JPH0463252A - Nonoriented silicon steel sheet excellent in magnetic property - Google Patents

Nonoriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH0463252A
JPH0463252A JP17554990A JP17554990A JPH0463252A JP H0463252 A JPH0463252 A JP H0463252A JP 17554990 A JP17554990 A JP 17554990A JP 17554990 A JP17554990 A JP 17554990A JP H0463252 A JPH0463252 A JP H0463252A
Authority
JP
Japan
Prior art keywords
steel sheet
loss
magnetic
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17554990A
Other languages
Japanese (ja)
Inventor
Teruo Kaneko
金子 輝雄
Hiroyoshi Yashiki
裕義 屋鋪
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17554990A priority Critical patent/JPH0463252A/en
Publication of JPH0463252A publication Critical patent/JPH0463252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a nonoriented silicon steel sheet stably produceable without problems such as nitriding and internal oxidation and having low core loss and high magnetic flux density by specifying a compsn. constituted of Si, Mn, Al and Fe and regulating C, S, N and O as impurities. CONSTITUTION:This is a nonoriented silicon steel sheet having a compsn. contg., by weight, >2.0 to <3.5% Si, >1.0 to <2.0% Mn and >1.0 to <2.0% Al in such a manner that the total of Si(%) +Al(%)+0.5XMn(%) is regulated to <5.0% and the balance Fe with inevitable impurities, in which the content of C, S, N and O as impurities is each regulated to <=0.005% and excellent in magnetic properties. The steel sheet has low core loss and excellent magnetic flux density.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Si含有量が2.0〜3.5%のいわゆる高
級無方向性!磁鋼板に係わり、特に大型モーターや発電
機などの大型回転機の鉄心に適した低鉄損で高磁束密度
の無方向性電磁鋼板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is directed to a so-called high-grade non-directional film having a Si content of 2.0 to 3.5%. The present invention relates to magnetic steel sheets, and particularly to non-oriented magnetic steel sheets with low core loss and high magnetic flux density that are suitable for cores of large rotating machines such as large motors and generators.

(従来の技術) 無方向性電磁鋼板は、磁気特性の板面内異方性が小さい
という特徴を活かしてモーターなどの回転機の鉄心に多
く用いられており、磁気特性としては鉄損と磁束密度が
重視される。鉄損は鉄心を磁化するときに発生する熱損
失で、この値が低い材料はど機器の電力ロスが小さい。
(Prior technology) Non-oriented electrical steel sheets are often used in the iron cores of rotating machines such as motors, taking advantage of their small in-plane anisotropy in magnetic properties, and their magnetic properties include iron loss and magnetic flux. Emphasis is placed on density. Iron loss is the heat loss that occurs when magnetizing an iron core, and materials with low values result in less power loss in equipment.

磁束密度は鉄心への磁気エネルギーの集中度を示し、こ
の値が高い材料はど機器を小型化できる。
Magnetic flux density indicates the degree of concentration of magnetic energy in the iron core, and materials with high values can make equipment smaller.

一般に大型機器では小型機器より低鉄損の高級材が必要
とされる。これは鉄損による発熱量は鉄心の体積に比例
するのに対し、放熱量は表面積にしか比例しないことか
ら、機器が大型になるほど冷却が難しくなるためである
。この鉄損は渦電流損とヒステリシス損の二つの要因に
支配される。
Large equipment generally requires higher quality materials with lower core loss than smaller equipment. This is because the amount of heat generated by iron loss is proportional to the volume of the core, while the amount of heat dissipated is only proportional to the surface area, so the larger the device, the more difficult it is to cool it. This iron loss is controlled by two factors: eddy current loss and hysteresis loss.

渦電ft損は磁化により誘起された渦電流による損失で
、鋼の比抵抗と板厚に依存する。板厚は薄いほど渦電流
損は低くなるが、あまり薄いと積層作業が煩雑になるの
で、JIS規格では0.65mm1゜0.5抛−および
0.35m−の3種の板厚が規定されている。材料的に
は鋼の比抵抗が高いほど渦電流損は低(なり、一般に合
金元素の添加が有効である。
Eddy electric loss is a loss due to eddy current induced by magnetization, and depends on the resistivity and plate thickness of the steel. The thinner the plate, the lower the eddy current loss, but if it is too thin, the lamination work becomes complicated, so the JIS standard specifies three types of plate thickness: 0.65 mm 1° 0.5 mm and 0.35 m. ing. In terms of materials, the higher the specific resistance of the steel, the lower the eddy current loss (the lower it becomes), and the addition of alloying elements is generally effective.

特にSiは単位添加量あたりの比抵抗増加率が太きく、
しかも安価であることから多く用いられている。また、
A1およびMnも同様の効果があるので、高級!磁鋼板
ではよく用いられている。無方向性電磁鋼板の場合、板
厚が同しであれば渦電流損は比抵抗値からほぼ一義的に
決まるのでS】などの合金元素の添加量もグレードに応
して概ね決まることになる。
In particular, Si has a large rate of increase in specific resistance per unit amount of addition.
Moreover, it is widely used because it is inexpensive. Also,
A1 and Mn have similar effects, so they are high class! It is often used in magnetic steel sheets. In the case of non-oriented electrical steel sheets, if the sheet thickness is the same, the eddy current loss is almost uniquely determined by the specific resistance value, so the amount of alloying elements such as S is also determined roughly depending on the grade. .

一方、ヒステリシス損は磁化過程における磁壁移動の妨
げとなる微細な析出物や結晶粒界が少ないほど低くなる
。従って、高級を磁鋼板では素材に高純度の鋼を用いた
上で結晶粒を成長させることが製造におけるポイントと
なる。成分的にはCやS、NおよびO(#素)のような
微細析出物の原因となる不純物元素の含有量をできるだ
け低く抑え、TiやNb、■、Zrなどの炭窒化物形成
元素の混入を厳しく制限することが重要とされる。微細
な析出物はそれ自身が磁壁移動を妨げる上、粒成長も阻
害する。 AIも微細なAINを生成し、同しような悪
影響を与えるので、Si含有量の少ない低級1を磁鋼板
では添加されない場合が多いが、高級電磁鋼板では比抵
抗を増加させる目的で添加している。この場合は通常0
.1%以上の多量添加により析出物を粗大化して結晶粒
成長への悪影響を避けている。また、結晶粒の成長と併
せてその粒度調整も重要で、ヒステリシス損は結晶粒が
大きくなるほど低くなる。粒成長を促進させるためには
できるだけ高温焼鈍することが望ましく、α/γ変態が
ない高Si鋼では原理的には焼鈍温度の制限はない。し
かし、SiやMnあるいはAIを多く含む鋼板を高温で
焼鈍すると、鋼板表面で内部酸化や窒化が起こり易く、
磁気特性が逆に劣化することがある。高温焼鈍時の窒化
防止にはsbやSnなど特殊元素の添加がを効であり、
内部酸化防止には焼鈍雰囲気の露点調整や特殊な物質を
鋼板表面に塗布する方法などが有効であるとされている
が、必ずしも十分とは言い難い。
On the other hand, the hysteresis loss decreases as the number of fine precipitates and grain boundaries that impede domain wall movement during the magnetization process decreases. Therefore, the important point in manufacturing high-grade magnetic steel sheets is to use high-purity steel as the raw material and to grow the crystal grains. In terms of composition, the content of impurity elements that cause fine precipitates such as C, S, N, and O (#element) is kept as low as possible, and carbonitride-forming elements such as Ti, Nb, ■, and Zr are kept as low as possible. It is important to strictly limit contamination. Fine precipitates themselves not only hinder domain wall movement but also inhibit grain growth. AI also generates fine AIN and has a similar negative effect, so low-grade 1, which has a low Si content, is often not added to magnetic steel sheets, but it is added to high-grade magnetic steel sheets for the purpose of increasing specific resistance. . In this case it is usually 0
.. By adding a large amount of 1% or more, the precipitates are coarsened to avoid adverse effects on crystal grain growth. In addition to the growth of crystal grains, grain size adjustment is also important, and the larger the crystal grains, the lower the hysteresis loss. In order to promote grain growth, it is desirable to perform annealing at as high a temperature as possible, and in principle there is no limit to the annealing temperature for high-Si steels that do not undergo α/γ transformation. However, when a steel plate containing a large amount of Si, Mn, or AI is annealed at high temperatures, internal oxidation and nitridation tend to occur on the steel plate surface.
On the contrary, the magnetic properties may deteriorate. The addition of special elements such as sb and Sn is effective in preventing nitridation during high-temperature annealing.
Although methods such as adjusting the dew point of the annealing atmosphere and applying special substances to the surface of the steel sheet are effective ways to prevent internal oxidation, these methods are not necessarily sufficient.

ところで、以上述べた鉄損改善の手法はいずれも磁束密
度の観点からは不利な方向にある。即ち、渦電流損低減
のためSiなどの合金元素を多量に添加すると、鉄の含
有量がその分だけ減り磁束密度は必然的に低下する。ヒ
ステリシス損を下げるため結晶粒を成長させると、磁気
特性に不利な集合組織(結晶学的配向)が発達しやすく
なり、磁束密度は低下する。
By the way, all of the methods for improving iron loss described above are disadvantageous from the viewpoint of magnetic flux density. That is, when a large amount of an alloying element such as Si is added to reduce eddy current loss, the iron content decreases by that amount, and the magnetic flux density inevitably decreases. When crystal grains are grown to reduce hysteresis loss, a texture (crystalline orientation) that is unfavorable to magnetic properties tends to develop, and the magnetic flux density decreases.

磁束密度と鉄損を両立させる手段としては、集合組織を
制御するのが有効であることが知られている。方向性!
磁鋼板はこの手段を最大限に利用したものであり、磁化
が容易なく 100 >軸を圧延方向に揃えることで、
その方向の鉄損と磁束密度を同時に向上させている。無
方向性tM1鋼板の場合は圧延面に平行な(100)面
をもった結晶粒を多くすればよいが、今のところそれを
工業的に実現した高級無方向性電磁鋼板は現れていない
It is known that controlling the texture is effective as a means of achieving both magnetic flux density and iron loss. Direction!
Magnetic steel sheets make maximum use of this method, and are not easily magnetized.By aligning the axes in the rolling direction,
This simultaneously improves iron loss and magnetic flux density in that direction. In the case of a non-oriented tM1 steel sheet, it is sufficient to increase the number of crystal grains with (100) planes parallel to the rolling surface, but so far no high-grade non-oriented electrical steel sheet that has achieved this industrially has appeared.

特開昭58−25427号公報には集合組織を利用した
無方向性を磁鋼板の製造方法が開示されている。
Japanese Unexamined Patent Publication No. 58-25427 discloses a method for manufacturing a non-directional magnetic steel sheet using texture.

この方法ではSiをほとんど含まない高Al鋼(AI 
:0.6〜3.0%)を素材に用いると、焼鈍によって
(100)の強い集合組織が発達し、磁束密度と鉄損が
同時に改善されるとあるが、素材鋼はSi量が少ないた
め、得られる無方向性!磁鋼板は比較的高い鉄損レベル
である。
This method uses high Al steel (AI) containing almost no Si.
:0.6~3.0%) is used in the material, a strong (100) texture develops through annealing, and magnetic flux density and iron loss are improved at the same time, but the material steel has a low Si content. Therefore, you get no direction! Magnetic steel sheets have relatively high iron loss levels.

また、特開昭58−23410号公報に、2.5%以上
の31と1.0%以上の屓を含む鋼を用い、冷間圧延を
高圧下率で、仕上焼鈍を1050°C以上の温度で3秒
以上60秒未満という条件で行う低鉄損で高磁束密度の
無方向性!磁鋼板の製造方法が開示されている。しかし
、この方法の場合、仕上焼鈍の時間が60秒未満と短い
とはいえ、このような高温で処理すると内部酸化や表面
疵などが発生する危険性が高い。
In addition, Japanese Patent Application Laid-open No. 58-23410 discloses that steel containing 2.5% or more of 31 and 1.0% or more of slag is used, cold rolling is performed at a high reduction rate, and finish annealing is performed at a temperature of 1050°C or more. Non-directional with low iron loss and high magnetic flux density, performed at a temperature of 3 seconds or more but less than 60 seconds! A method of manufacturing a magnetic steel sheet is disclosed. However, in the case of this method, although the final annealing time is short, less than 60 seconds, there is a high risk that internal oxidation, surface flaws, etc. will occur if the process is carried out at such high temperatures.

(発明が解決しようとする課題) 本発明は上記の状況に鑑み、窒化や内部酸化などの問題
がなく、工業的に安定して生産することができる低鉄損
で高磁束密度の無方向性!磁鋼板を提供することを目的
とする。
(Problems to be Solved by the Invention) In view of the above circumstances, the present invention aims to provide a non-directional material with low core loss and high magnetic flux density, which is free from problems such as nitridation and internal oxidation, and which can be produced stably industrially. ! The purpose is to provide magnetic steel sheets.

(課題を解決するための手段) 本発明者らは、高Si鋼の磁気特性に及ぼす合金元素の
影響を種々調査する過程で、AIと一〇を複合添加した
場合のみ鉄損と磁束密度が同時に改善されることを見出
した。
(Means for Solving the Problems) In the process of investigating various effects of alloying elements on the magnetic properties of high-Si steel, the present inventors found that only when AI and 10 were added in combination, iron loss and magnetic flux density decreased. It was found that improvements were made at the same time.

上記知見に基づく本発明は「重量%で、Sl:2.0%
を超え3.5%未満、Mn : 1.0%を超え2.0
%未満、Al : 1.0%を超え2.0%未満で、か
つSi(%)+^1(%)+0.5×Mn(%)の総和
が5.0%未満となるように含有し、残部がFeおよび
不可避不純物からなり、不純物としてのC,S、Nおよ
び0がいずれも0.005%以下である磁気特性の優れ
た無方向性tMi鋼板」を要旨とする。
The present invention based on the above knowledge is based on "Sl: 2.0% by weight%"
more than 3.5%, Mn: more than 1.0% and less than 2.0
%, Al: more than 1.0% and less than 2.0%, and contained so that the sum of Si (%) + ^1 (%) + 0.5 × Mn (%) is less than 5.0% However, the remainder consists of Fe and unavoidable impurities, and the content of C, S, N, and 0 as impurities is all 0.005% or less, and the non-oriented tMi steel sheet has excellent magnetic properties.''

上記組成からなる本発明の無方向性it磁鋼板が低鉄損
で磁束密度に優れるのは、AIと−nの相乗効果による
。その詳細な機構は今のところ十分には解明されていな
いが、AIおよびMnが冷延圧延後の焼鈍時に集合組織
形成を通して磁気特性に好影響を与えているためである
と考えられる。
The reason why the non-oriented IT magnetic steel sheet of the present invention having the above composition has low core loss and excellent magnetic flux density is due to the synergistic effect of AI and -n. Although the detailed mechanism has not yet been fully elucidated, it is thought that this is because AI and Mn have a favorable effect on the magnetic properties through texture formation during annealing after cold rolling.

即ち、(1001集合組織の形成には冷間圧延前の結晶
粒径が影響すると言われており、冷間圧延前の結晶粒径
を制御するため高級品では熱延板焼鈍を行うが、この時
、AIのみが多い材料では結晶粒が大きくなりすぎ、ま
たMnのみが多い材料では逆に小さくなりすぎるが、A
IとMnの共存下ではこれらの元素の作用が相殺されて
適正な粒径になるためと考えられる。またAIとMnを
多量に添加することによりAINやMnSが粗大化し易
くなり、結晶粒成長性を改善すると同時に集合組織形成
にも好ましい影響を与えているものと推定される。
In other words, it is said that the formation of the (1001 texture) is influenced by the crystal grain size before cold rolling, and hot-rolled sheets are annealed for high-grade products to control the crystal grain size before cold rolling. When a material containing only a large amount of AI has a large amount of crystal grains, the crystal grains become too large, and a material containing only a large amount of Mn becomes too small.
This is considered to be because when I and Mn coexist, the effects of these elements are canceled out, resulting in an appropriate particle size. It is also presumed that by adding a large amount of AI and Mn, AIN and MnS tend to become coarser, improving crystal grain growth and at the same time having a favorable effect on texture formation.

(作用) 以下、本発明の1!磁鋼板における合金元素の作用効果
とその含有量を前記のように限定した理由を説明する。
(Function) Hereinafter, 1! of the present invention! The effects of the alloying elements in the magnetic steel sheet and the reason why their contents are limited as described above will be explained.

Sl : Siは比抵抗を高めて渦電流損を低減するのに有効であ
り、高級無方向性電磁鋼板として必要な鉄損を得るため
2.0%を超える含有量とする。 Siが2.0%以下
では鉄損が目標どおりに低くならない。
Sl: Si is effective in increasing specific resistance and reducing eddy current loss, and the content is set to exceed 2.0% in order to obtain the iron loss necessary for a high-grade non-oriented electrical steel sheet. If Si is less than 2.0%, the iron loss will not be as low as the target.

一方、必要以上にSiを含有すると冷間圧延性が損なわ
れるので、上限は3.5%未満とする。
On the other hand, if Si is contained more than necessary, cold rollability will be impaired, so the upper limit is less than 3.5%.

Mn: Mnは高級電磁鋼板ではSによる熱間脆性を防ぐため添
加されるが、特殊な場合を除き含有量が1.0%を超え
ることはない0本発明ではMnは集合組織制御による磁
気特性の改善を目的に1.0%を超えて積極的に含有さ
せる。Mnが1.0%以下では目的とする効果が得られ
ない。しかし、必要以上に多く添加すると鋼が脆化し、
且つ結晶粒の成長性が悪化するので、含有量の上限は2
.0%未満とする。
Mn: Mn is added to high-grade electrical steel sheets to prevent hot embrittlement caused by S, but the content never exceeds 1.0% except in special cases. In the present invention, Mn improves magnetic properties by texture control. Actively include more than 1.0% for the purpose of improving. If Mn is less than 1.0%, the desired effect cannot be obtained. However, adding more than necessary will cause the steel to become brittle.
In addition, the growth of crystal grains deteriorates, so the upper limit of the content is 2.
.. Less than 0%.

Mnは前記効果の他に、比抵抗の増加にも有効であり、
しかも冷間圧延性をあまり損ねない元素である。従って
、Mnの多量添加により靭性劣化傾向の強いSiの含有
量を低減することができる利点もある。
In addition to the above effects, Mn is also effective in increasing specific resistance,
Furthermore, it is an element that does not significantly impair cold rolling properties. Therefore, there is an advantage that the addition of a large amount of Mn can reduce the content of Si, which has a strong tendency to deteriorate toughness.

Al: AIは一般に高級電磁鋼板では比抵抗の増加とAINの
粗大化を目的に0.1〜1.0%含有されるが、本発明
ではMnと同様に集合組織の改善のため1.0%を越え
て含有させる。 AIが1.0%以下では目的の効果が
得られず、2.0%以上含有すると鋼が詭化し冷間加工
性が損なわれる。
Al: Generally, high-grade electrical steel sheets contain 0.1 to 1.0% of AI for the purpose of increasing resistivity and coarsening the AIN, but in the present invention, it is contained at 1.0% to improve the texture like Mn. %. If AI is less than 1.0%, the desired effect will not be obtained, and if it is contained more than 2.0%, the steel will deteriorate and cold workability will be impaired.

本発明では、Si、 MnおよびAIの含有量は、それ
ぞれ前記範囲内で且つ下記0式を満たすようにすSi(
%)+Al(%)+Q、5XMn(%)<5.0%・・
■この0式の左辺の総和は、綱の比抵抗にほぼ比例し、
鉄損の指標となるものである。目的の低鉄損を確保する
には、総和が3.5%を超える必要があるが、これはS
i、 MnおよびA1の含有量がそれぞれ前記範囲に入
っておれば自動的に満足される。
In the present invention, the contents of Si, Mn and AI are set to be within the above ranges and satisfy the following formula 0.
%) + Al (%) + Q, 5XMn (%) < 5.0%...
■The sum of the left-hand side of this equation 0 is approximately proportional to the specific resistance of the rope,
This is an indicator of iron loss. In order to achieve the desired low core loss, the total must exceed 3.5%, which is
This is automatically satisfied if the contents of i, Mn and A1 are each within the above ranges.

しかし、Si、MnおよびA1の含有量がそれぞれ前記
範囲に入っていても総和が5.0%以上になると冷間圧
延性などが著しく劣化し、工業的に安定して製造するの
が困難となる。
However, even if the contents of Si, Mn, and A1 are each within the above ranges, if the total content exceeds 5.0%, cold rolling properties will deteriorate significantly, making it difficult to manufacture stably industrially. Become.

C,S、N、Q: これらの不純物元素は微細な析出物を生成して磁気特性
を劣化させるので、いずれも0.005%以下に抑えな
ければならない、望ましくは、Cは炭化物による磁気時
効を防ぐため0.003%以下、SはMnSの微細析出
物を減らすため0.002%以下、NはAINなどの窒
化物を減らすため0.002%以下、0は酸化物を減ら
すため0.002%以下に抑えるのがよい。
C, S, N, Q: These impurity elements form fine precipitates and deteriorate the magnetic properties, so each must be suppressed to 0.005% or less. S is 0.002% or less to reduce fine precipitates of MnS, N is 0.002% or less to reduce nitrides such as AIN, and 0 is 0.002% or less to reduce oxides. It is preferable to suppress it to 0.002% or less.

なお、不可避的に混入するT1、Zr、 Nb、 Vな
どの炭窒化物形成元素はできるだけ少なくする必要があ
るのは従来と同様である。また、Bは0.005%以下
含まれていても本願の効果を損なうことはない。
Note that, as in the past, it is necessary to minimize carbonitride-forming elements such as T1, Zr, Nb, and V that are inevitably mixed in. Further, even if B is contained in an amount of 0.005% or less, the effects of the present application will not be impaired.

上記の組成を有する本発明の無方向性!磁鋼板は、下記
の工程で製造することができる。
Non-directional of the present invention having the above composition! A magnetic steel sheet can be manufactured by the following process.

〔素材鋼〕−〔熱間圧延工程〕−[熱延板焼鈍工程]−
〔1回又は中間焼鈍を挟む2回以上の冷間圧延工程〕−
〔最終焼鈍工程〕 本発明の低鉄損で高磁束密度の無方向性tM1鋼板は、
上記各工程に煩雑な条件を付けなくても製造することが
できるが、望ましい各工程の条件は下記のとおりである
[Material steel] - [Hot rolling process] - [Hot rolled plate annealing process] -
[Cold rolling process once or twice or more with intermediate annealing]-
[Final annealing process] The low core loss and high magnetic flux density non-oriented tM1 steel plate of the present invention is
Although it is possible to manufacture the above-mentioned steps without any complicated conditions, the desirable conditions for each step are as follows.

C熱間圧延工程〕 熱間圧延工程におけるスラブ加熱温度は1100〜12
50℃の範囲、望ましく 1150〜1200℃の範囲
とするのがよい、MnSの微細析出による磁気特性劣化
を防ぐには低温加熱の方がよいが、あまり低温では熱延
仕上げ温度の確保が困難となりコイル内での磁気特性の
バラツキが増えたり、表面疵が発生し易くなる。熱延仕
上げ温度は高い方が磁気特性が良好で、普通800°C
以上が適当である。また巻取り温度も高い方がよいが、
酸洗性が悪くなるのでそれらの兼ね合いで600°C前
後が適当である。
C hot rolling process] The slab heating temperature in the hot rolling process is 1100 to 12
The heating temperature should be in the range of 50°C, preferably in the range of 1150 to 1200°C. Low-temperature heating is better to prevent deterioration of magnetic properties due to fine precipitation of MnS, but if the temperature is too low, it will be difficult to secure the hot-rolling finishing temperature. Variations in magnetic properties within the coil increase, and surface flaws are more likely to occur. The higher the hot rolling finishing temperature, the better the magnetic properties, usually 800°C.
The above is appropriate. It is also better to have a higher winding temperature.
Since the pickling properties deteriorate, a temperature of around 600°C is appropriate considering these factors.

[熱延板焼鈍工程] 高級!磁鋼板では、熱間圧延の後で加工&11織を再結
晶させるため熱延板焼鈍を行う。この温度は高い方がよ
く普通800℃以上で行うが、あまり高温になると結晶
粒が粗大化し過ぎ冷間圧延性を損なうことがあるので、
1100“6位を上限とするのがよい、熱延板焼鈍は、
磁気特性および表面性状を改善することを目的に行うも
のであるが、場合によっては窒化や内部酸化が生じて全
く逆の結果上なることがある。このため従来、焼鈍条件
に細心の注意を要し、しかも互いに相反する要因を両立
させようとするため必ずしも十分満足すべき状態での処
理ができなかった0本発明の無方向性Nfn#4板は比
較的低い温度で処理しても結晶粒径の制御が容易である
ため、従来のような高温で処理しなくでも結晶粒径を制
御することができる。
[Hot rolled plate annealing process] High quality! For magnetic steel sheets, after hot rolling, the hot rolled sheets are annealed to recrystallize the processed & 11 weave. It is better to set this temperature higher than 800°C, but if the temperature is too high, the crystal grains may become too coarse and the cold rollability may be impaired.
For hot rolled sheet annealing, the upper limit should be 1100"6".
Although this is done for the purpose of improving magnetic properties and surface properties, in some cases nitridation or internal oxidation may occur, resulting in the exact opposite result. For this reason, in the past, the non-oriented Nfn#4 plate of the present invention required careful attention to the annealing conditions, and was not necessarily able to be processed in a fully satisfactory state due to attempts to balance contradictory factors. Since it is easy to control the crystal grain size even when treated at a relatively low temperature, the crystal grain size can be controlled without having to be treated at a high temperature as in the conventional method.

[冷間圧延工程〕 冷間圧延は、1回又は中間焼鈍を挟む2回以上のどちら
でもよい、−回冷延法を採用する場合は60〜90%の
圧下率で最終板厚にするのがよい。特に鉄損を重視する
場合は中間焼鈍を含む二面冷延法を採用するのがよい、
中間焼鈍は仕上げ焼鈍と同様の条件でおこなうのがよい
[Cold rolling process] Cold rolling may be carried out once or twice or more with intermediate annealing in between. When using the -fold cold rolling method, the final plate thickness should be achieved at a reduction rate of 60 to 90%. Good. If iron loss is particularly important, it is better to use a two-sided cold rolling method that includes intermediate annealing.
Intermediate annealing is preferably performed under the same conditions as final annealing.

〔最終焼鈍工程〕[Final annealing process]

最終焼鈍および前記の中間焼鈍は950〜l050”C
で行うのがよい、最終焼鈍および中間焼鈍は高温で行う
方が結晶粒が大きくなりヒステリシス損低減に有効であ
るが、従来のような高い温度であると窒化や内部酸化の
問題が発生し、また結晶粒径も粗大化して渦を潰損の点
から不利となる0本発明の無方向性電磁綱板は粒径の制
御も容易であるので、低い温度で最適な粒径とすること
ができる。
The final annealing and the intermediate annealing are from 950 to 1050"C
It is better to perform the final annealing and intermediate annealing at a high temperature because the crystal grains become larger and it is effective in reducing hysteresis loss. In addition, the crystal grain size also becomes coarse, which is disadvantageous in terms of vortex collapse.The non-oriented electromagnetic steel sheet of the present invention can easily control the grain size, so it is possible to obtain the optimum grain size at low temperatures. can.

(実施例) 第1表に示す組成の鯛を溶解し、下記の製造工程で0.
5mm厚さの薄板とした。なお、それぞれの鋼の成分は
比抵抗のレベルがほぼ同一となるように調整した。
(Example) The sea bream having the composition shown in Table 1 was dissolved, and the following manufacturing process was carried out to obtain 0.
It was made into a thin plate with a thickness of 5 mm. The components of each steel were adjusted so that the specific resistance levels were almost the same.

熱間圧延は、加熱温度1150°C1仕上げ温度850
°C,巻取り温度550°Cの条件で2.3mm厚に仕
上げた。熱延板は酸洗した後、100%H2の雰囲気中
で1時間均熱する熱処理を施し、次いで、78%の圧下
率で0.5+sw厚まで冷間圧延した。最終焼鈍は9゜
%Nz  10%H2の雰囲気中で60秒保持する模擬
連続焼鈍を行った。
For hot rolling, the heating temperature is 1150°C, and the finishing temperature is 850°C.
It was finished to a thickness of 2.3 mm under the conditions of 550°C and a winding temperature of 550°C. After pickling the hot rolled sheet, it was subjected to a heat treatment of soaking for 1 hour in a 100% H2 atmosphere, and then cold rolled to a thickness of 0.5+sw at a rolling reduction of 78%. The final annealing was a simulated continuous annealing in which the sample was held for 60 seconds in a 9°% Nz 10% H2 atmosphere.

最終焼鈍の後、L方向(圧延方向)と下方向(圧延方向
に直角)より試験片を採取し、磁気特性を測定した。磁
気特性はL方向と下方向の平均値で評価した。第2表に
試験結果を示す。
After the final annealing, test pieces were taken from the L direction (rolling direction) and the downward direction (perpendicular to the rolling direction), and their magnetic properties were measured. The magnetic properties were evaluated using the average value in the L direction and the downward direction. Table 2 shows the test results.

(以下、余白) 第2表より、本発明鋼(述1〜4)は、いずれも良好な
磁気特性を有していることが明らかである。
(Hereinafter, blank spaces) From Table 2, it is clear that the steels of the present invention (statements 1 to 4) all have good magnetic properties.

これに対して、Slが低い比較鋼(NO,5)および八
)とMnが両方とも本発明で定める範囲外の比較鋼(N
l16)は、鉄損と磁束密度のいずれもが本発明鋼より
劣っている。また、Mnのみが本発明で定める範囲外の
比較11(Nl17)は磁束密度は比較的よいが鉄損が
悪く、^lのみが本発明で定める範囲外の比較m1(N
11B)は、逆に鉄損はよいが磁束密度が劣る。
In contrast, comparative steel (NO, 5) with low Sl and comparative steel (NO, 8) with Mn both outside the range defined by the present invention
116) is inferior to the steel of the present invention in both iron loss and magnetic flux density. Comparison 11 (Nl17), in which only Mn is outside the range defined by the present invention, has a relatively good magnetic flux density but poor iron loss;
11B), on the other hand, has good iron loss but poor magnetic flux density.

(発明の効果) 本発明の無方向性iri11m板は、鉄損が低く、しか
も高磁束密度であり、また、製造方法に特殊な制約もな
く工業的に安定して製造することができる0本発明の無
方向性itM1鋼板は、大型のモーターや発電機などの
性能向上に大きく寄与する。
(Effects of the Invention) The non-directional iri11m plate of the present invention has low iron loss and high magnetic flux density, and can be industrially and stably manufactured without any special restrictions on the manufacturing method. The non-oriented ITM1 steel sheet of the invention greatly contributes to improving the performance of large motors, generators, etc.

Claims (1)

【特許請求の範囲】[Claims] 重量%で、Si:2.0%を超え3.5%未満、Mn:
1.0%を超え2.0%未満、Al:1.0%を超え2
.0%未満で、かつSi(%)+Al(%)+0.5×
Mn(%)の総和が5.0%未満となるように含有し、
残部がFeおよび不可避不純物からなり、不純物として
のC、S、NおよびOがいずれも0.005%以下であ
る磁気特性の優れた無方向性電磁鋼板
In weight%, Si: more than 2.0% and less than 3.5%, Mn:
More than 1.0% and less than 2.0%, Al: more than 1.0%2
.. Less than 0% and Si (%) + Al (%) + 0.5×
Contains so that the total amount of Mn (%) is less than 5.0%,
A non-oriented electrical steel sheet with excellent magnetic properties, with the balance consisting of Fe and unavoidable impurities, and C, S, N, and O as impurities all being 0.005% or less
JP17554990A 1990-07-02 1990-07-02 Nonoriented silicon steel sheet excellent in magnetic property Pending JPH0463252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17554990A JPH0463252A (en) 1990-07-02 1990-07-02 Nonoriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17554990A JPH0463252A (en) 1990-07-02 1990-07-02 Nonoriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH0463252A true JPH0463252A (en) 1992-02-28

Family

ID=15998025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17554990A Pending JPH0463252A (en) 1990-07-02 1990-07-02 Nonoriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH0463252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428632B1 (en) 1999-11-26 2002-08-06 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428632B1 (en) 1999-11-26 2002-08-06 Kawasaki Steel Corporation Non-oriented electromagnetic steel sheet having reduced magnetic anisotropy in high frequency region and excellent press workability

Similar Documents

Publication Publication Date Title
JP2006501361A (en) Continuous casting method of non-oriented electrical steel strip
CA1333988C (en) Ultra-rapid annealing of nonoriented electrical steel
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
KR20150126333A (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR20140084895A (en) Non-oriented electrical steel steet and method for the same
JP2023507435A (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
KR101633249B1 (en) Non-oriented electrical steel sheet and manufacturing method for the same
JPH10176251A (en) Nonoriented silicon steel sheet excellent in magnetic characteristic and its production
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
EP0486707B1 (en) A Process for Producing an Ultrahigh Silicon, Grain-Oriented Electrical Steel Sheet and Steel Sheet obtainable with said Process
JPH0463252A (en) Nonoriented silicon steel sheet excellent in magnetic property
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JPH03274247A (en) Nonoriented silicon steel sheet excellent in magnetic property
JPH11323438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JP7288215B2 (en) Non-oriented electrical steel sheet
JPS6256924B2 (en)
JPH0324250A (en) Nonoriented silicon steel sheet reduced in in-plane anisotropy
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties