JPH0324250A - Nonoriented silicon steel sheet reduced in in-plane anisotropy - Google Patents

Nonoriented silicon steel sheet reduced in in-plane anisotropy

Info

Publication number
JPH0324250A
JPH0324250A JP15757289A JP15757289A JPH0324250A JP H0324250 A JPH0324250 A JP H0324250A JP 15757289 A JP15757289 A JP 15757289A JP 15757289 A JP15757289 A JP 15757289A JP H0324250 A JPH0324250 A JP H0324250A
Authority
JP
Japan
Prior art keywords
steel sheet
anisotropy
silicon steel
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15757289A
Other languages
Japanese (ja)
Other versions
JPH0569909B2 (en
Inventor
Teruo Kaneko
金子 輝雄
Hiroyoshi Yashiki
屋舗 裕義
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15757289A priority Critical patent/JPH0324250A/en
Publication of JPH0324250A publication Critical patent/JPH0324250A/en
Publication of JPH0569909B2 publication Critical patent/JPH0569909B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively obtain a nonoriented silicon steel sheet reduced in in-plane anisotropy and having low iron loss by specifying a composition consisting of C, Si, Mn, P, S, Al, N, B, and Fe. CONSTITUTION:This steel sheet is a high or medium grade nonoriented silicon steel sheet consisting of, by weight, <=0.005% C, >1.0-<4.0% Si, >0.1-<1.5% Mn, <=0.1% P, <=0.002% S, >0.10-<1.0% Al, <=0.004% N, >0.0003-<0.0015% B, and the balance Fe with inevitable impurities, extremely reduced in the anisotropy of electromagnetic properties in a sheet surface, and also reduced in iron loss. In the above silicon steel sheet, reduction in anisotropy is attained by using, in combination, relatively large amounts of Al and small amounts of B, and this silicon steel sheet is suitable for iron core material for motor and transformer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Si含有量が1.0〜4.0%のいわゆる中
〜高級無方向性電磁鋼板に関し、特に圧延板面内におけ
る磁気特性の異方性が小さい無方向性電磁鋼板に関する
ものである. (従来の技術) 無方向性tMis板は、主にモーターやトランスの鉄心
材料として用いられるもので、JIS規格(C−255
2改)に従い板厚と鉄損値で種類分けされる.鉄損は、
鉄を磁化する時に発生する熱損失を表し、この値は小さ
いほど良いことはもちろんであるが、経済性と機器のサ
イズなどから目的に応じたグレードが選ばれる。一般に
機器が大きくなると、鉄損による発熱量は体積に比例し
て増加するのに対し、放熱量は表面積にしか比例しない
ので、機器の冷却が難しくなる.このため大型の機器に
なるほど鉄損の低い材料が必要とされるのである. 鉄損は、渦電流損とヒステリシス損の2つの要因に支配
される。渦電流損は、磁化によって誘起される渦電流に
よる損失で、板厚と鋼の電気抵抗に依存する.板厚は薄
いほうが良いが、あまり薄いと鉄心の積層作業に手間が
掛かるなどの問題がでてくるので、JISでは0.65
、0.50, 0.35開の3種が規定されている。鋼
の電気抵抗は高いほど良好で、合金元素としては単位添
加量あたりの電気抵抗増加率が大きくしかも安価である
ことからSiが多く用いられる.電ill板が別名珪素
鋼板と呼ばれるのはこのためで、St含有量が多いはど
鉄損の低い高級電磁鋼板となる.同様の目的で、Alや
Mnなとも必要に応じて添加される.一方、ヒステリシ
ス損は、磁化の過程において磁壁の移動を妨げる微細な
析出物や結晶粒界が少ないほど小さくなる.従って、で
きるだけ高純度の鋼を用いた上で結晶粒を或長させるこ
とがポイントとなる,TiやNb, V等は、微細な炭
窒化物を生威し、しかもそれらの析出物が結晶粒戒長を
阻害するため、磁気特性を著しく劣化される.このため
tM1鋼板ではこれらの炭窒化物形成元素の添加は厳重
に制限されている,  Affiも微細な^lNを生威
し、同じような悪影響を与えるので、低級ill鋼板で
は一般に添加しない.中〜高級電磁鋼板では、電気抵抗
を上げるため^lを添加するが、この場合には通常0.
1%以上の多量添加を行い、析出物を粗大化することに
より、ヒステリシス損への悪影響を避けている.すなわ
ちAffiに関しては全く添加しないか、あるいは逆に
多量に含有させるのがよいというのが一般的な常識とな
ってぃこれに対して、ボロン(B)を添加するとAl含
有量が0.1%以下であっても良好な磁気特性が得られ
るという報告がなされている(例えば、特公昭59− 
20731公報).その理由は明らかではないが、鋼中
の窒素(N)量と一定の関係においてバランスさせる必
要があるとされている.即ち、B/Nの比が0.5〜2
.5の範囲が適当とされることなどからみて、BNの析
出と密接な関係があるものと推定される.この場合、A
ffi含有量が0.1%以上となると価格の上昇を招く
だけでBの添加効果が十分に得られなくなるとされてい
る.このように、Bぱ窒化物形戒元素であるにもかかわ
らず磁気特性への悪影響が比較的少ない元素と考えられ
るが、その作用と効果については必ずしも十分に明らか
にされていない. 鉄損の低いいわゆる中〜高級無方向性!磁鋼板において
は、特に磁気特性の仮面内における異方性が小さいこと
が要求される.即ち、モーターやトランスの鉄心中では
磁力線は仮面内の色々な方向に流れるため、ある方向の
磁気特性が悪いとそれが機器全体の性能を律することに
なる.無方向性iM1鯛板の磁気特性の評価は、通常、
圧延方向(L方向)とそれに直角な方向(T方向)の平
均値を用いて行われるが、中〜高級電磁鋼板になると平
均値だけで機器を設計することは危険である.鉄撰の平
均値がそのグレードの管理範囲に入っていても、L方向
とT方向での差が大きければ、機器の性能は悪い方向の
特性に引きずられることになる,一般には、L方向に比
べてT方向の磁気特性が悪いのが普通である.低級無方
向性電磁鋼板の場合は鉄損のレベルが高いので多少の異
方性は問題にならないが、鉄損の低い中〜高級無方向性
tIlt1鋼板では僅かの異方性でもその差が相対的に
大きくなりrI!1!!となるのである.無方向性電磁
鋼板は本来、異方性が無いことを前提に使われるもので
ある.これに対して、方向性t磁鋼板の場合は、二次再
結晶を利用して結晶粒の向きを特定の方向に揃え異方性
を最大限につけることで、L方向の磁気特性を極限まで
改良したものである.方向性電磁鋼板を用いる機器では
L方向の特性のみを利用するように設計される。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a so-called medium to high-grade non-oriented electrical steel sheet with a Si content of 1.0 to 4.0%, and particularly to magnetic properties in the plane of the rolled sheet. This relates to non-oriented electrical steel sheets with small anisotropy. (Prior art) Non-directional tMis plates are mainly used as core materials for motors and transformers, and comply with the JIS standard (C-255
2 revision), they are divided into types based on plate thickness and iron loss value. The iron loss is
It represents the heat loss that occurs when iron is magnetized.Of course, the smaller the value, the better, but the grade is selected according to the purpose based on economic efficiency and the size of the equipment. Generally, as equipment becomes larger, the amount of heat generated by iron loss increases in proportion to its volume, while the amount of heat dissipated is only proportional to its surface area, making it difficult to cool the equipment. For this reason, the larger the equipment, the more materials with low iron loss are required. Iron loss is dominated by two factors: eddy current loss and hysteresis loss. Eddy current loss is a loss due to eddy currents induced by magnetization, and depends on the plate thickness and the electrical resistance of the steel. The thinner the plate, the better, but if it is too thin, problems such as the time-consuming work of laminating the iron core will occur, so the JIS standard is 0.65.
Three types are specified: , 0.50, and 0.35 opening. The higher the electrical resistance of steel, the better, and Si is often used as an alloying element because it has a large electrical resistance increase rate per unit addition amount and is inexpensive. This is why electrical steel sheets are also called silicon steel sheets; the higher the St content, the higher the iron loss. For the same purpose, Al and Mn are also added as necessary. On the other hand, hysteresis loss decreases as there are fewer fine precipitates and grain boundaries that impede domain wall movement during the magnetization process. Therefore, it is important to use steel of as high purity as possible and to make the crystal grains a certain length.Ti, Nb, V, etc. produce fine carbonitrides, and their precipitates form crystal grains. Because it interferes with Kaicho, the magnetic properties are significantly deteriorated. For this reason, the addition of these carbonitride-forming elements to tM1 steel sheets is strictly limited. Affi also produces fine ^lN and has a similar negative effect, so it is generally not added to low-grade ill steel sheets. In medium to high-grade electrical steel sheets, ^l is added to increase the electrical resistance, but in this case it is usually 0.
By adding a large amount of 1% or more to coarsen the precipitates, adverse effects on hysteresis loss are avoided. In other words, it is common knowledge that it is better not to add Affi at all or, conversely, to add it in large amounts.On the other hand, when boron (B) is added, the Al content is 0.1%. It has been reported that good magnetic properties can be obtained even if the
20731 Publication). The reason for this is not clear, but it is believed that it is necessary to balance it in a certain relationship with the amount of nitrogen (N) in the steel. That is, the B/N ratio is 0.5 to 2.
.. Considering that the range of 5 is considered appropriate, it is presumed that there is a close relationship with the precipitation of BN. In this case, A
It is said that if the ffi content exceeds 0.1%, it will only lead to an increase in price and the effect of B addition will not be sufficiently obtained. In this way, although B is a nitride-type element, it is thought to have relatively little negative effect on magnetic properties, but its actions and effects have not been fully clarified. So-called medium to high-grade non-directional with low iron loss! Magnetic steel sheets are particularly required to have small anisotropy within the mask of magnetic properties. In other words, in the iron core of a motor or transformer, lines of magnetic force flow in various directions within the mask, so if the magnetic properties in a certain direction are bad, it will affect the performance of the entire device. Evaluation of the magnetic properties of non-directional iM1 sea bream plate is usually done by
This is done using the average values of the rolling direction (L direction) and the direction perpendicular to it (T direction), but when it comes to medium to high-grade electrical steel sheets, it is dangerous to design equipment using only the average values. Even if the average value of iron selection is within the control range of the grade, if the difference between the L direction and the T direction is large, the performance of the equipment will be affected by the characteristics in the bad direction. In comparison, the magnetic properties in the T direction are usually poor. In the case of low-grade non-oriented electrical steel sheets, the level of iron loss is high, so some anisotropy is not a problem, but for medium to high-grade non-oriented tIlt1 steel sheets with low iron loss, even a slight anisotropy makes a difference. It's getting bigger and bigger! 1! ! It becomes. Non-oriented electrical steel sheets are originally used on the premise that they have no anisotropy. On the other hand, in the case of grain-oriented T-magnetic steel sheets, the magnetic properties in the L direction are maximized by aligning the crystal grains in a specific direction and maximizing the anisotropy using secondary recrystallization. It has been improved to. Devices using grain-oriented electrical steel sheets are designed to utilize only the characteristics in the L direction.

つまり、方向性電磁鋼仮と無方向性ti綱板とは一般に
用途が異なる. 無方向性iM1鋼板の鉄損を下げるため、前述のごと<
Si等の合金元素を添加して渦電流損を小さくしたり、
鋼の高純度化などでヒステリシス損の低減をはかる工夫
がなされている.しかしながら、中〜高級無方向性電1
61鋼板になると、これらの手段のみで所望の低鉄損を
得ることは難しく、特殊な合金元素の添加や製造条件の
工夫で集合組織(結晶粒の向き)を制御する方法が種々
検討されている.無方向性電磁鋼板の場合は、方向性a
!fi鋼板のような強い集合組織はできないが、ある程
度磁化容易紬である(100}方位の揃った集合組織を
形威させることは可能である.しかしながら従来の方法
では、磁気特性の平均値を向上させることはできるが、
仮面内の異方性が大きくなるという致命的な欠点を含む
場合が多い.即ち従来の集合組織制御では、L方向の特
性が改善されることにより全体の特性が向上するのであ
って、T方向の特性はほとんど変わらなかったり、むし
ろ僅かに劣化することが多い. このように、低鉄損の中〜高級無方向性電磁鋼板では、
仮面内の異方性も小さくすることが要望されているにも
かかわらず、それを実現するための有効な手段を持って
いないのが現状である.(発明が解決しようとする課題
) 本発明は上記の状況に鑑み、仮面内の異方性が小さくし
かも低鉄損の中〜高級無方向性電磁鋼板を提供すること
を目的とするものである.(!I題を解決するための手
段) 本発明者は、電磁鋼板を横戒する各種の合金元素の作用
について詳細な検討を行った.その結果、Si,Anを
はしめとする各戒分の含有量を適正な範囲におさめた上
、ある含有量の範囲でBを添加することにより前記の目
的が達威されることを見出した. 本発明の要旨は、次の無方向性電磁鋼板にある.重量%
で、 C :0.005%以下、 Si:1.0%を超え4.0%未満、 Mn:0.1%を超え1.5%未満、 P:0.1%以下、 S :0.002%以下、 ^1 :0.10%を超え1.0%未満、N:0.00
4%以下、 B :0.0003%を超え0.0015%未満、を含
み、残部はFeおよび不可避的不純物からなることを特
徴とする面内異方性の小さい無方向性電磁鋼板. 従来、BはBN析出を通じて効果を現すと考えられてお
り、N含有量との関係が重視されている.即ち、化学当
量的にNをある程度固定するに足りる量(望ましくは完
全に固定するに足りる量)のBを添加することが必要と
される.従って、この場合Bは基本的にはAj!と同樟
にN固定の働きをするのであって、ただ析出物のBNが
AI!Hに比べて磁気特性に対する悪影響が少ないので
、電磁鋼板に用いられるに過ぎないのである,  Af
fiとBを複合添加した場合の析出物の詳細については
必ずしも十分明らかにされていないが、BNを核にして
AffiNが析出することが考えられ、結果的に比較的
^2含有量の少ない鋼でも微細なAlNの析出が抑えら
れ磁気特性が改善されると理解される. これに対して本発明者らは、SiやA1含有量の多い中
〜高級電磁鋼板を対象に、異方性に及ぼすB添加の効果
に着目して検討した.その結果、Al含有量が0.10
%を超える高Affi鋼に少量のBを添加すると、磁気
特性の異方性が著しく減少することを見出したのである
.この場合、Nは^lによりほぼ完全に固定されており
、固溶Nは実質上零に近いので、Bの効果は固溶したB
によるものと考えられる.詳細な機構は未だ不明である
が、おそらく固t9Bが結晶粒界等に偏析することで、
冷間圧延およびその後の再結晶焼鈍の過程で、異方性の
小さい集合組織の形威に寄与するものと推定される. (作用) 以下、本発明のim鋼板における合金元素の作用効果を
含有量の限定理由とともに説明する.C : Cは炭化物を生威して、あらゆる磁気特性を劣化させる
元素であり、できるだけ低くすることが望ましい.特に
磁気時効を防止するため、o.oos%以下とする必要
があり、さらには0. 003%以下とすることが望ま
しい. Si : Siは中〜高級無方向性電磁鋼板として必要な鉄損を得
るため1.0%を超える含有量とする, Siが1.0
%以下では渦電流損が大きく鉄損が目標どおりに低くな
らない.一方、Siが4.0%以上含まれると冷間圧延
性が著しく劣化する。
In other words, the uses of grain-oriented electrical steel and non-oriented titanium steel are generally different. In order to reduce the iron loss of the non-oriented iM1 steel sheet, as mentioned above,
Adding alloying elements such as Si to reduce eddy current loss,
Efforts have been made to reduce hysteresis loss by increasing the purity of the steel. However, medium to high grade non-directional electricity 1
When it comes to 61 steel sheets, it is difficult to obtain the desired low iron loss using these methods alone, and various methods have been investigated to control the texture (crystal grain orientation) by adding special alloying elements and modifying manufacturing conditions. There is. In the case of non-oriented electrical steel sheet, directionality a
! Although it is not possible to create a strong texture like that of FI steel sheets, it is possible to create a texture with a certain degree of easy magnetization (100} orientation.However, conventional methods cannot improve the average value of magnetic properties. Although it is possible to
This often has the fatal drawback of increasing anisotropy within the mask. That is, in conventional texture control, the overall properties are improved by improving the properties in the L direction, but the properties in the T direction often remain almost unchanged or even slightly deteriorate. In this way, medium to high-grade non-oriented electrical steel sheets with low iron loss,
Although it is desired to reduce the anisotropy within the mask, there is currently no effective means to achieve this. (Problems to be Solved by the Invention) In view of the above circumstances, an object of the present invention is to provide a medium to high-grade non-oriented electrical steel sheet with small anisotropy in the mask and low core loss. .. (Means for Solving the Problem!) The present inventor conducted a detailed study on the effects of various alloying elements that affect electrical steel sheets. As a result, it was found that the above objective could be achieved by keeping the content of each of the precepts, including Si and An, within appropriate ranges, and then adding B within a certain content range. The gist of the present invention resides in the following non-oriented electrical steel sheet. weight%
C: 0.005% or less, Si: more than 1.0% and less than 4.0%, Mn: more than 0.1% and less than 1.5%, P: 0.1% or less, S: 0. 002% or less, ^1: More than 0.10% and less than 1.0%, N: 0.00
4% or less, B: more than 0.0003% and less than 0.0015%, and the remainder consists of Fe and unavoidable impurities. Conventionally, it has been thought that B exerts its effects through BN precipitation, and emphasis has been placed on its relationship with N content. That is, it is necessary to add B in an amount sufficient to fix N to some extent (preferably, to completely fix it) in chemical equivalent terms. Therefore, in this case B is basically Aj! The same camphor has the function of fixing N, but the precipitated BN is AI! Af has less negative impact on magnetic properties than H, so it is only used for electrical steel sheets.
Although the details of the precipitates when fi and B are added in combination are not fully clarified, it is thought that AffiN precipitates with BN as the core, resulting in steel with a relatively low ^2 content. However, it is understood that the precipitation of fine AlN is suppressed and the magnetic properties are improved. In response, the present inventors focused on the effect of B addition on anisotropy and investigated medium to high-grade electrical steel sheets with high Si and A1 contents. As a result, the Al content was 0.10
They found that when a small amount of B is added to high Affi steel exceeding 10%, the anisotropy of the magnetic properties is significantly reduced. In this case, N is almost completely fixed by ^l, and solute N is practically close to zero, so the effect of B is due to the effect of B in solid solution.
This is thought to be due to Although the detailed mechanism is still unclear, it is probably due to the segregation of solid t9B at grain boundaries, etc.
It is presumed that the process of cold rolling and subsequent recrystallization annealing contributes to the formation of a texture with small anisotropy. (Function) The effects of the alloying elements in the im steel sheet of the present invention will be explained below along with the reason for limiting the content. C: C is an element that produces carbides and deteriorates all magnetic properties, so it is desirable to keep its content as low as possible. In particular, to prevent magnetic aging, o. It is necessary to keep it below oos%, and furthermore, 0. It is desirable to keep it below 0.003%. Si: The Si content is set to exceed 1.0% in order to obtain the core loss necessary for a medium to high-grade non-oriented electrical steel sheet.
% or less, the eddy current loss will be large and the iron loss will not be as low as the target. On the other hand, if Si is contained in an amount of 4.0% or more, cold rolling properties are significantly deteriorated.

Mn= MnはSによる熱間脆性を防ぐため0.1%を超える量
含有させる.また、Mnは電気抵抗を増して渦電流損を
小さくするのにも有効である.しかし、Mn含有量が1
.5%以上になると鋼が脆化し結晶粒の成長性も悪化す
るので、これ未満とする.P : Pは強度調整と電気抵抗増加の目的で0.1%まで含有
させてもよいが、これを超えると冷間圧延性が劣化する
. S: Sは硫化物系の析出物を生じ、磁気特性を劣化させるの
で0.002%以下に抑えるのがよい.Ai : 中〜高級無方向性電磁鋼板では、一般に電気抵抗の増加
とAlNの粗大化の目的で0.1%以上含有させること
が多いが、本発明でもこれらの効果に加えてNを完全に
固定し、Bの作用効果を十分に発揮させるため0. 1
0%を超える量含有させる.一方、1.0%以上含有さ
せても効果が飽和し、価格の上昇を招くだけなのでこれ
未満とする.N Nは窒化物を生戒して磁気特性を損なうので、0.00
4%以下、望ましくは0.002%以下とする.B : Bは磁気特性の異方性を低減するため0.0003%を
超える量含有させる, 0.0003%以下では固RB
の量が不十分で異方性が大きくなる。一方、0.001
5%を超えて含有させても異方性低減の効果が飽和する
だけでなく、析出物の増加でむしろ全体の磁気特性が劣
化する傾向を示す。
Mn = Mn is contained in an amount exceeding 0.1% to prevent hot embrittlement caused by S. Mn is also effective in increasing electrical resistance and reducing eddy current loss. However, the Mn content is 1
.. If it exceeds 5%, the steel will become brittle and grain growth will deteriorate, so it should be less than this. P: P may be contained up to 0.1% for the purpose of adjusting strength and increasing electrical resistance, but if it exceeds this, cold rollability deteriorates. S: S produces sulfide-based precipitates and deteriorates magnetic properties, so it is best to suppress it to 0.002% or less. Ai: Medium to high-grade non-oriented electrical steel sheets generally contain 0.1% or more for the purpose of increasing electrical resistance and coarsening AlN, but in the present invention, in addition to these effects, N is completely eliminated. 0.0 to fully exhibit the action and effect of B. 1
Contain more than 0%. On the other hand, if the content exceeds 1.0%, the effect will be saturated and the price will only increase, so the content should be less than this. N N prevents nitrides and impairs magnetic properties, so 0.00
The content should be 4% or less, preferably 0.002% or less. B: B is contained in an amount exceeding 0.0003% in order to reduce the anisotropy of magnetic properties. If it is less than 0.0003%, it becomes solid RB.
If the amount of is insufficient, the anisotropy will increase. On the other hand, 0.001
Even if the content exceeds 5%, not only the effect of reducing anisotropy is saturated, but also the overall magnetic properties tend to deteriorate due to an increase in precipitates.

磁気特性の異方性の減少に対する少量のB添加の効果は
Al含有量の多い場合にのみ有効である.即ち、Alを
前記のように十分に添加し、併せて少量のBを添加する
ことが必要不可欠の要件である.通常は、Bは0.00
08〜0.0012%の範囲で含有させるのが適当であ
る。
The effect of adding a small amount of B on reducing the anisotropy of magnetic properties is only effective when the Al content is high. That is, it is essential to add a sufficient amount of Al as described above and also to add a small amount of B. Usually B is 0.00
It is suitable that the content is in the range of 0.08 to 0.0012%.

上記のとおりの組威を有する本発明の電mm+iは、下
記のような方法で製造することができる.熱間圧延工程
におけるスラブ加熱温度は1l00〜1250゜Cの範
囲とする,MnSの微細析出による磁気特性劣化を防ぐ
には低温加熱の方がよいが、熱延仕上温度を確保するた
めに、余り低温にはできない. 1150〜1200゜
C程度が好適である.熱延仕上温度は高いほうがよ<、
800゜C以上、望ましくは850゜C以上とする.巻
取りも高温の方がよいが、酸洗性との兼ね合いで550
〜650゜Cが適当な巻取り温度になる。
The electric wire mm+i of the present invention having the above-described structural strength can be manufactured by the following method. The slab heating temperature in the hot rolling process should be in the range of 1l00 to 1250°C.It is better to heat the slab at a low temperature to prevent deterioration of magnetic properties due to fine precipitation of MnS, but in order to ensure the hot rolling finishing temperature, It cannot be heated to low temperatures. A temperature of about 1150 to 1200°C is suitable. The hot rolling finishing temperature should be higher.
The temperature should be 800°C or higher, preferably 850°C or higher. It is better to wind it at a high temperature, but in consideration of pickling properties, 550
A suitable winding temperature is ~650°C.

熱間圧延の後、熱延の加工組織を再結晶させるため、7
50゜C以上、望ましくは850゜C以上で熱延板焼鈍
を行う。ただし、この温度があまり高温になると結晶粒
が粗大化し、次の冷間圧延の際に割れが発生しやすくな
るからl050゜C以下に抑える方がよい。通常は90
0〜l000゜Cで5分以内の連続焼鈍を行うが800
〜900゜Cでの箱焼鈍でもよい.冷間圧延の圧下率は
60〜90%の範囲である.磁気特性の点からは1回冷
延法で75〜85%程度の圧下を行うのが適当である.
鉄損を小さくすることを重視する場合は、中間焼鈍を含
む2回以上の冷間圧延を行ってもよい.最終焼鈍は85
0’C以上で3分以内の焼鈍を連続焼鈍法で行うのが望
ましい.(実施例) 第1表に示す&ll威の鋼を実験室で溶解し、次の製造
工程で0.5一厚さの薄板とした.即ち、熱間圧延の加
熱温度は1150゜C1圧延仕上げ温度は850゜Cと
し、圧延後600’Cまで空冷した後、600゜Cに保
持した炉中に投入して炉冷した.これは熱延コイルの巻
取りに相当する熱処理である.熱延板の板厚は2.3m
−で、酸洗後更に950″Cで3分の熱処理を加えた.
これは熱延板の組織を再結晶させるために行うものであ
る.Si含有量が多い鯛は、熱延板で加工&lI織が残
り易く、冷間圧延時に表面形状が悪化するのでこのよう
な熱延板の熱処理を施すのである.その後、78%の圧
下率で0.5問厚まで冷間圧延した.この冷延板に95
0“CXI分の再結晶焼鈍を施した後、L方向とT方向
より試験片を打ち抜きで採取し、磁気特性の測定を行っ
た.測定の結果を第2表に示す.本発明鋼(イ、二、ト
)は、いずれもL方向とT方向との差が小さく、しかも
平均的な特性も優れていることが明らかである.これに
対して、高Al含有量の鋼でもBを含まない鋼(口、ホ
、チ)やBを添加してもAl含有量の少ない′w4(ハ
、り)では異方性が大きく、本発明の目的が達戒されて
いない.また、B含有量が多すぎる鋼(へ)では、磁気
異方性が若干大きくなり、平均値も悪くなる. (発明の効果) 本発明の無方向性iht鋼板は、仮面内における磁気特
性の異方性が極めて小さいものであり、しかも安価に製
造できるものである.本発明の電磁鋼板は、モーターや
トランスの鉄心材料などとしてそれらの性能向上に大き
く寄与する。
After hot rolling, in order to recrystallize the processed structure of hot rolling, 7
The hot rolled sheet is annealed at 50°C or higher, preferably 850°C or higher. However, if this temperature becomes too high, the crystal grains become coarse and cracks are likely to occur during the next cold rolling, so it is better to keep it below 1050°C. Usually 90
Continuous annealing is performed at 0 to 1000°C for less than 5 minutes, but 800°C
Box annealing at ~900°C may also be used. The reduction ratio of cold rolling is in the range of 60 to 90%. From the viewpoint of magnetic properties, it is appropriate to perform a one-time cold rolling process with a reduction of about 75 to 85%.
If reducing iron loss is important, cold rolling may be performed two or more times including intermediate annealing. Final annealing is 85
It is preferable to perform continuous annealing at 0'C or higher for less than 3 minutes. (Example) The steel shown in Table 1 was melted in a laboratory and made into a thin plate with a thickness of 0.5 mm in the next manufacturing process. That is, the heating temperature for hot rolling was 1150°C, the finishing temperature for rolling was 850°C, and after rolling, the material was air cooled to 600°C, and then placed in a furnace maintained at 600°C for furnace cooling. This is a heat treatment equivalent to winding a hot-rolled coil. The thickness of the hot rolled plate is 2.3m
- After pickling, heat treatment was further performed at 950''C for 3 minutes.
This is done to recrystallize the structure of the hot rolled sheet. Sea bream, which has a high Si content, tends to leave processing &lI weave in hot-rolled sheets, and the surface shape deteriorates during cold rolling, which is why hot-rolled sheets are heat-treated in this way. Thereafter, it was cold rolled to a thickness of 0.5 at a rolling reduction of 78%. 95 to this cold-rolled plate
After recrystallization annealing for 0"CXI, specimens were taken by punching from the L direction and the T direction, and the magnetic properties were measured. The results of the measurements are shown in Table 2. , 2, and g), the difference between the L direction and the T direction is small, and it is clear that the average properties are also excellent.On the other hand, even steel with a high Al content contains B. In steels with no Al content (ku, ho, chi) and 'w4 (c, ri) with low Al content even if B is added, the anisotropy is large, and the purpose of the present invention is not achieved. If the amount of steel is too large, the magnetic anisotropy will be slightly larger and the average value will also be worse. It is extremely small and can be manufactured at low cost.The electrical steel sheet of the present invention greatly contributes to improving the performance of motors and transformers as core materials.

Claims (1)

【特許請求の範囲】[Claims] 重量%で、C:0.005%以下、Si:1.0%を超
え4.0%未満、Mn:0.1%を超え1.5%未満、
P:0.1%以下、S:0.002%以下、Al:0.
10%を超え1.0%未満、N:0.004%以下、B
:0.0003%を超え0.0015%未満を含み、残
部はFeおよび不可避的不純物からなることを特徴とす
る面内異方性の小さい無方向性電磁鋼板。
In weight%, C: 0.005% or less, Si: more than 1.0% and less than 4.0%, Mn: more than 0.1% and less than 1.5%,
P: 0.1% or less, S: 0.002% or less, Al: 0.
More than 10% and less than 1.0%, N: 0.004% or less, B
: A non-oriented electrical steel sheet with small in-plane anisotropy, characterized by containing more than 0.0003% and less than 0.0015%, with the remainder consisting of Fe and unavoidable impurities.
JP15757289A 1989-06-19 1989-06-19 Nonoriented silicon steel sheet reduced in in-plane anisotropy Granted JPH0324250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15757289A JPH0324250A (en) 1989-06-19 1989-06-19 Nonoriented silicon steel sheet reduced in in-plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15757289A JPH0324250A (en) 1989-06-19 1989-06-19 Nonoriented silicon steel sheet reduced in in-plane anisotropy

Publications (2)

Publication Number Publication Date
JPH0324250A true JPH0324250A (en) 1991-02-01
JPH0569909B2 JPH0569909B2 (en) 1993-10-04

Family

ID=15652621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15757289A Granted JPH0324250A (en) 1989-06-19 1989-06-19 Nonoriented silicon steel sheet reduced in in-plane anisotropy

Country Status (1)

Country Link
JP (1) JPH0324250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306438A (en) * 1991-12-27 1993-11-19 Nippon Steel Corp Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JPH08256773A (en) * 1995-03-27 1996-10-08 Bio Material:Kk Carrier for immobilizing microorganism and conversion of nitrogen compound in liquid using the same
CN104152800A (en) * 2014-08-07 2014-11-19 河北钢铁股份有限公司 Low-magnetic-anisotropy non-oriented silicon steel plate and preparation technology thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331518A (en) * 1976-09-06 1978-03-24 Kawasaki Steel Co Method of making steel sheets with grown *100**lmn*texture
JPS62180014A (en) * 1986-02-04 1987-08-07 Nippon Steel Corp Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331518A (en) * 1976-09-06 1978-03-24 Kawasaki Steel Co Method of making steel sheets with grown *100**lmn*texture
JPS62180014A (en) * 1986-02-04 1987-08-07 Nippon Steel Corp Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306438A (en) * 1991-12-27 1993-11-19 Nippon Steel Corp Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JPH08256773A (en) * 1995-03-27 1996-10-08 Bio Material:Kk Carrier for immobilizing microorganism and conversion of nitrogen compound in liquid using the same
CN104152800A (en) * 2014-08-07 2014-11-19 河北钢铁股份有限公司 Low-magnetic-anisotropy non-oriented silicon steel plate and preparation technology thereof

Also Published As

Publication number Publication date
JPH0569909B2 (en) 1993-10-04

Similar Documents

Publication Publication Date Title
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
TWI406957B (en) High-frequency iron loss low non-directional electromagnetic steel sheet and its manufacturing method
WO2019182022A1 (en) Non-oriented electromagnetic steel sheet
TWI717201B (en) Non-directional electromagnetic steel sheet and manufacturing method thereof
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI641702B (en) Non-oriented electromagnetic steel sheet with excellent recyclability
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7253054B2 (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JP2022509677A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH0324250A (en) Nonoriented silicon steel sheet reduced in in-plane anisotropy
JP4240736B2 (en) Non-oriented electrical steel sheet with low iron loss and high magnetic flux density and method for producing the same
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2019035116A (en) Nonoriented electromagnetic steel sheet and method of producing the same
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP2022509670A (en) Non-oriented electrical steel sheet and its manufacturing method
JPH03274247A (en) Nonoriented silicon steel sheet excellent in magnetic property
KR102483636B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR102271303B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees