JPH0477067B2 - - Google Patents

Info

Publication number
JPH0477067B2
JPH0477067B2 JP19378087A JP19378087A JPH0477067B2 JP H0477067 B2 JPH0477067 B2 JP H0477067B2 JP 19378087 A JP19378087 A JP 19378087A JP 19378087 A JP19378087 A JP 19378087A JP H0477067 B2 JPH0477067 B2 JP H0477067B2
Authority
JP
Japan
Prior art keywords
less
flux density
magnetic flux
rolled
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19378087A
Other languages
Japanese (ja)
Other versions
JPS6439348A (en
Inventor
Takeshi Kubota
Kunisuke Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19378087A priority Critical patent/JPS6439348A/en
Publication of JPS6439348A publication Critical patent/JPS6439348A/en
Publication of JPH0477067B2 publication Critical patent/JPH0477067B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本考案は電気機器鉄心材料として使用される、
鉄損が低くかつ磁束密度の優れた無方向性電磁鋼
板およびその製造方法に関するものである。 〔従来の技術〕 近年、電気機器の高効率化は、世界的な電力・
エネルギー節減の動きの中で、強く要望されてい
る。このため、モーターおよび中小型変圧器等の
鉄心材料に広く使用されている無方向性電磁鋼板
においても、高い磁束密度を保ちながら、かつ鉄
損が低いことへの要請が益々強まつてきている。 従来の無方向性電磁鋼板では、鉄損を低くする
手段として一般に、固有抵抗増加による渦電流損
低下の観点から、SiあるいはAl等の含有量を高
める方法が用いられてきた。しかし、この方法で
は、反面、磁束密度が低下するという問題があつ
た。 また、単に、SiあるいはAl等の含有量を高め
るのみでなく、Cの低減、Sの低減、あるいは特
開昭58−151453号に記載されているようなBの添
加などの成分的な処置や、焼鈍温度を高くするこ
と、仕上焼鈍前の冷延圧下率を高くするなどの製
造プロセス的な工夫がなされてきたが、いずれも
鉄損の低下は図られても、磁束密度についてはそ
れ程の効果がなく、鉄損が低くかつ磁束密度の優
れた無方向性電磁鋼板を製造する要請に応えるこ
とはできなかつた。 〔発明が解決しようとする問題点〕 上記に鑑み本発明は、鉄損が低くかつ磁束密度
が高い無方向性電磁鋼板およびその製造方法を提
供するものである。 〔問題点を解決するための手段〕 本発明者らは、微量添加元素の積極的活用にお
り、集合組織を磁気的性質に望ましい〔100〕お
よび〔110〕集合組織に発達させ、かつ磁気的性
質に好ましくない〔111〕集合組織を抑制するこ
とにより、低鉄損かつ高磁束密度の無方向性電磁
鋼板が得られないかとの観点から鋭意研究を重ね
た。 その結果、鋼にSnとCuを同時に少量含有させ
ることにより、鉄損を低くし、かつ磁束密度を高
くできることを究明した。 本発明はこの知見に基づいてなされたものであ
り、その要旨は、重量%で、C:0.010%以下、
Si:0.1%以上、2.0%以下、Mn:0.75%以上、
1.5%以下、Sn:0.02%以上、0.20%以下、Cu:
0.1%以上、1.0%以下、S:0.005%以下、酸可溶
性Al:0.005%以上、0.1%以下、N:0.007%以
下、B:0.005%以下でかつNとの重量比B/N
で0.5〜1.5を含有し、残部Feおよび不可避不純物
元素より成る鉄損が低くかつ磁束密度の優れた無
方向性電磁鋼板にある。他の要旨は前記成分を含
有する鋼を、熱間圧延後、750℃以上850℃以下の
温度で捲取り自己焼鈍するか、あるいは熱間圧延
後、750℃以上850℃以下の温度で熱延板焼鈍し、
次いで一回または中間焼鈍をはさんだ二回以上の
冷間圧延をし、連続焼鈍するところにある。さら
に他の要旨は、冷延板の前記連続焼鈍の後に、圧
下率2〜12%でスキンパス圧延をするところにあ
る。 以下、本発明を詳細に説明する。 まず、本発明の鋼成分の限定理由について延べ
る。 Cは鉄損を高める有害な成分で、磁気時効の原
因となるので、0.010%以下とする。 Siは周知のように鉄損を低下させる作用のある
成分であり、この作用を奏するためには、0.1%
以上含有させる必要がある。一方、その含有量が
増えると前述のように磁束密度が低下し、また圧
延作業性が劣化し、またコスト高ともなるので、
2.0%以下とする。 Alは脱酸のために必要な成分であるが、この
作用のために、0.005%以上含有させる必要があ
る。また、0.1%超では脱酸効果が飽和するので、
0.1%以下とする。ただし、この場合には、AlN
の生成により磁性が劣化するため、Bを添加し
BNを生成せしめAlNの生成を抑制する必要があ
る。このためには、B/Nの比が0.5〜1.5の範囲
が最も有効である。尚、Bの絶対的な含有量は鋼
片の割れの発生を防止するために、0.005%以下
とする。また、Nの絶対的な含有量も、磁性に有
害なAlNの生成を防止するために、0.007%以下
とする。 Mnは硫化物などの非金属介在物を生成し易い
ために、従来は無方向性電磁鋼板の磁気特性向上
に利用されていなかつたが、高純度鋼製造技術の
発展によつてその利用が可能になつた。本発明者
らの発見によれば、Mnは磁気的性質に望ましい
〔100〕および〔110〕集合組織を発達させ、かつ
磁気特性には好ましくない〔111〕集合組織を抑
制する作用を有する。Mnの含有量はこの作用を
もたらすよう特開昭58−117828号にて提案した様
に、0.75%以上が必要である。また、Mnはフエ
ライト−オーステナイト変態温度を低下させるの
で、Mn含有量が1.5%を超えると、熱延板焼鈍時
にフエライト−オーステナイト変態が起こり、
Mnの集合組織改善効果が少なくなる。従つて、
Mnの含有量は0.75%以上、1.5%以下とした。 Sは、磁性に有害なMnS等の非金属介在物を
生成させるため、0.005%以下にする必要がある。
特に、Mnを0.75〜1.5%含有することにより、フ
エライト−オーステナイト変態温度が低下するた
め、比較的低温で十分な再結晶を行わせる必要が
あるが、この目的のためにもS含有量は低くする
ことが有効である。 SnはCcとの複合含有により、鉄損を低くし、
かつ磁束密度を高める作用があるが、この作用を
奏するためには0.02%以上含有することが必要で
ある。一方、この含有が増えてもその作用は飽和
し、逆に結晶粒成長抑制等の悪影響をもたらし、
またコスト高も招くので0.20%以下とする。 Cuは上記のSnとの複合含有により、鉄損を低
くし、かつ磁束密度を高める作用を有するが、こ
の作用を奏するためには0.1%以上含有すること
が必要である。一方、この含有が増えても、熱間
脆性等を招き作業性、加工性に問題が生じるので
1.0%以下とする。 上述の成分以外は鉄および不可避不純物元素で
ある。 次に本発明の特徴とするSnとCuの複合作用に
ついて説明する。 第1図は、第1表に示した成分の鋼のスラブを
熱間圧延後、830℃の温度で巻取り、自己焼鈍を
行い、次いで0.47mm厚みに冷間圧延した後、850
℃の温度で40秒間、連続仕上焼鈍を施し、その
後、エプスタイン試料に切断し、790℃×1時間
の歪取り焼鈍を行い、磁気特性を測定した結果で
ある。SnおよびCuをいずれも含有しない鋼に
比べて、Snのみを含有した鋼、およびCuのみ
を含有した鋼は鉄損の低下が認められる。しか
し、SnとCuを複合含有した鋼は、鋼および
鋼よりもさらに一層の鉄損の低下があり、Sn
のみの効果およびCuのみの効果を単純に加え合
わせたよりもはるかに大きな鉄損低下効果が認め
られる。しかも、磁束密度も高められる。すなわ
ち、Cuのみを含有した鋼の場合には、若干磁
束密度が低下するのに対し、SnとCuを複合含有
量した鋼では、SnおよびCuをいずれも含有し
ない鋼およびSnのみを含有する鋼よりもさ
らに磁束密度が高められ、SnとCuの複合効果が
明らかである。
[Industrial Application Field] The present invention is used as an iron core material for electrical equipment.
The present invention relates to a non-oriented electrical steel sheet with low core loss and excellent magnetic flux density, and a method for manufacturing the same. [Conventional technology] In recent years, increasing the efficiency of electrical equipment has become a global power
There is a strong demand for this in the movement to save energy. For this reason, there is an increasing demand for non-oriented electrical steel sheets, which are widely used as iron core materials for motors and small and medium-sized transformers, to maintain high magnetic flux density and have low iron loss. . In conventional non-oriented electrical steel sheets, a method of increasing the content of Si or Al has generally been used as a means to reduce iron loss from the viewpoint of reducing eddy current loss due to increased specific resistance. However, this method has the problem that the magnetic flux density decreases. In addition to simply increasing the content of Si or Al, it is also possible to take component measures such as reducing C, reducing S, or adding B as described in JP-A-58-151453. Manufacturing process measures have been taken, such as increasing the annealing temperature and increasing the cold rolling reduction before final annealing, but even though these methods reduce iron loss, they do not significantly reduce magnetic flux density. This method was ineffective and could not meet the demand for producing a non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density. [Problems to be Solved by the Invention] In view of the above, the present invention provides a non-oriented electrical steel sheet with low iron loss and high magnetic flux density, and a method for manufacturing the same. [Means for Solving the Problems] The present inventors actively utilize trace additive elements to develop the texture into [100] and [110] textures that are desirable for magnetic properties, and to improve magnetic properties. We have conducted extensive research with the aim of obtaining non-oriented electrical steel sheets with low iron loss and high magnetic flux density by suppressing the [111] texture, which is unfavorable for properties. As a result, they discovered that by simultaneously containing a small amount of Sn and Cu in steel, iron loss can be lowered and magnetic flux density can be increased. The present invention was made based on this knowledge, and the gist thereof is: C: 0.010% or less in weight%;
Si: 0.1% or more, 2.0% or less, Mn: 0.75% or more,
1.5% or less, Sn: 0.02% or more, 0.20% or less, Cu:
0.1% or more, 1.0% or less, S: 0.005% or less, acid-soluble Al: 0.005% or more, 0.1% or less, N: 0.007% or less, B: 0.005% or less, and the weight ratio with N is B/N.
The non-oriented electrical steel sheet has a low iron loss and excellent magnetic flux density, with the balance being Fe and unavoidable impurity elements. Another gist is that after hot rolling, the steel containing the above components is rolled and self-annealed at a temperature of 750°C or higher and 850°C or lower, or after hot rolling, it is hot rolled at a temperature of 750°C or higher and 850°C or lower. Board annealing,
Then, it is cold rolled once or twice or more with intermediate annealing in between, and then continuously annealed. Yet another gist is that after the continuous annealing of the cold rolled sheet, skin pass rolling is performed at a rolling reduction of 2 to 12%. The present invention will be explained in detail below. First, the reasons for limiting the steel components of the present invention will be discussed. C is a harmful component that increases core loss and causes magnetic aging, so it should be kept at 0.010% or less. As is well known, Si is a component that has the effect of reducing iron loss, and in order to achieve this effect, 0.1%
It is necessary to contain the above amount. On the other hand, as the content increases, the magnetic flux density decreases as mentioned above, rolling workability deteriorates, and costs increase.
2.0% or less. Al is a necessary component for deoxidation, but for this effect it must be contained at 0.005% or more. In addition, if it exceeds 0.1%, the deoxidizing effect will be saturated, so
Should be 0.1% or less. However, in this case, AlN
Since magnetism deteriorates due to the formation of B, B is added.
It is necessary to generate BN and suppress the generation of AlN. For this purpose, a B/N ratio of 0.5 to 1.5 is most effective. In addition, the absolute content of B is set to 0.005% or less in order to prevent the occurrence of cracks in the steel billet. Further, the absolute content of N is also set to 0.007% or less in order to prevent the formation of AlN, which is harmful to magnetism. Conventionally, Mn has not been used to improve the magnetic properties of non-oriented electrical steel sheets because it easily forms nonmetallic inclusions such as sulfides, but with the development of high-purity steel manufacturing technology, its use has become possible. It became. According to the findings of the present inventors, Mn has the effect of developing [100] and [110] textures that are desirable for magnetic properties, and suppressing [111] textures that are unfavorable for magnetic properties. The Mn content needs to be 0.75% or more to bring about this effect, as proposed in JP-A-58-117828. In addition, Mn lowers the ferrite-austenite transformation temperature, so if the Mn content exceeds 1.5%, ferrite-austenite transformation occurs during hot-rolled sheet annealing.
The texture improvement effect of Mn decreases. Therefore,
The Mn content was set to 0.75% or more and 1.5% or less. S generates nonmetallic inclusions such as MnS that are harmful to magnetism, so it needs to be kept at 0.005% or less.
In particular, containing 0.75 to 1.5% Mn lowers the ferrite-austenite transformation temperature, so it is necessary to perform sufficient recrystallization at a relatively low temperature, but for this purpose, the S content is low. It is effective to do so. By containing Sn in combination with Cc, iron loss is lowered,
It also has the effect of increasing magnetic flux density, but in order to exhibit this effect, it is necessary to contain it at 0.02% or more. On the other hand, even if its content increases, its effect will be saturated, and it will have adverse effects such as suppressing grain growth.
It also increases costs, so it is set at 0.20% or less. Cu has the effect of lowering core loss and increasing magnetic flux density due to its combined content with Sn, but in order to exhibit this effect, it is necessary to contain 0.1% or more. On the other hand, even if this content increases, it may cause problems such as hot embrittlement and workability and processability.
1.0% or less. Components other than those mentioned above are iron and unavoidable impurity elements. Next, the combined effect of Sn and Cu, which is a feature of the present invention, will be explained. Figure 1 shows a slab of steel with the composition shown in Table 1 that was hot-rolled, coiled at a temperature of 830°C, self-annealed, then cold-rolled to a thickness of 0.47mm.
These are the results of continuous finish annealing at a temperature of 790°C for 40 seconds, then cutting into Epstein samples, strain relief annealing at 790°C for 1 hour, and measuring magnetic properties. Compared to steel containing neither Sn nor Cu, steel containing only Sn and steel containing only Cu are found to have lower iron loss. However, steel containing a composite of Sn and Cu has an even lower core loss than steel and steel.
The effect of reducing iron loss is much greater than that of simply adding the effect of copper alone and the effect of copper alone. Moreover, the magnetic flux density can also be increased. In other words, in the case of steel containing only Cu, the magnetic flux density decreases slightly, whereas in steel with a composite content of Sn and Cu, steel containing neither Sn nor Cu and steel containing only Sn The magnetic flux density is further increased, and the combined effect of Sn and Cu is clear.

〔作用〕[Effect]

次に本発明の製造方法について説明する。 前記成分からなる鋼は、転炉あるいは電気炉な
どで溶製され、連続鋳造あるいは造塊後分塊圧延
によりスラブとされる。 次いで熱間圧延されるが、この熱間圧延におい
ては、熱間圧延後に750℃以上の温度で捲取り、
熱延コイルの保有する熱で自己焼鈍させる。この
自己焼鈍に際しては、熱延コイルに熱の放射を防
ぐ保護カバーを被せると都合が良い。この場合、
捲取り温度が750℃未満では、SnとCuの複合効果
が少なく、鉄損を低くし、かつ磁束密度を高める
作用が少ない。また、Mnを0.75〜1.5%含有して
いることにより、850℃超ではフエライト−オー
ステナイト変態により、効果が消失しやすい。 また、熱間圧延において、750℃以上の温度で
捲取つて自己焼鈍させるのに代えて、熱間圧延後
750℃以上850℃以下の温度で熱延板焼鈍する。こ
れによつても、SnとCuの複合効果により、鉄損
を低くし、かつ磁束密度を高くすることができる
が、熱延板焼鈍温度が750℃未満では効果が少い。
また、Mnを0.75〜1.5%含有していることによ
り、850℃超ではフエライト−オーステナイト変
態が生じ、効果が消失しやすい。 次いで一回の冷間圧延または中間に中間焼鈍を
はさんで、二回以上の冷間圧延により所定の板厚
とされる。 次いで、フエライト−オーステナイト変態温度
以下で、再結晶および結晶粒成長のための連続仕
上焼鈍をする。 以上で、無方向性電磁鋼板が製造されるが、次
いでスキンパスを2〜12%の圧下率で行い、所定
の形状に打抜き後に歪取り焼鈍が施されるいわゆ
るセミプロセスタイプの無方向性電磁鋼板が製造
される。 スキンパス圧延での圧下率を2〜12%とするの
は、2%未満では歪取り焼鈍において磁気特性が
良くなり難いからであり、また上限を12%とする
のは、これをこえると磁気特性が劣化するからで
ある。 〔実施例〕 次に本発明の実施例を示す。 実施例 1 第2表に示した成分の鋼を、同表に示す処理条
件にて製造し、エプスタイン試料に切断し、790
℃×1時間の歪取り焼鈍を行い、磁気特性を測定
した。その測定結果も併せて同表に示した。本発
明により、著しく鉄損が低く、かつ磁束密度の高
い無方向性電磁鋼板の製造が可能であることが明
らかである。
Next, the manufacturing method of the present invention will be explained. Steel made of the above-mentioned components is melted in a converter or electric furnace, and is made into a slab by continuous casting or ingot-forming and then blooming rolling. Next, it is hot rolled, but in this hot rolling, after hot rolling, it is rolled up at a temperature of 750°C or higher,
Self-annealing is performed using the heat possessed by the hot-rolled coil. During this self-annealing, it is convenient to cover the hot-rolled coil with a protective cover that prevents radiation of heat. in this case,
When the winding temperature is less than 750°C, the combined effect of Sn and Cu is small, and the effect of lowering iron loss and increasing magnetic flux density is small. Furthermore, since it contains 0.75 to 1.5% Mn, the effect tends to disappear due to ferrite-austenite transformation at temperatures above 850°C. In addition, in hot rolling, instead of rolling and self-annealing at a temperature of 750℃ or higher, after hot rolling,
Hot-rolled sheets are annealed at a temperature of 750℃ or higher and 850℃ or lower. Even with this, iron loss can be lowered and magnetic flux density can be increased due to the combined effect of Sn and Cu, but the effect is small when the hot-rolled sheet annealing temperature is less than 750°C.
Furthermore, by containing 0.75 to 1.5% of Mn, ferrite-austenite transformation occurs at temperatures above 850°C, and the effect tends to disappear. Next, the sheet is cold rolled once or twice or more with intermediate annealing in between to obtain a predetermined thickness. Next, continuous finish annealing is performed at a temperature below the ferrite-austenite transformation temperature for recrystallization and grain growth. As described above, a non-oriented electrical steel sheet is manufactured.Next, a so-called semi-process type non-oriented electrical steel sheet is subjected to a skin pass at a reduction rate of 2 to 12%, punched into a predetermined shape, and then subjected to strain relief annealing. is manufactured. The reason why the reduction ratio in skin pass rolling is set to 2 to 12% is that if it is less than 2%, it is difficult to improve the magnetic properties during strain relief annealing, and the reason why the upper limit is set to 12% is that if it exceeds this, the magnetic properties will deteriorate. This is because it deteriorates. [Example] Next, an example of the present invention will be shown. Example 1 Steel having the composition shown in Table 2 was manufactured under the processing conditions shown in the same table, cut into Epstein samples, and 790
Strain relief annealing was performed for 1 hour at ℃, and the magnetic properties were measured. The measurement results are also shown in the same table. It is clear that according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet with extremely low iron loss and high magnetic flux density.

【表】【table】

【表】 実施例 2 前記実施例1で用いた鋼No.11,12,13,14,15
を0.50mm厚に冷間圧延し、825℃×60秒の連続焼
鈍を行い、次いで圧下率6%でスキンパス圧延を
施し、0.47mm厚とした。その後、エプスタイン試
料に切断し、790℃×1時間の歪取り焼鈍を行い、
磁気特性を測定した。その測定結果を第3表に示
す。本発明により、著しく鉄損が低く、かつ磁束
密度の高い無方向性電磁鋼板の製造が可能である
ことが明らかである。
[Table] Example 2 Steel No. 11, 12, 13, 14, 15 used in Example 1 above
was cold rolled to a thickness of 0.50 mm, continuously annealed at 825°C for 60 seconds, and then subjected to skin pass rolling at a reduction rate of 6% to a thickness of 0.47 mm. After that, it was cut into Epstein samples and subjected to strain relief annealing at 790°C for 1 hour.
The magnetic properties were measured. The measurement results are shown in Table 3. It is clear that according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet with extremely low iron loss and high magnetic flux density.

【表】 〔発明の効果〕 以上のように、本発明によれば、鉄損が低くか
つ磁束密度の高い無方向性電磁鋼板が得られ、電
気機器の高効率化に伴い、その鉄心材料として用
いられる無方向性電磁鋼板に対する要請に十分応
えることができ、その工業的効果は非常に大き
い。
[Table] [Effects of the Invention] As described above, according to the present invention, a non-oriented electrical steel sheet with low iron loss and high magnetic flux density can be obtained, and with the increasing efficiency of electrical equipment, it has become popular as a core material for electrical equipment. It can fully meet the requirements for the non-oriented electrical steel sheets used, and its industrial effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、比較材〜と本発明材の鉄損
W15/50および磁束密度B50の関係を示す図である。
Figure 1 shows the iron loss of comparative materials and the present invention material.
FIG. 3 is a diagram showing the relationship between W 15/50 and magnetic flux density B 50 .

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.010%以下、Si:0.1%以上、
2.0%以下、Mn:0.75%以上、1.5%以下、Sn:
0.02%以上、0.20%以下、Cu:0.1%以上、1.0%
以下、S:0.005%以下、酸可溶性Al:0.005%以
上、0.1%以下、N:0.007%以下、B:0.005%以
下でかつNとの重量比B/Nで0.5〜1.5を含有
し、残部Feおよび不可避不純物元素より成る鉄
損が低くかつ磁束密度の優れた無方向性電磁鋼
板。 2 重量%で、C:0.010%以下、Si:0.1%以上、
2.0%以下、Mn:0.75%以上、1.5%以下、Sn:
0.02%以上、0.20%以下、Cu:0.1%以上、1.0%
以下、S:0.005%以下、酸可溶性Al:0.005%以
上、0.1%以下、N:0.007%以下、B:0.005%以
下でかつNとの重量比B/Nで0.5〜1.5を含有
し、残部Feおよび不可避不純物元素より成る鋼
を、熱間圧延後750℃以上850℃以下の温度で捲取
り、自己焼鈍し、次いで一回または中間焼鈍をは
さんだ二回以上の冷間圧延をし、連続焼鈍するこ
とを特徴とする鉄損が低くかつ磁束密度の優れた
無方向性電磁鋼板の製造方法。 3 重量%でC:0.010%以下、Si:0.1%以上、
2.0%以下、Mn:0.75%以上、1.5%以下、Sn:
0.02%以上、0.20%以下、Cu:0.1%以上、1.0%
以下、S:0.005%以下、酸可溶性Al:0.005%以
上、0.1%以下、N:0.007%以下、B:0.005%以
下でかつNとの重量比B/Nで0.5〜1.5を含有
し、残部Feおよび不可避不純物元素より成る鋼
を、熱間圧延後750℃以上850℃以下の温度で捲取
り、自己焼鈍し、次いで一回または中間焼鈍をは
さんだ二回以上の冷間圧延をし、連続焼鈍した
後、2〜12%の圧下率でスキンパス圧延すること
を特徴とする鉄損が低くかつ磁束密度の優れた無
方向性電磁鋼板の製造方法。 4 重量%で、C:0.010%以下、Si:0.1%以上、
2.0%以下、Mn:0.75%以上、1.5%以下、Sn:
0.02%以上、0.20%以下、Cu:0.1%以上、1.0%
以下、S:0.005%以下、酸可溶性Al:0.005%以
上、0.1%以下、N:0.007%以下、B:0.005%以
下でかつNとの重量比B/Nで0.5〜1.5を含有
し、残部Feおよび不可避不純物元素より成る鋼
を、熱間圧延後750℃以上850℃以下の温度で熱延
板焼鈍し、次いで一回または中間焼鈍をはさんだ
二回以上の冷間圧延をし、連続焼鈍することを特
徴とする鉄損が低くかつ磁束密度の優れた無方向
性電磁鋼板の製造方法。 5 重量%で、C:0.010%以下、Si:0.1%以上、
2.0%以下、Mn:0.75%以上、1.5%以下、Sn:
0.02%以上、、0.20%以下、Cu:0.1%以上、1.0%
以下、S:0.005%以下、酸可溶性Al:0.005%以
上、0.1%以下、N:0.007%以下、B:0.005%以
下でかつNとの重量比B/Nで0.5〜1.5を含有
し、残部Feおよび不可避不純物元素より成る鋼
を、熱間圧延後750℃以上850℃以下の温度で熱延
板焼鈍し、次いで一回または中間焼鈍をはさんだ
二回以上の冷間圧延をし、連続焼鈍した後、2〜
12%の圧下率でスキンパス圧延することを特徴と
する鉄損が低くかつ磁束密度の優れた無方向性電
磁鋼板の製造方法。
[Claims] 1% by weight, C: 0.010% or less, Si: 0.1% or more,
2.0% or less, Mn: 0.75% or more, 1.5% or less, Sn:
0.02% or more, 0.20% or less, Cu: 0.1% or more, 1.0%
Below, S: 0.005% or less, acid-soluble Al: 0.005% or more and 0.1% or less, N: 0.007% or less, B: 0.005% or less, and the weight ratio B/N with N is 0.5 to 1.5, and the balance is Non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density, consisting of Fe and unavoidable impurity elements. 2 In weight%, C: 0.010% or less, Si: 0.1% or more,
2.0% or less, Mn: 0.75% or more, 1.5% or less, Sn:
0.02% or more, 0.20% or less, Cu: 0.1% or more, 1.0%
Below, S: 0.005% or less, acid-soluble Al: 0.005% or more and 0.1% or less, N: 0.007% or less, B: 0.005% or less, and the weight ratio B/N with N is 0.5 to 1.5, and the balance is After hot rolling, steel consisting of Fe and unavoidable impurity elements is rolled at a temperature of 750°C or higher and 850°C or lower, self-annealed, and then cold-rolled once or twice or more with intermediate annealing in between. A method for producing a non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density, which comprises annealing. 3 C: 0.010% or less, Si: 0.1% or more in weight%,
2.0% or less, Mn: 0.75% or more, 1.5% or less, Sn:
0.02% or more, 0.20% or less, Cu: 0.1% or more, 1.0%
Below, S: 0.005% or less, acid-soluble Al: 0.005% or more and 0.1% or less, N: 0.007% or less, B: 0.005% or less, and the weight ratio B/N with N is 0.5 to 1.5, and the balance is After hot rolling, steel consisting of Fe and unavoidable impurity elements is rolled at a temperature of 750°C or higher and 850°C or lower, self-annealed, and then cold-rolled once or twice or more with intermediate annealing in between. A method for producing a non-oriented electrical steel sheet with low core loss and excellent magnetic flux density, which comprises skin pass rolling at a rolling reduction of 2 to 12% after annealing. 4 In weight%, C: 0.010% or less, Si: 0.1% or more,
2.0% or less, Mn: 0.75% or more, 1.5% or less, Sn:
0.02% or more, 0.20% or less, Cu: 0.1% or more, 1.0%
Below, S: 0.005% or less, acid-soluble Al: 0.005% or more and 0.1% or less, N: 0.007% or less, B: 0.005% or less, and the weight ratio B/N with N is 0.5 to 1.5, and the balance is Steel consisting of Fe and unavoidable impurity elements is hot-rolled and then annealed at a temperature of 750°C or higher and 850°C or lower, then cold-rolled once or twice or more with an intermediate annealing in between, and then continuously annealed. A method for producing a non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density. 5 In weight%, C: 0.010% or less, Si: 0.1% or more,
2.0% or less, Mn: 0.75% or more, 1.5% or less, Sn:
0.02% or more, 0.20% or less, Cu: 0.1% or more, 1.0%
Below, S: 0.005% or less, acid-soluble Al: 0.005% or more and 0.1% or less, N: 0.007% or less, B: 0.005% or less, and the weight ratio B/N with N is 0.5 to 1.5, and the balance is Steel consisting of Fe and unavoidable impurity elements is hot-rolled and then annealed at a temperature of 750°C or higher and 850°C or lower, then cold-rolled once or twice or more with an intermediate annealing in between, and then continuously annealed. After that, 2~
A method for producing a non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density, which is characterized by skin pass rolling at a rolling reduction of 12%.
JP19378087A 1987-08-04 1987-08-04 Non-oriented magnetic steel sheet having low iron loss and excellent magnetic flux density and its production Granted JPS6439348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19378087A JPS6439348A (en) 1987-08-04 1987-08-04 Non-oriented magnetic steel sheet having low iron loss and excellent magnetic flux density and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19378087A JPS6439348A (en) 1987-08-04 1987-08-04 Non-oriented magnetic steel sheet having low iron loss and excellent magnetic flux density and its production

Publications (2)

Publication Number Publication Date
JPS6439348A JPS6439348A (en) 1989-02-09
JPH0477067B2 true JPH0477067B2 (en) 1992-12-07

Family

ID=16313678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19378087A Granted JPS6439348A (en) 1987-08-04 1987-08-04 Non-oriented magnetic steel sheet having low iron loss and excellent magnetic flux density and its production

Country Status (1)

Country Link
JP (1) JPS6439348A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219124A (en) * 1988-02-26 1989-09-01 Nkk Corp Production of non-oriented electrical steel sheet having excellent pickling property
JPH01219126A (en) * 1988-02-26 1989-09-01 Nkk Corp Production of non-oriented electrical steel sheet having excellent surface characteristic
JP2509018B2 (en) * 1991-07-25 1996-06-19 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
CZ284195B6 (en) * 1991-10-22 1998-09-16 Pohang Iron And Steel Co., Ltd. Non-oriented electric steel sheets and process for producing thereof
CN111440992B (en) * 2020-05-11 2022-03-25 马鞍山钢铁股份有限公司 Low-anisotropy non-oriented silicon steel for hydroelectric power generation and production method thereof

Also Published As

Publication number Publication date
JPS6439348A (en) 1989-02-09

Similar Documents

Publication Publication Date Title
JP6008157B2 (en) Method for producing semi-processed non-oriented electrical steel sheet with excellent magnetic properties
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
JP2006501361A5 (en)
KR20130032913A (en) Method for producing non-oriented magnetic steel sheet
JPS6256225B2 (en)
JPS6323262B2 (en)
JP2004197217A (en) Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor
JP2011132558A (en) Method for manufacturing non-oriented electromagnetic steel sheet
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
TWI641702B (en) Non-oriented electromagnetic steel sheet with excellent recyclability
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3885432B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0477067B2 (en)
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPS6256922B2 (en)
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JPS5832214B2 (en) Method for manufacturing unidirectional silicon steel sheet with extremely high magnetic flux density and low iron loss
KR950014313B1 (en) Method of producing grain-oriented silicon steel with small boron addition
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH0737651B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 15