JPH03274247A - Nonoriented silicon steel sheet excellent in magnetic property - Google Patents
Nonoriented silicon steel sheet excellent in magnetic propertyInfo
- Publication number
- JPH03274247A JPH03274247A JP2074967A JP7496790A JPH03274247A JP H03274247 A JPH03274247 A JP H03274247A JP 2074967 A JP2074967 A JP 2074967A JP 7496790 A JP7496790 A JP 7496790A JP H03274247 A JPH03274247 A JP H03274247A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- internal oxidation
- annealing
- temperature
- silicon steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title abstract description 12
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 16
- 229910052718 tin Inorganic materials 0.000 claims abstract description 15
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 34
- 229910000831 Steel Inorganic materials 0.000 abstract description 25
- 238000000137 annealing Methods 0.000 abstract description 25
- 239000010959 steel Substances 0.000 abstract description 25
- 230000003647 oxidation Effects 0.000 abstract description 22
- 238000007254 oxidation reaction Methods 0.000 abstract description 22
- 238000005121 nitriding Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 23
- 238000000034 method Methods 0.000 description 8
- 238000005097 cold rolling Methods 0.000 description 7
- 239000011162 core material Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、Si含有量が1.5〜3.5%のいわゆる高
級無方向性電磁鋼板に関し、特に大型モーターや発電機
などの大型回転機の鉄心に適した低鉄損の無方向性ii
m鋼板に関するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a so-called high-grade non-oriented electrical steel sheet with a Si content of 1.5 to 3.5%, particularly for use in large rotating parts such as large motors and generators. Low core loss non-directional II suitable for machine cores
This relates to m-steel plates.
(従来の技術)
無方向性電磁鋼板は、磁気特性の板面内異方性が小さい
という特徴を活かして、モーターなどの回転機の鉄心材
料として用いられている。磁気特性としては、特に鉄損
が重要であり、JIS規格(C−2552改)では板厚
と鉄ti値により種類分けされている。鉄損は鉄を磁化
するときに発生する熱損失を表し、この値は小さいほど
良いことはもちろんであるが、経済性とa器のサイズな
どから目的に応じたグレードが選ばれる.一般に機器が
大きくなると、鉄損による発熱量は体積に比例して増加
するのに対し、放熱量は表面積にしか比例しないので、
機器の冷却が難しくなる。このため大型の機器になるほ
ど鉄損の低い材料が必要とされるのである。(Prior Art) Non-oriented electrical steel sheets are used as core materials for rotating machines such as motors, taking advantage of their small in-plane anisotropy in magnetic properties. As for the magnetic properties, iron loss is particularly important, and the JIS standard (revised C-2552) classifies them by plate thickness and iron ti value. Iron loss represents the heat loss that occurs when iron is magnetized, and it goes without saying that the smaller the value, the better, but the grade is selected according to the purpose based on economic efficiency and the size of the A-ware. Generally, as equipment gets larger, the amount of heat generated by iron loss increases in proportion to its volume, while the amount of heat dissipated is only proportional to its surface area.
It becomes difficult to cool the equipment. For this reason, the larger the equipment, the more materials with low iron loss are required.
鉄損は渦電流損とヒステリシス損の2つの要因に支配さ
れる.渦電fjtiは磁化によって誘起される渦ffl
沫による損失で、板厚と鋼の電気抵抗に依存する.板厚
は薄いほうが良いが、あまり薄いと鉄心の積層作業に手
間が掛かるなどの問題がでてくるので、JIS規格では
0.65、0.50、0.35+u+の3種のものが規
定されている。鋼の電気抵抗は高いほど良好で、合金元
素としては単位添加量あたりの電気抵抗増加率が大きく
しかも安価であることからSiが多く用いられる。電磁
鋼板が別名珪素鋼板と呼ばれるのはこのためで、Si含
有量が多いはど鉄損の低い高級を磁m板となる。Alや
JInなども同様の効果を有していることから、高級電
磁tm板ではよく使用される。Iron loss is controlled by two factors: eddy current loss and hysteresis loss. Eddy electric fjti is a vortex ffl induced by magnetization
The loss is due to droplets and depends on the plate thickness and the electrical resistance of the steel. The thinner the plate, the better, but if it is too thin, problems such as the labor-intensive work of laminating the core will occur, so the JIS standard specifies three types: 0.65, 0.50, and 0.35+u+. ing. The higher the electrical resistance of steel, the better, and Si is often used as an alloying element because it has a large electrical resistance increase rate per unit addition amount and is inexpensive. This is why electrical steel sheets are also called silicon steel sheets, and high-grade magnetic sheets with high Si content and low core loss are called magnetic sheets. Since Al and JIn have similar effects, they are often used in high-grade electromagnetic TM plates.
一方、ヒステリシス損は磁化の過程において磁壁の移動
を妨げる微細な析出物や結晶粒界が少ないほど小さくな
る。従って、できるだけ高純度の鋼を用いたうえで結晶
粒を成長させることがポイントとなる。Fi、量的には
、CやN10(酸素〉、Sのような微細析出物の原因と
なる不純物元素をできるだけ低くする必要がある。また
、TiやNb、■、Zrなどは微細な炭窒化物を生成す
る元素で、析出物の害に加えて析出物が結晶粒成長を阻
害し、ヒステリシス損を劣化させるので、これらの元素
の混入を厳重に制限する必要がある。On the other hand, the hysteresis loss becomes smaller as there are fewer fine precipitates and grain boundaries that impede movement of domain walls during the magnetization process. Therefore, it is important to grow crystal grains using steel of as high a purity as possible. Fi, in terms of quantity, it is necessary to reduce impurity elements such as C, N10 (oxygen), and S that cause fine precipitates as low as possible.Also, Ti, Nb, ■, Zr, etc. In addition to the harmful effects of precipitates, precipitates inhibit crystal grain growth and degrade hysteresis loss, so it is necessary to strictly limit the inclusion of these elements.
^eも微細なAI!、Nを生威し、同しような悪影響を
与えるので、低級電磁鋼板では一般に添加しない、中〜
高級it磁鋼板では電気抵抗を上げるためAlを添加す
るが、この場合には通常0.1%以上の多量添加を行い
、析出物を粗大化させることにより、ヒステリシス損へ
の悪影響を避けている。即ち、Anに関しては全く添加
しないか、或いは逆に多量に含有させるのがよいという
のが一般的な常識となっている。また、B(ボロン)も
強い窒化物を形成する元素であるが、BNは^INより
も結晶粒成長を回置する程度は弱いとされており、Al
含有量が0.1%以下の鋼にBを含有N量との量的バラ
ンスを一定範囲にして添加すると良好な磁気特性が得ら
れるという報告がなされている (例えば、特公昭58
−1172公報)、シかし、Bの添加効果については、
八lと複合して用いると^e添加量が削減できるという
経済的メリット以外にはあまり顕著な有効性は見出され
ておらず、Al含有量が0.1%を超える材料にBを添
加しても、コスト上昇を招くだけでBの効果が十分に得
られないとされている。^e is also a minute AI! ,N, and have a similar adverse effect, so it is generally not added to low-grade electrical steel sheets.
Al is added to high-grade IT magnetic steel sheets to increase electrical resistance, but in this case, it is usually added in large amounts of 0.1% or more to coarsen the precipitates and avoid adverse effects on hysteresis loss. . That is, it is common knowledge that it is better not to add An at all, or to add it in a large amount. B (boron) is also an element that forms strong nitrides, but BN is said to have a weaker effect on crystal grain growth than ^IN, and Al
It has been reported that good magnetic properties can be obtained by adding B to steel with a B content of 0.1% or less with a quantitative balance with the N content within a certain range (for example,
-1172 publication), Shikashi, and the effect of adding B.
Other than the economical advantage of reducing the amount of ^e added when used in combination with 8L, no significant effectiveness has been found, and B is added to materials with an Al content exceeding 0.1%. However, it is said that the effect of B will not be fully obtained, as it will only increase the cost.
また、結晶粒度の調整も鉄損低減の重要なポイントで、
ヒステリシス損は結晶粒が大きくなるほど低くなること
が知られている0粒成長のためにはできるだけ高温焼鈍
することが望ましく、Siを多く含む電磁鋼板はα/T
変態がないので原理的には焼鈍温度の制限はない、しか
しながら、SiやMn或いはAlを多く含む鋼板は、高
温で焼鈍するとm板表面で内部酸化や窒化が起こり、磁
気特性が逆に劣化する場合が多い、高級電磁鋼板では磁
気特性の改善を図るため、高温の熱延板焼鈍や2回冷延
法で高温の中間焼鈍を行うことも多く、窒化や内部酸化
の危険性は低級品よりはるかに大きい、高温での窒化防
止にはSbやSnなどが効果的とされている0例えば特
公昭56−
を含む電磁鋼板が、特公昭58−3027公報にはSn
を含むti!鋼板がそれぞれ開示されている。一方、内
部酸化の防止法としては、焼鈍雰囲気の露点調整が最も
一般的で、特殊な物質を鋼板表面に塗布する方法なども
提案されているが、必ずしも万全とは言いにくい。Adjustment of grain size is also an important point in reducing iron loss.
It is known that the hysteresis loss decreases as the crystal grains become larger.In order to achieve zero-grain growth, it is desirable to anneal as high a temperature as possible, and electrical steel sheets containing a large amount of Si are
Since there is no transformation, there is no restriction on the annealing temperature in principle. However, when steel sheets containing a large amount of Si, Mn, or Al are annealed at high temperatures, internal oxidation and nitridation occur on the surface of the m-plate, which deteriorates the magnetic properties. In order to improve the magnetic properties of high-grade electrical steel sheets, high-temperature hot-rolled sheet annealing or high-temperature intermediate annealing using a double cold rolling method is often performed, and the risk of nitridation and internal oxidation is lower than that of lower-grade products. Sb, Sn, etc. are considered to be effective in preventing nitriding at high temperatures.
Including ti! Each steel plate is disclosed. On the other hand, the most common method for preventing internal oxidation is to adjust the dew point of the annealing atmosphere, and methods such as applying special substances to the surface of the steel sheet have also been proposed, but these methods are not necessarily perfect.
高級無方向性電磁m板の低鉄損化のため、従来から組成
や製造条件等に関する数多くの改善がされてきたが、必
ずしも十分とは言えない、鉄損の支配要因は複雑に絡み
合っており、ある−面から見ると効果的な方法であって
も現実には逆の結果を招く場合も多い、前述の高温焼鈍
などはよい例であり、窒化や内部酸化を防止しない限り
その効果は発揮されない、窒化や内部酸化を防止しつつ
適正な結晶粒度に調整しようとすると、鋼の&[l威や
焼鈍条件など数多くの因子を厳密にコントロールする必
要があり、工業的に低鉄損の高級品を安定して製造する
ことは極めて困難である。In order to reduce the iron loss of high-grade non-directional electromagnetic m-plates, many improvements have been made to the composition, manufacturing conditions, etc., but these are not necessarily sufficient, and the factors governing iron loss are intricately intertwined. ,Even if a method is effective from a certain point of view, it often leads to the opposite result in reality.The high-temperature annealing mentioned above is a good example, and unless nitridation and internal oxidation are prevented, it will not be effective. In order to adjust the grain size to an appropriate level while preventing nitridation and internal oxidation, it is necessary to strictly control many factors such as the strength of the steel and annealing conditions. It is extremely difficult to manufacture products stably.
(発明が解決しようとする課覇)
本発明は上記の実情に鑑み、製造方法を従来のように狭
い条件に精密に限定しなくても、工業的に且つ容易な方
法で製造することができる鉄損の低い高級無方向性電磁
鋼板を提供することを目的とするものである。(Issues to be Solved by the Invention) In view of the above-mentioned circumstances, the present invention can be manufactured in an industrial and easy manner without having to precisely limit the manufacturing method to narrow conditions as in the past. The purpose is to provide a high-grade non-oriented electrical steel sheet with low iron loss.
(i1題を解決するための手段)
本発明者らは、電磁鋼板を高温i鈍したときの結晶粒成
長性並びに窒化と内部酸化挙動に及ぼす各種合金元素の
影響について詳細な検討を行った。(Means for Solving Problem I1) The present inventors conducted a detailed study on the influence of various alloying elements on grain growth, nitriding and internal oxidation behavior when electrical steel sheets are annealed at high temperatures.
その結果、比較的多量のA1を含む鋼をベースに微量の
Bを添加し、さらにSbまたはSnの1種以上を添加す
ることにより、高温焼鈍時の窒化と内部酸化が効果的に
防止できると同時に良好な結晶粒成長性が得られること
を見出した。As a result, it was found that nitridation and internal oxidation during high-temperature annealing can be effectively prevented by adding a small amount of B to a steel containing a relatively large amount of A1, and further adding one or more of Sb or Sn. It has also been found that good grain growth properties can be obtained at the same time.
本発明の要旨は下記の無方向性電磁鋼板にある。The gist of the present invention lies in the following non-oriented electrical steel sheet.
重量%で、
CF 0.005%以下、 Si : 1.5〜3.
5%、Hn : 0.1%〜1.5%、 S : 0.
005%以下、^1:0.15〜1.5%、 N :
0.005%以下、B : 0.0005%〜0.00
50%、さらにSbおよびSnの1種または2種を合計
で0.O1〜0.20%含み、残部Feおよび不可避不
純物からなることを特徴とする特許
磁鋼板。In weight%: CF 0.005% or less, Si: 1.5-3.
5%, Hn: 0.1% to 1.5%, S: 0.
005% or less, ^1: 0.15-1.5%, N:
0.005% or less, B: 0.0005% to 0.00
50%, and a total of 0.50% and one or both of Sb and Sn. A patented magnetic steel sheet characterized by containing 1 to 0.20% O, with the remainder consisting of Fe and unavoidable impurities.
従来、BはBNを通じて磁気特性を改善する効果がある
と考えられており、さらに^j!Nに比べて粒成長性に
対する悪影響が比較的少ないので、コストが安いが粒成
長性の悪い低ANlilでは、Bを添加して磁気特性を
改善しようとする試みがなされている.また、SbやS
nはNと反発する元素であり、高温焼鈍時の窒化防止に
効果があるとされているが、これらの元素は結晶粒界に
偏析し逆に内部酸化を助長する場合がある。Conventionally, B has been thought to have the effect of improving magnetic properties through BN, and in addition, ^j! Since it has relatively little adverse effect on grain growth compared to N, attempts have been made to improve the magnetic properties by adding B to low ANliil, which is cheap but has poor grain growth. Also, Sb and S
Although n is an element that repels N and is said to be effective in preventing nitridation during high-temperature annealing, these elements may segregate at grain boundaries and promote internal oxidation.
本発明者らはSiやi含有量の多い高級1tKf鋼板を
対象に、B,SbおよびSnが粒成長性と内部酸化に及
ぼす影響を詳細に検討した.その結果、^l含有量が0
.15%以上の高Al鋼にBを添加すると高温焼鈍での
内部酸化が防止されるとともに粒成長が一段と促進され
、しかもSbやSnの悪影響が現れないことを見出した
のである.この場合、ペースの^E含有量が高いので、
大部分のNは^lで固定され、Bは固溶状態で存在する
確率が高い.固溶したBはSbおよびSnより優先的に
結晶粒界に偏析しやすく、SbおよびSnの悪影響を抑
えるとともに高温焼鈍時の内部酸化を防ぐものと考えら
れる。The present inventors conducted a detailed study on the effects of B, Sb, and Sn on grain growth and internal oxidation in high-grade 1tKf steel sheets with high Si and i contents. As a result, the ^l content is 0
.. They found that adding B to high-Al steel with a content of 15% or more prevents internal oxidation during high-temperature annealing and further promotes grain growth, without the negative effects of Sb and Sn. In this case, since the pace has a high ^E content,
Most of the N is fixed in ^l, and there is a high probability that B exists in a solid solution state. B dissolved in solid solution is more likely to segregate at grain boundaries than Sb and Sn, and is thought to suppress the adverse effects of Sb and Sn and prevent internal oxidation during high-temperature annealing.
また、製造工程の加熱、冷却過程で一部生成したBNが
核となってAlNが戒長ずるため、一段と粒成長が促進
されるものと考えられる。In addition, it is thought that grain growth is further promoted because BN partially generated during the heating and cooling steps of the manufacturing process becomes a nucleus and the AlN is lengthened.
(作用)
以下、本発明の電磁鋼板における合金元素の作用効果を
含有量の限定理由とともに説明する。(Function) Hereinafter, the function and effect of the alloying elements in the electrical steel sheet of the present invention will be explained together with the reason for limiting the content.
■ C
Cは炭化物を生成して、あらゆる磁気特性を劣化させる
元素であり、できるだけ低くすることが望ましい.特に
磁気時効を防止するため、0.005%以下とする必要
があり、さらには0.003%以下とすることが望まし
い。■ CC C is an element that forms carbides and deteriorates all magnetic properties, so it is desirable to reduce it as much as possible. In particular, in order to prevent magnetic aging, the content must be 0.005% or less, and more preferably 0.003% or less.
■Si
Siは高級無方向性電磁鋼板として必要な鉄損を得るた
め1.5%以上の含有量とする.Siが1.5%未満で
は渦電流損が大きく鉄損が目標どおりに低くならない.
一方、Siが3.5%超えて含有されると冷間圧延性が
著しく劣化するので、これ以下とする。■Si The Si content should be 1.5% or more to obtain the core loss required for high-grade non-oriented electrical steel sheets. If Si is less than 1.5%, the eddy current loss will be large and the iron loss will not be as low as the target.
On the other hand, if Si is contained in an amount exceeding 3.5%, the cold rolling property will be significantly deteriorated, so the Si content should be less than this.
■Mn
MnはSによる熱間肌性を防ぐため0.1%以上の量を
含有させる.また、Mnは電気抵抗を増して渦電流損を
小さくするのにも有効である.しかし、Mn含有量が1
.5%を超えると鋼が跪化し結晶粒の成長性も悪化する
ので、これ以下とする。■Mn Mn is contained in an amount of 0.1% or more to prevent hot skin properties caused by S. Mn is also effective in increasing electrical resistance and reducing eddy current loss. However, the Mn content is 1
.. If it exceeds 5%, the steel will become weak and the growth of crystal grains will deteriorate, so the content should be less than this.
■ S
Sは硫化物系の析出物を生し、ヒステリシス損を嘲大さ
せるので0.005%以下、好ましくは0.002%以
下に抑えるのがよい。(2) S S produces sulfide-based precipitates and increases hysteresis loss, so it is best to suppress it to 0.005% or less, preferably 0.002% or less.
■ N
Nは窒化物を生成して磁気特性を;員なうので、0、0
05%以下、望ましくは0.002%以下とする。■ N N forms nitrides and contributes to magnetic properties, so 0, 0
0.05% or less, preferably 0.002% or less.
■ ^i
高級無方向性電磁鋼板では、一般に電気抵抗の増加とA
ffiNの粗大化の目的で0.15%以上含有させるこ
とが多いが、本発明でもこれらの効果に加えてNを完全
に固定し、Bの作用効果を十分に発揮させるため0.1
5%以上の量を含有させる, Affi含有量がO.
tS%未満では、BはBNとなる確率が高くなり、高温
焼鈍時の内部酸化防止に有効な固IBが不足する.一方
、1.5%を超えて含有させても効果が飽和し、価格の
上昇を招くだけなので、これ以下とする。■ ^i High-grade non-oriented electrical steel sheets generally have increased electrical resistance and
B is often contained in an amount of 0.15% or more for the purpose of coarsening ffiN, but in the present invention, in addition to these effects, B is contained in an amount of 0.1% or more in order to completely fix N and fully exhibit the effects of B.
Affi content is O.
If it is less than tS%, there is a high probability that B becomes BN, and solid IB, which is effective in preventing internal oxidation during high-temperature annealing, is insufficient. On the other hand, if the content exceeds 1.5%, the effect will be saturated and the price will only increase, so the content should be less than this.
■ B
本発明鋼板ではBはNと結合することなく、その大部分
は固溶状態で存在する。固溶したBは結晶粒界に偏析し
、高温焼鈍時の内部酸化を防止する。Bの含有量がo、
ooos%未満では固iBの量が不十分で内部酸化防止
の効果が小さい、一方、Bを0.0050%を超えて含
有させても前記効果が飽和し、価格の上昇を招くだけな
ので、これ以下とする。■ B In the steel sheet of the present invention, B does not combine with N, and most of B exists in a solid solution state. B dissolved in solid solution segregates at grain boundaries and prevents internal oxidation during high-temperature annealing. The content of B is o,
If the amount of solid iB is less than 0.005%, the effect of preventing internal oxidation is small.On the other hand, if B is contained in excess of 0.0050%, the effect will be saturated and the price will only increase. The following shall apply.
■Sb 、 Sn :
SbおよびSnは鋼板の表面に偏析して高温焼鈍時の窒
化を防ぐ作用がある。これらの元素はNと反発し合うの
で鋼板表面に窒素分子が吸着するのを妨げる結果、窒化
が防止されるものと考えられる。■Sb, Sn: Sb and Sn segregate on the surface of the steel sheet and have the effect of preventing nitridation during high temperature annealing. It is thought that these elements repel each other with N and thus prevent nitrogen molecules from adsorbing on the surface of the steel sheet, thereby preventing nitridation.
SbおよびSnの含有量が1種又は2種合計で0.01
%より少ないと、前記効果が得られない、一方、1種又
は2種合計で0.20%を超えて含有させても効果が飽
和するので、これ以下とする。The content of Sb and Sn is 0.01 in total of 1 type or 2 types
If the content is less than 0.20%, the above-mentioned effect cannot be obtained.On the other hand, even if the total content of one or both of them exceeds 0.20%, the effect will be saturated, so the content should be less than this.
なお、SbおよびSnは結晶粒界にも偏析しやすく、普
通は内部酸化を助長することが多いが、本発明のit電
磁鋼板は前記したようにBが先に結晶粒界に偏析するた
め、内部酸化に対するSbやSnの悪影響は少ない。Note that Sb and Sn tend to segregate at grain boundaries as well, and usually promote internal oxidation, but in the IT electrical steel sheet of the present invention, as mentioned above, B segregates at grain boundaries first. Sb and Sn have little adverse effect on internal oxidation.
上記のとおりの組成を有する本発明の1i磁鋼板は、下
記のような方法で製造することができる。The 1i magnetic steel sheet of the present invention having the composition as described above can be manufactured by the following method.
熱間圧延工程におけるスラブ加熱温度は1100〜12
50°Cの範囲とするのがよい、MnSの微細析出によ
る磁気特性劣化を防ぐには低温加熱の方がよいが、余り
低温では熱延仕上温度の確保が困難となって、コイル内
での磁気特性のバラツキが増したり、表面疵が発生しや
すくなるので、1150〜!200°C程度が好適であ
る。熱間圧延は仕上温度を高くとるほうが磁気特性は良
くなるので、800”C以上で圧延を終了するのがよい
0巻取りも高温の方がよいが、酸洗性との兼ね合いで6
00’C前後が適当な巻取り温度になる。The slab heating temperature in the hot rolling process is 1100-12
It is better to heat in the range of 50°C. Low-temperature heating is better to prevent deterioration of magnetic properties due to fine precipitation of MnS, but if the temperature is too low, it will be difficult to secure the hot-rolling finishing temperature, and the temperature within the coil will increase. 1150~! Approximately 200°C is suitable. In hot rolling, the higher the finishing temperature, the better the magnetic properties, so it is better to finish rolling at a temperature of 800"C or higher.It is also better to use a higher temperature for 0 winding, but in consideration of pickling properties,
Appropriate winding temperature is around 00'C.
熱間圧延の後、熱延の加工&11tIsを再結晶させる
ために熱延板焼鈍を行う、9通は800’C以上で行わ
れる。この熱延板焼鈍は高温で行う方が結晶粒が大きく
なり、ヒステリシス槓低鍼に有利であるが、従来の電磁
鋼板は窒化や内部酸化のために、箱焼鈍の場合は上限は
850″Cに抑えられている。After hot rolling, hot-rolled processing & hot-rolled plate annealing is performed to recrystallize the 11tIs, 9 times are carried out at 800'C or higher. When this hot-rolled sheet is annealed at a high temperature, the crystal grains become larger, which is advantageous for achieving low hysteresis and low acupuncture.However, in the case of box annealing, the upper limit for conventional electrical steel sheets is 85"C due to nitridation and internal oxidation. is suppressed.
これに対して、本発明のiltm鋼板は窒化および内部
酸化が生じにくいので高い温度で焼鈍することができる
。しかし、あまり高い温度になると結晶粒が粗大化し、
次の冷間圧延の隙に割れが発生しやすくなるから110
0’C以下に抑える方がよい。On the other hand, the ILTM steel sheet of the present invention is less prone to nitriding and internal oxidation and can be annealed at high temperatures. However, if the temperature is too high, the crystal grains will become coarser,
Because cracks are likely to occur in the gaps during the next cold rolling, 110
It is better to keep it below 0'C.
冷間圧延は1回圧延法により60〜90%の圧下率で最
終板厚にする。鉄損を小さくすることを重視する場合は
、中間焼鈍を含む2回以上の冷間圧延を行ってもよい、
最終焼鈍は850″C〜1100″Cの温度で行うのが
よい。Cold rolling is performed by a single rolling method to achieve the final thickness at a reduction rate of 60 to 90%. If it is important to reduce iron loss, cold rolling may be performed two or more times including intermediate annealing.
The final annealing is preferably carried out at a temperature of 850"C to 1100"C.
(実施例〉
第1表に示す&lI威の綱を実験室で溶解し、下記の製
造工程で0.5v+m厚さの薄板とした。なお、この実
施例では製造条件によるヒステリシス損の変化を明確に
するため、電気抵抗値のレベルを合わせて渦電流損がほ
ぼ同一となるように成分調整した。(Example) The &lI strength rope shown in Table 1 was melted in a laboratory and made into a thin plate with a thickness of 0.5V+m using the manufacturing process described below.In addition, in this example, changes in hysteresis loss due to manufacturing conditions are clearly explained. In order to achieve this, the electrical resistance values were matched and the components were adjusted so that the eddy current loss was almost the same.
■熱間圧延
加熱温度 :1150°C
圧延仕上げ温度:850”C
仕上げ板厚 : 2.3a+s
巻取り温度 :550”C
■酸洗後の熱延板焼鈍
第2表に示すとおり
■冷間圧延
圧下率 =78%
仕上げ板厚: 0.5mm
■冷間圧延後の最1!焼鈍
第2表に示すとおり
最終焼鈍後の鋼板から、L方向(圧延方向)とT方向(
圧延方向に直角)の試験片を切り出し、鉄損を測定した
。第3表にL方向とT方向における鉄損値の平均値を示
す。■Hot rolling heating temperature: 1150°C Finishing rolling temperature: 850"C Finished sheet thickness: 2.3a+s Coiling temperature: 550"C ■Hot rolled sheet annealing after pickling As shown in Table 2 ■Cold rolling Rolling ratio = 78% Finished plate thickness: 0.5mm ■First step after cold rolling! As shown in Annealing Table 2, from the steel plate after final annealing, the L direction (rolling direction) and T direction (
A test piece was cut out (perpendicular to the rolling direction) and the iron loss was measured. Table 3 shows the average values of iron loss values in the L direction and the T direction.
本発明鋼(1〜5)はいずれの焼鈍条件でも良好な鉄損
値を示し、熱延板焼鈍および最終焼鈍を高温で行うほど
特性が向上している。これに対し、比較鋼(6〜9)は
高温焼鈍を行っても特性の改善は見られず、逆に特性が
劣化する場合もあり、窒化や内部酸化の影響が大きいこ
とが明らかである。The steels (1 to 5) of the present invention exhibit good core loss values under any annealing conditions, and the properties improve as hot-rolled sheet annealing and final annealing are performed at higher temperatures. On the other hand, the comparative steels (6 to 9) show no improvement in properties even when subjected to high-temperature annealing, and on the contrary, properties sometimes deteriorate, and it is clear that the effects of nitridation and internal oxidation are large.
(以下、余白〉
(発明の効果)
本発明の無方向性電磁鋼板は、高温で焼鈍しても窒化や
内部酸化が生じないので、磁気特性に優れたものを工業
的に安定して製造することができる。(The following is a margin.) (Effects of the invention) The non-oriented electrical steel sheet of the present invention does not undergo nitridation or internal oxidation even when annealed at high temperatures, so it can be industrially and stably manufactured with excellent magnetic properties. be able to.
本発明の電磁tI4板を鉄心に使用することにより、大
型モーターや発tlIaなどの性能を向上させることが
できる。By using the electromagnetic tI4 plate of the present invention in an iron core, the performance of large motors, starter tlIa, etc. can be improved.
Claims (1)
:0.1%〜1.5%、S:0.005%以下、Al:
0.15〜1.5%、N:0.005%以下、B:0.
0005%〜0.0050%、 さらにSbおよびSnの1種または2種を合計で0.0
1〜0.20%含み、残部Feおよび不可避不純物から
なることを特徴とする磁気特性に優れた無方向性電磁鋼
板。[Claims] In weight%, C: 0.005% or less, Si: 1.5 to 3.5%, Mn
: 0.1% to 1.5%, S: 0.005% or less, Al:
0.15-1.5%, N: 0.005% or less, B: 0.
0005% to 0.0050%, and a total of 0.0% of one or both of Sb and Sn
A non-oriented electrical steel sheet with excellent magnetic properties, characterized by containing 1 to 0.20% of Fe, and the balance consisting of Fe and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2074967A JPH0686647B2 (en) | 1990-03-22 | 1990-03-22 | Non-oriented electrical steel sheet with excellent magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2074967A JPH0686647B2 (en) | 1990-03-22 | 1990-03-22 | Non-oriented electrical steel sheet with excellent magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03274247A true JPH03274247A (en) | 1991-12-05 |
JPH0686647B2 JPH0686647B2 (en) | 1994-11-02 |
Family
ID=13562573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2074967A Expired - Fee Related JPH0686647B2 (en) | 1990-03-22 | 1990-03-22 | Non-oriented electrical steel sheet with excellent magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0686647B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08291375A (en) * | 1995-04-21 | 1996-11-05 | Kawasaki Steel Corp | Nonoriented silicon steel sheet excellent in film adhesion |
US6428632B1 (en) | 1999-11-26 | 2002-08-06 | Kawasaki Steel Corporation | Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability |
JP2009068055A (en) * | 2007-09-12 | 2009-04-02 | Jfe Steel Kk | Non-oriented electrical steel sheet |
JP2017509799A (en) * | 2013-12-23 | 2017-04-06 | ポスコPosco | Non-oriented electrical steel sheet and manufacturing method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5468716A (en) * | 1977-11-11 | 1979-06-02 | Kawasaki Steel Co | Cold rolling unidirectional electromagnetic steel plate with high magnetic flux density |
JPS55158252A (en) * | 1979-05-30 | 1980-12-09 | Kawasaki Steel Corp | Cold rolled nonoriented electrical steel sheet of low iron loss |
JPS583027A (en) * | 1981-06-30 | 1983-01-08 | Fujitsu Ltd | Semantic information processing system on data base |
JPS60162751A (en) * | 1984-02-03 | 1985-08-24 | Kawasaki Steel Corp | Semi-process electrical steel sheet having excellent magnetic characteristic and surface characteristic and its production |
JPS62222021A (en) * | 1986-03-20 | 1987-09-30 | Nippon Steel Corp | Manufacture of nonoriented electrical sheet superior in brittleness resistance and magnetic characteristic after stress relief annealing |
JPS6333518A (en) * | 1987-06-27 | 1988-02-13 | Nippon Steel Corp | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production |
JPH01142050A (en) * | 1987-11-30 | 1989-06-02 | Kawasaki Steel Corp | Semiprocess nondirectional magnetic steel plate having low iron loss and high permeability |
-
1990
- 1990-03-22 JP JP2074967A patent/JPH0686647B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5468716A (en) * | 1977-11-11 | 1979-06-02 | Kawasaki Steel Co | Cold rolling unidirectional electromagnetic steel plate with high magnetic flux density |
JPS55158252A (en) * | 1979-05-30 | 1980-12-09 | Kawasaki Steel Corp | Cold rolled nonoriented electrical steel sheet of low iron loss |
JPS583027A (en) * | 1981-06-30 | 1983-01-08 | Fujitsu Ltd | Semantic information processing system on data base |
JPS60162751A (en) * | 1984-02-03 | 1985-08-24 | Kawasaki Steel Corp | Semi-process electrical steel sheet having excellent magnetic characteristic and surface characteristic and its production |
JPS62222021A (en) * | 1986-03-20 | 1987-09-30 | Nippon Steel Corp | Manufacture of nonoriented electrical sheet superior in brittleness resistance and magnetic characteristic after stress relief annealing |
JPS6333518A (en) * | 1987-06-27 | 1988-02-13 | Nippon Steel Corp | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production |
JPH01142050A (en) * | 1987-11-30 | 1989-06-02 | Kawasaki Steel Corp | Semiprocess nondirectional magnetic steel plate having low iron loss and high permeability |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08291375A (en) * | 1995-04-21 | 1996-11-05 | Kawasaki Steel Corp | Nonoriented silicon steel sheet excellent in film adhesion |
US6428632B1 (en) | 1999-11-26 | 2002-08-06 | Kawasaki Steel Corporation | Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability |
JP2009068055A (en) * | 2007-09-12 | 2009-04-02 | Jfe Steel Kk | Non-oriented electrical steel sheet |
JP2017509799A (en) * | 2013-12-23 | 2017-04-06 | ポスコPosco | Non-oriented electrical steel sheet and manufacturing method thereof |
US10643771B2 (en) | 2013-12-23 | 2020-05-05 | Posco | Non-oriented electrical steel sheet and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH0686647B2 (en) | 1994-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20150001467A (en) | Oriented electrical steel sheet and method of manufacturing the same | |
KR100345706B1 (en) | Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof | |
JP4358550B2 (en) | Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface | |
JP2007031755A (en) | Method for producing non-oriented silicon steel sheet for rotor | |
JP4218077B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP3239988B2 (en) | High-strength non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same | |
JP4123629B2 (en) | Electrical steel sheet and manufacturing method thereof | |
JPH03274247A (en) | Nonoriented silicon steel sheet excellent in magnetic property | |
JPH05140648A (en) | Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss | |
JPH0849044A (en) | Monoriented silicon steel sheet for electric automobile and its production | |
JP7245325B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4276391B2 (en) | High grade non-oriented electrical steel sheet | |
KR101110257B1 (en) | Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof | |
JP2000034521A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP3533655B2 (en) | Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy | |
JP4013262B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JPH0657332A (en) | Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss | |
JPH0569909B2 (en) | ||
JPH02149622A (en) | Manufacture of nonoriented silicon steel sheet having superior magnetic property | |
JPH11323438A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3885450B2 (en) | Non-oriented electrical steel sheet | |
KR100940719B1 (en) | Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing | |
JP2716987B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JPH0463252A (en) | Nonoriented silicon steel sheet excellent in magnetic property | |
KR20240081147A (en) | Non-oriented elecrical steel sheet and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071102 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081102 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |