 |
JPS6323262B2 JPS6323262B2 (en) | 1988-05-16 |
Family
ID=12045593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61021105A Granted JPS62180014A (en) | 1986-02-04 | 1986-02-04 | Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62180014A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01219126A (en) * | 1988-02-26 | 1989-09-01 | Nkk Corp | Production of non-oriented electrical steel sheet having excellent surface characteristic |
JPH01219124A (en) * | 1988-02-26 | 1989-09-01 | Nkk Corp | Production of non-oriented electrical steel sheet having excellent pickling property |
JPH02179856A (en) * | 1988-12-28 | 1990-07-12 | Nippon Steel Corp | Nonoriented silicon steel sheet excellent in weldability after magnetic annealing |
JPH02263952A (en) * | 1989-04-03 | 1990-10-26 | Nippon Steel Corp | Nonoriented silicon steel sheet having high magnetic flux density and low core loss and its manufacture |
JPH0324250A (en) * | 1989-06-19 | 1991-02-01 | Sumitomo Metal Ind Ltd | Nonoriented silicon steel sheet reduced in in-plane anisotropy |
JPH046220A (en) * | 1990-04-23 | 1992-01-10 | Nippon Steel Corp | Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss |
JPH0463228A (en) * | 1990-07-02 | 1992-02-28 | Nippon Steel Corp | Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing |
US5186763A (en) * | 1991-04-25 | 1993-02-16 | Nippon Steel Corporation | Process for production of non-oriented electrical steel sheet having excellent magnetic properties |
JPH05140648A (en) * | 1991-07-25 | 1993-06-08 | Nippon Steel Corp | Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss |
JP2004002954A (en) * | 2002-04-05 | 2004-01-08 | Nippon Steel Corp | Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor |
US6743304B2 (en) | 2000-12-11 | 2004-06-01 | Nippon Steel Corporation | Non-oriented electrical steel sheet with ultra-high magnetic flux density and production method thereof |
KR100501000B1 (en) * | 1997-11-25 | 2005-10-12 | 주식회사 포스코 | Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method |
WO2013137092A1 (en) | 2012-03-15 | 2013-09-19 | Jfeスチール株式会社 | Method for producing non-oriented magnetic steel sheet |
US9978488B2 (en) | 2013-02-21 | 2018-05-22 | Jfe Steel Corporation | Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties |
US10096414B2 (en) | 2011-12-28 | 2018-10-09 | Posco | Non-oriented electrical steel sheet and method of manufacturing the same |
-
1986
- 1986-02-04 JP JP61021105A patent/JPS62180014A/en active Granted
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433850B2 (en) * | 1988-02-26 | 1992-06-04 | Nippon Kokan Kk | |
JPH01219124A (en) * | 1988-02-26 | 1989-09-01 | Nkk Corp | Production of non-oriented electrical steel sheet having excellent pickling property |
JPH01219126A (en) * | 1988-02-26 | 1989-09-01 | Nkk Corp | Production of non-oriented electrical steel sheet having excellent surface characteristic |
JPH02179856A (en) * | 1988-12-28 | 1990-07-12 | Nippon Steel Corp | Nonoriented silicon steel sheet excellent in weldability after magnetic annealing |
JPH02263952A (en) * | 1989-04-03 | 1990-10-26 | Nippon Steel Corp | Nonoriented silicon steel sheet having high magnetic flux density and low core loss and its manufacture |
JPH0324250A (en) * | 1989-06-19 | 1991-02-01 | Sumitomo Metal Ind Ltd | Nonoriented silicon steel sheet reduced in in-plane anisotropy |
JPH0569909B2 (en) * | 1989-06-19 | 1993-10-04 | Sumitomo Metal Ind | |
JPH046220A (en) * | 1990-04-23 | 1992-01-10 | Nippon Steel Corp | Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss |
JPH0742500B2 (en) * | 1990-04-23 | 1995-05-10 | 新日本製鐵株式会社 | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss |
JPH0463228A (en) * | 1990-07-02 | 1992-02-28 | Nippon Steel Corp | Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing |
JPH0742501B2 (en) * | 1990-07-02 | 1995-05-10 | 新日本製鐵株式会社 | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing |
US5186763A (en) * | 1991-04-25 | 1993-02-16 | Nippon Steel Corporation | Process for production of non-oriented electrical steel sheet having excellent magnetic properties |
JPH05140648A (en) * | 1991-07-25 | 1993-06-08 | Nippon Steel Corp | Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss |
KR100501000B1 (en) * | 1997-11-25 | 2005-10-12 | 주식회사 포스코 | Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method |
US6743304B2 (en) | 2000-12-11 | 2004-06-01 | Nippon Steel Corporation | Non-oriented electrical steel sheet with ultra-high magnetic flux density and production method thereof |
JP2004002954A (en) * | 2002-04-05 | 2004-01-08 | Nippon Steel Corp | Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor |
US10096414B2 (en) | 2011-12-28 | 2018-10-09 | Posco | Non-oriented electrical steel sheet and method of manufacturing the same |
WO2013137092A1 (en) | 2012-03-15 | 2013-09-19 | Jfeスチール株式会社 | Method for producing non-oriented magnetic steel sheet |
US9920393B2 (en) | 2012-03-15 | 2018-03-20 | Jfe Steel Corporation | Method of producing non-oriented electrical steel sheet |
US9978488B2 (en) | 2013-02-21 | 2018-05-22 | Jfe Steel Corporation | Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties |
Also Published As
Publication number | Publication date |
---|---|
JPS6323262B2 (en) | 1988-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2821511B1 (en) | Manufacturing process of non-oriented silicon steel | |
KR101591222B1 (en) | Method of producing non-oriented electrical steel sheet | |
JP5854182B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP2006501361A5 (en) | ||
JPS6256225B2 (en) | ||
JPS62180014A (en) | Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture | |
JPS5920731B2 (en) | Manufacturing method for electric iron plates with excellent magnetic properties | |
JP5573147B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP2970423B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP2004332042A (en) | Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface | |
JPH05140648A (en) | Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss | |
US5186763A (en) | Process for production of non-oriented electrical steel sheet having excellent magnetic properties | |
JP7445656B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP3483265B2 (en) | Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH0477067B2 (en) | ||
KR950004933B1 (en) | Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic | |
JPS6256922B2 (en) | ||
JPS6333518A (en) | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production | |
JP2760208B2 (en) | Method for producing silicon steel sheet having high magnetic flux density | |
JP2701349B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same | |
JP2870818B2 (en) | Manufacturing method of full process non-oriented electrical steel sheet with excellent magnetic properties | |
JPS5832214B2 (en) | Method for manufacturing unidirectional silicon steel sheet with extremely high magnetic flux density and low iron loss | |
JPH0657332A (en) | Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss | |
JPH08143960A (en) | Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss | |
JPH03294422A (en) | Production of nonoriented silicon steel sheet excellent in magnetic property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |