KR101633249B1 - Non-oriented electrical steel sheet and manufacturing method for the same - Google Patents

Non-oriented electrical steel sheet and manufacturing method for the same Download PDF

Info

Publication number
KR101633249B1
KR101633249B1 KR1020150149430A KR20150149430A KR101633249B1 KR 101633249 B1 KR101633249 B1 KR 101633249B1 KR 1020150149430 A KR1020150149430 A KR 1020150149430A KR 20150149430 A KR20150149430 A KR 20150149430A KR 101633249 B1 KR101633249 B1 KR 101633249B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
rolled
hot
cold
Prior art date
Application number
KR1020150149430A
Other languages
Korean (ko)
Other versions
KR20150126334A (en
Inventor
박준수
배병근
이세일
송대현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020150149430A priority Critical patent/KR101633249B1/en
Publication of KR20150126334A publication Critical patent/KR20150126334A/en
Application granted granted Critical
Publication of KR101633249B1 publication Critical patent/KR101633249B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Abstract

본 발명은 무방향성 전기강판 및 그 제조방법에 관한 것으로, 중량%로, Si: 1.5~3.5%, Al: 0.15~0.45%, Mn: 0.61~1.12%, P: 0.026~0.049%, C: 0.005% 이하(0% 제외), N: 0.005%이하(0% 제외), S: 0.001~0.005%, 및 Ti: 0.005% 이하(0% 제외), 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물로 구성되고, 상기 Mn, Al, P는 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1 를 만족하는 무방향성 전기강판이 개시된다. 단, [Al], [P] 및 [Mn]은 각각 첨가되는 Al, P 및 Mn의 중량%이다.The present invention relates to a non-oriented electrical steel sheet and a method of manufacturing the same. The steel sheet comprises 1.5 to 3.5% of Si, 0.15 to 0.45% of Al, 0.61 to 1.12% of Mn, 0.026 to 0.049% of P, 0.005% or less (excluding 0%) of N, 0.005% or less (excluding 0%) of S, 0.001 to 0.005% of S and 0.005% or less of Ti (excluding 0%) and the balance consisting of Fe and other inevitably added impurities Wherein the Mn, Al and P satisfy 2 * ([Al] + [P]) / [Mn] 1 and 10 * [P] / [Al] Here, [Al], [P] and [Mn] are the weight percentages of Al, P and Mn added, respectively.

Description

무방향성 전기강판 및 그 제조방법{NON-ORIENTED ELECTRICAL STEEL SHEET AND MANUFACTURING METHOD FOR THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet,

본 발명은 무방향성 전기강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 알루미늄의 함량을 감소시키면서, 망간, 알루미늄 및 인의 함량을 제어하여 자성이 향상된 무방향성 전기강판 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet and a manufacturing method thereof, and more particularly, to a non-oriented electrical steel sheet having improved magnetic properties by controlling the content of manganese, aluminum and phosphorus while reducing the content of aluminum.

무방향성 전기강판은 전기기기의 에너지 효율을 결정하는데 중요한 역할을 하는데 그 이유는 무방향성 전기강판이 모터, 발전기 등의 회전 기기와 소형 변압기 등의 정지기기에서 철심용 재료로 사용되어 전기적 에너지를 기계적 에너지로 바꾸어 주는 역할을 하기 때문이다. The nonoriented electric steel sheet plays an important role in determining the energy efficiency of the electric equipment because the nonoriented electric steel sheet is used as an iron core material in a rotating device such as a motor and a generator and a stationary device such as a small transformer, Because it plays a role of turning it into energy.

무방향성 전기강판의 경우 철손을 개선하기 위하여 비저항이 큰 Si, Al, Mn등의 합금 원소를 첨가하는 방법이 일반적으로 사용된다. 그 중, Si, Al은 비저항을 크게 증가시키는 원소이고, Mn은 이들보다 비저항 증가량이 작고 자속밀도를 감소시킬 수 있다. In the case of nonoriented electrical steel sheets, a method of adding alloying elements such as Si, Al, and Mn with high resistivity is generally used to improve iron loss. Among them, Si and Al are elements that greatly increase the resistivity, and Mn has a smaller specific resistance increase and can reduce the magnetic flux density.

철손은 이력손실과 와류 손실로 나눌 수 있는데 주파수가 증가하면 이력손실은 거의 유사하나 와류 손실은 크게 증가하게 되는데 와류 손실은 비저항 원소의 첨가량에 큰 영향을 받기 때문에 고주파에서의 철손을 낮추기 위해서는 Si과 Al등 비저항 원소의 첨가량을 증가시켜야 한다. 그러나, Si, Al등 비저항이 큰 합금 원소를 다량 첨가하게 되면 철손은 감소하지만 포화 자속밀도 감소로 인해 자속밀도의 감소 역시 피할 수 없게 된다. The core loss can be divided into the hysteresis loss and the eddy loss. When the frequency increases, the hysteresis loss is almost similar but the eddy loss is greatly increased. Since the eddy loss is greatly influenced by the addition amount of the resistivity element, The addition amount of the non-resistive element such as Al should be increased. However, when a large amount of alloying elements such as Si and Al is added in a large amount, the iron loss is reduced, but the reduction of the magnetic flux density is also inevitable due to the decrease of the saturation magnetic flux density.

한편, 최근 들어 고자장 영역이 아닌 저자장 영역에서의 자속밀도도 매우 중요시되고 있는데, 철손을 낮추기 위해 Si, Al등 합금 원소 첨가량이 증가할 경우 고자장 영역 및 저자장 영역에서의 자속밀도도 감소하기 때문에 고주파에서의 철손을 낮추면서 자속밀도를 높이는 문제는 상당히 어려운 부분이라고 할 수 있다.Recently, the magnetic flux density in the high field region and the low field region is also very important. In order to lower the iron loss, the magnetic flux density in the high magnetic field region and the low field region is decreased when the amount of the alloying element such as Si and Al is increased The problem of increasing the magnetic flux density while lowering the iron loss at the high frequency is considered to be a difficult part.

이와 관련하여 무방향성 전기강판에 대한 종래기술 중 일본특허 2012-112015호, 일본 공개특허 2011-179027호, 일본 공개특허 2006-104557호, 일본 특허 특개소 55-158252호, 62-180014호, 59-100217호 및 대한민국 공개특허 1997-0043173호에서 이들 문제를 해결하고자 하였으나 생산성 저하, 자성 저하, 비용 증가 등의 문제가 있었다. In this regard, among the prior arts for the non-oriented electrical steel sheet, Japanese Patent Publication No. 2012-112015, Japanese Patent Application Laid-Open No. 2011-179027, Japanese Patent Application Laid-Open No. 2006-104557, Japanese Patent Application Laid-Open No. 55-158252, Japanese Laid-Open Patent Application No. 62-180014, -100217 and Korean Patent Laid-Open Publication No. 1997-0043173 have attempted to solve these problems, but there have been problems such as lowering of productivity, lowering of magnetism, and increase of cost.

상기와 같은 문제를 해결하기 위한 본 발명은 강의 합금 원소 중 Al의 첨가량을 감소시키고 Mn의 첨가량을 증가시켜 고주파에서의 철손을 낮추고, P의 첨가량을 제어함으로써 집합조직을 향상시켜 고주파 및 저자장 영역에서의 자성이 향상된 무방향성 전기강판 및 그 제조방법을 제공하고자 한다.In order to solve the above-mentioned problems, the present invention reduces the amount of Al added and the amount of Mn added in steel alloying elements to lower the iron loss at high frequencies, and controls the addition amount of P to improve the texture, Oriented electric steel sheet having improved magnetic properties and a method of manufacturing the same.

본 발명의 하나 또는 다수의 실시예에서는 중량%로, Si: 1.5~3.5%, Al: 0.15~0.45%, Mn: 0.61~1.12%, P: 0.026~0.049%, C: 0.005% 이하(0% 제외), N: 0.005%이하(0% 제외), S: 0.001~0.005%, 및 Ti: 0.005% 이하(0% 제외), 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물로 구성되고, 상기 Mn, Al, P는 조성식 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1를 만족하는 무방향성 전기강판이 제공될 수 있다. 단, [Al], [P] 및 [Mn]은 각각 첨가되는 Al, P 및 Mn의 중량%이다.In one or more embodiments of the present invention, it is preferable that the steel sheet contains 1.5 to 3.5% of Si, 0.15 to 0.45% of Al, 0.61 to 1.12% of Mn, 0.026 to 0.049% of P, 0.005% or less (excluding 0%), S: 0.001 to 0.005%, and Ti: 0.005% or less (excluding 0%), the balance being Fe and other inevitably added impurities, Al and P can be provided with a non-oriented electrical steel sheet satisfying the composition formula 2 * ([Al] + [P]) / [Mn] 1, 10 * [P] / [Al] Here, [Al], [P] and [Mn] are the weight percentages of Al, P and Mn added, respectively.

또한, Sn + Sb: 0.01~0.2중량%를 더 포함할 수 있고, Cu, Ni, Cr을 각각 0.05중량% 이하로 포함할 수 있으며, Zr, Mo, V를 각각 0.01중량% 이하로 포함할 수 있다.Further, it may further contain 0.01 to 0.2% by weight of Sn + Sb, 0.05% by weight or less of Cu, Ni and Cr, respectively, and may contain Zr, Mo and V in an amount of 0.01% have.

상기 강판의 집합조직은 0.35≤(Vc+Vg+Vrc)/V{111}≤0.45를 만족할 수 있는데, 상기에서 Vc, Vg, Vrc는 (100)[001], (110)[001], (100)[011] 집합조직의 부피 분율이고, V{111}은 {111} 집합조직의 부피 분율을 의미한다. Texture of the steel sheet is 0.35≤ (V c + V g + V rc) / V {111} may satisfy a ≤0.45, c in the V, V g, V rc is 100 [001] (110 ) [001], (100) [011] is the volume fraction of the texture, and V {111} is the volume fraction of the texture of the {111} texture.

상기 강판의 결정립의 크기는 50~150㎛일 수 있고, 강판의 철손(W10/400)이 17W/Kg 이하, 자속밀도(B1)이 1테슬라(T)이상일 수 있다.The grain size of the steel sheet may be in the range of 50 to 150 占 퐉 and the iron loss (W 10/400 ) of the steel sheet may be 17 W / Kg or less and the magnetic flux density (B 1 ) may be 1 tesla or more.

본 발명의 하나 또는 다수의 실시예에서는 중량%로, Si: 1.5~3.5%, Al: 0.15~0.45%, Mn: 0.61~1.12%, P: 0.026~0.049%, C: 0.005% 이하(0% 제외), N: 0.005%이하(0% 제외), S: 0.001~0.005%, 및 Ti: 0.005% 이하(0% 제외), 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물로 구성되고, 상기 Mn, Al, P는 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식을 만족하는 슬라브를 1200℃이하로 재가열하는 단계; 재가열된 슬라브를 열간압연하는 단계; 열간압연된 열연판을 열연판 소둔하거나 이를 생략하고 냉간압연하는 단계; 및 냉간압연된 냉연판을 850~1100℃의 온도에서 최종소둔하는 단계를 포함하는 무방향성 전기강판 제조방법이 제공될 수 있다. 단, [Al], [P] 및 [Mn]은 각각 첨가되는 Al, P 및 Mn의 중량%이다.In one or more embodiments of the present invention, it is preferable that the steel sheet contains 1.5 to 3.5% of Si, 0.15 to 0.45% of Al, 0.61 to 1.12% of Mn, 0.026 to 0.049% of P, 0.005% or less (excluding 0%), S: 0.001 to 0.005% and Ti: 0.005% or less (excluding 0%), the balance being Fe and other inevitably added impurities, Al and P are reheated to 1200 ° C or less at a slab satisfying a composition formula of 2 * ([Al] + [P]) / [Mn] 1, 10 * [P] / [Al] Hot rolling the reheated slab; Annealing the hot-rolled hot-rolled sheet by hot rolling or omitting the hot-rolled sheet and cold rolling; And finally annealing the cold-rolled cold-rolled sheet at a temperature of 850 to 1100 占 폚. Here, [Al], [P] and [Mn] are the weight percentages of Al, P and Mn added, respectively.

이때, Sn + Sb: 0.01~0.2중량%를 더 포함될 수 있으며, Cu, Ni, Cr을 각각 0.05중량% 이하로 포함하고, Zr, Mo, V를 각각 0.01중량% 이하로 포함될 수 있다.In this case, Sn + Sb may be further added in an amount of 0.01 to 0.2% by weight, Cu, Ni and Cr may each be contained in an amount of 0.05% by weight or less, and Zr, Mo and V may be contained in an amount of 0.01%

상기 열연판 소둔은 850~1150℃의 온도 범위에서 이루어질 수 있다.The hot-rolled sheet annealing may be performed at a temperature ranging from 850 to 1150 ° C.

또한, 상기 냉간압연은 1차 냉간압연 또는 중간소둔을 사이에 둔 2회 이상의 냉간압연일 수 있다.The cold rolling may be two or more cold rolling with primary cold rolling or intermediate annealing in between.

본 발명의 실시예에 따르면 Al의 첨가량을 제한하는 동시에 비저항을 보상하기 위하여 Mn의 첨가량을 증가시키고, P의 첨가량을 정밀하게 제어하여 집합조직을 향상시킴으로써 고주파 영역에서 저철손, 저자장 영역에서의 고자속밀도를 갖는 자성이 우수한 무방향성 전기강판을 제조할 수 있다.According to the embodiment of the present invention, the addition amount of Mn is increased and the addition amount of P is precisely controlled to improve the aggregate structure in order to limit the addition amount of Al and to compensate the resistivity, It is possible to produce a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. However, it is to be understood that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It is intended that the disclosure of the present invention be limited only by the terms of the appended claims.

본 발명의 실시예에 따른 무방향성 전기강판은 Si, Al, Mn 및 P를 첨가하되, 종래의 무방향성 전기강판의 성분계 중 Al의 첨가량을 낮추고, Mn의 첨가량을 증가시켜 철손을 개선하고자 하였으며, 나아가 P의 첨가량을 적절히 제어함으로써 집합조직을 향상시켜 자성에 유리한 집합조직인 (100)[001], (110)[001], (100)[011]의 분율을 증가시키고 자성에 불리한 {111} 집합조직을 감소시킴으로써 고주파 및 저자장 영역에서의 자성을 개선하고자 하였다. The non-oriented electrical steel sheet according to an embodiment of the present invention was made by adding Si, Al, Mn and P to improve the iron loss by decreasing the amount of Al added and increasing the amount of Mn in the component system of the conventional non- (100) [001], (110) [001], and (100) [011], which are favorable to magnetism, by enhancing the aggregate structure by appropriately controlling the addition amount of P, And to improve the magnetism in the high frequency and autogenous field by reducing the tissue.

이를 위하여 본 발명의 일실시예에서는 중량%로, Si: 1.5~3.5%, Al: 0.15~0.45%, Mn: 0.61~1.12%, P: 0.026~0.049%, C: 0.005% 이하(0% 제외), N: 0.005%이하(0% 제외), S: 0.001~0.005%, 및 Ti: 0.005% 이하(0% 제외), 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 구성되고, 상기 Mn, Al, P는 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식을 만족하는 고주파 및 저자장 영역에서 자성이 우수한 무방향성 전기강판을 제공한다. 이때, 상기 [Al], [P] 및 [Mn]은 각각 첨가되는 Al, P 및 Mn의 중량%를 의미하며, 이는 이하에서 같다.For this purpose, in one embodiment of the present invention, it is preferable that Si is contained in an amount of 1.5 to 3.5%, Al is 0.15 to 0.45%, Mn is 0.61 to 1.12%, P is 0.026 to 0.049%, C is 0.005% ), N: not more than 0.005% (excluding 0%), S: 0.001 to 0.005%, Ti: not more than 0.005% (excluding 0%), the balance Fe and other inevitably added impurities, P is a non-oriented electrical steel sheet having excellent magnetic properties in a high-frequency and author-length region satisfying a composition formula of 2 * ([Al] + [P]) / [Mn] 1, 10 * [P] / [Al] to provide. Here, [Al], [P] and [Mn] mean the weight percent of Al, P and Mn added, respectively.

또한, 본 발명의 일실시예에서는 상기 성분계에 Sn + Sb를 0.01~0.2중량%로 첨가하여, 강판의 집합조직에서 자성에 유리한 (100)[001], (110)[001], (100)[011] 집합조직의 분율을 각각 Vc, Vg, Vrc라 하고, 자성에 불리한 {111} 집합조직의 분율을 V{111}이라고 할 때, 0.35≤(Vc+Vg+Vrc)/V{111}≤0.45를 만족하도록 함으로써, 철손 W10/400이 17W/Kg이하, 자속밀도 B1이 1T이상이 되도록 하였다.(100) [001], (110) [001], and (100) which are favorable to magnetism in the texture of the steel sheet are obtained by adding Sn + Sb in an amount of 0.01 to 0.2% When the fractions of the texture are denoted as V c , V g and V rc and the fractions of the {111} texture unfavorable to magnetism are denoted as V {111} , 0.35? (V c + V g + V rc ) / V {111}? 0.45, the iron loss W 10/400 was 17 W / Kg or less and the magnetic flux density B 1 was 1 T or more.

그리고, 본 발명의 일실시예에서는 상기 강판의 평균 결정립 크기가 50~ 150㎛를 만족하도록 한다.In an embodiment of the present invention, the average grain size of the steel sheet is 50 to 150 mu m.

본 발명의 일실시예에서 무방향성 전기강판을 제조하기 위해 첨가하는 주요 원소는 Si, Mn, Al, P, Sn, Sb이다. 철손을 낮추기 위한 가장 보편적인 방법은 강의 비저항을 증가시키는 것인데, 강의 비저항을 가장 크게 증가시키는 원소로는 Si과 Al이 있다. 철손을 낮추기 위해서 Si의 첨가량을 증가시키면 냉간압연성이 나빠지기 때문에 종래에는 Al도 그 첨가량이 함께 증가되어 사용되어 왔다. In one embodiment of the present invention, the main elements added to prepare the non-oriented electrical steel sheet are Si, Mn, Al, P, Sn and Sb. The most common way to lower the iron loss is to increase the resistivity of the steel. Si and Al are the elements that increase the resistivity most significantly. If the addition amount of Si is increased to lower the iron loss, the cold rolling property is deteriorated.

Mn 역시 비저항을 증가시킬 수 있는 원소이지만 Si과 Al대비 그 효과가 적으며 포화자속밀도를 저하시킬 수 있는 비자성 원소이므로 Mn은 종래에는 0.5% 미만으로 첨가되어 왔다. 한편, P는 입계 편석원소로 잘 알려져 있으며 재결정시 결정립계에 편석하여 결정립계에서의 자성에 불리한 집합조직 형성을 억제하는 효과를 가지고 있다. 그러나, P의 첨가량이 과도할 경우 결정립 성장이 억제되어 원하는 결정립을 얻기 어렵기 때문에, 적정하게 첨가하는 것이 중요하다.Mn is an element capable of increasing the resistivity, but Mn is conventionally added at less than 0.5% because it is a non-magnetic element that can lower the saturation magnetic flux density and is less effective than Si and Al. On the other hand, P is well known as a grain boundary grain boundary and segregates at grain boundaries during recrystallization to inhibit aggregate formation unfavorable to magnetism in grain boundaries. However, when the amount of P added is excessive, it is difficult to obtain desired crystal grains because crystal growth is inhibited, so it is important to properly add P.

이하에서는 본 발명의 일실시예에 따른 무방향성 전기강판의 제조시 수치한정 이유를 설명한다.Hereinafter, the reason for limiting the numerical value in the production of the non-oriented electrical steel sheet according to one embodiment of the present invention will be described.

Si: 1.5~3.5중량% Si: 1.5 to 3.5 wt%

상기 Si는 강의 비저항을 증가시켜서 철손 중 와류손실을 낮추는 성분이기 때문에 첨가되는 주요 원소로서, 1.5% 미만에서는 고자속밀도의 특성을 얻을 수는 있으나 저철손 특성을 얻기 어렵고, 3.5%를 초과하여 첨가되면 냉간 압연시 판파단이 일어나기 때문에 본 발명의 일실시예에서는 Si의 첨가량을 1.5~3.5중량%로 한정한다.Since Si is a component that increases the resistivity of steel and lowers vortex loss during iron loss, Si is a main element to be added. When the Si content is less than 1.5%, a high magnetic flux density characteristic can be obtained. However, it is difficult to obtain a low iron loss property. The sheet breakage occurs in the cold rolling. Therefore, in one embodiment of the present invention, the addition amount of Si is limited to 1.5 to 3.5% by weight.

Mn: 0.61~1.12중량% Mn: 0.61 to 1.12 wt%

상기 Mn은 Si, Al등과 더불어 비저항을 증가시켜 철손을 낮추는 효과도 있지만 첨가될수록 자속밀도를 감소시키기 때문에 기존의 무방향성 전기강판에서는 0.1~0.5% 정도 첨가함으로써 철손을 개선하려는 목적으로 첨가되었으나, 본 발명의 일실시예에서는 Mn 첨가량을 증가시키면 Al첨가량을 감소시킬 수 있고, 집합조직을 개선함으로써 자속밀도를 향상시킬 수 있으므로 본 발명의 일실시예에서는 Mn 첨가량을 0.61~1.12중량%로 한정한다. In addition to Si and Al, the Mn has an effect of lowering the iron loss by increasing the resistivity. However, Mn is added for the purpose of improving the iron loss by adding about 0.1 to 0.5% in the conventional nonoriented electric steel sheet to decrease the magnetic flux density as it is added. In one embodiment of the present invention, the Mn addition amount is limited to 0.61 to 1.12% by weight in one embodiment of the present invention because the amount of Al added can be decreased by increasing the amount of Mn and improving the magnetic flux density by improving the texture.

Al: 0.15~0.45중량% Al: 0.15-0.45 wt%

상기 Al은 비저항을 증가시키는 주요 원소이기 때문에 철손을 낮추기 위하여 많이 첨가되지만 다량 첨가시 포화 자속밀도를 감소시키는 역할도 한다. 또한 Al 첨가량이 0.15%미만으로 과도하게 적으면 미세한 AlN을 형성시켜 결정립 성장을 억제하여 자성을 저하시키며, 0.45%를 초과하여 첨가되면 자속밀도가 감소되는 원인이 되므로 본 발명의 일실시예에서의 Al의 첨가량을 0.15~0.45중량%로 한정한다.Since Al is a main element for increasing the resistivity, it is added in order to lower the iron loss, but also serves to decrease the saturation magnetic flux density when added in a large amount. If the Al addition amount is less than 0.15%, the AlN is formed to form fine AlN, thereby suppressing the grain growth and decreasing the magnetic property. If the Al addition amount is more than 0.45%, the magnetic flux density is decreased. Therefore, The addition amount of Al is limited to 0.15 to 0.45% by weight.

P: 0.026~0.049중량%P: 0.026 to 0.049 wt%

상기 P는 비저항을 증가시켜 철손을 낮추며 결정립계에 편석함으로써 자성에 유해한 {111} 집합 조직의 형성을 억제하고 유리한 집합조직인 {100}을 형성하나 0.05%를 초과하여 첨가되면 집합조직의 향상 효과가 감소하므로, 본 발명의 일실시예에서는 P의 첨가량을 0.026~0.049중량%로 한정한다.The P decreases the iron loss by lowering the resistivity and segregates in the grain boundaries to inhibit the formation of {111} texture which is harmful to magnetism and form {100} which is a favorable texture, but when it is added in excess of 0.05% Therefore, in one embodiment of the present invention, the addition amount of P is limited to 0.026 to 0.049% by weight.

C: 0.005중량% 이하C: 0.005 wt% or less

C은 많이 첨가될 경우 오스테나이트 영역을 확대하며 상변태 구간을 증가시키고 소둔시 페라이트의 결정립 성장을 억제하여 철손을 높이는 효과를 나타내며, Ti등과 결합하여 탄화물을 형성하여 자성을 열위시키며 최종제품에서 전기 제품으로 가공 후 사용시 자기시효에 의하여 철손을 높이기 때문에 본 발명의 일실시예에서는 0.005중량%이하로 한정한다.  When C is added heavily, it enlarges the austenite region and increases the phase transformation period. It suppresses the grain growth of ferrite during annealing and increases the iron loss. It combines with Ti and forms carbide to dislocate magnetism. , The iron loss is increased by magnetic aging at the time of use after use, so that it is limited to 0.005 wt% or less in one embodiment of the present invention.

S: 0.001~0.005중량% 이하S: 0.001 to 0.005% by weight or less

S는 자기적 특성에 유해한 MnS, CuS 및 (Cu,Mn)S 등의 황화물을 형성하는 원소이므로 가능한 한 낮게 첨가하는 것이 바람직하다. 그러나, 0.001%미만으로 첨가될 경우 오히려 집합조직 형성에 불리하여 자성이 저하되기 때문에 0.001%이상 첨가하며, 0.005%를 초과하여 첨가될 경우에는 미세한 황화물의 증가로 인해 자성이 열위해지므로 본 발명의 일실시예에서는 S의 함량을 0.001~0.005중량%로 한정한다.S is an element which forms sulfides such as MnS, CuS and (Cu, Mn) S harmful to the magnetic properties, and therefore it is preferable to add S as low as possible. However, when it is added in an amount of less than 0.001%, it is rather disadvantageous to formation of aggregate structure and magnetic property is deteriorated. Therefore, it is added in an amount of 0.001% or more, and when it is added in an amount exceeding 0.005%, the magnetic property is heated due to increase of fine sulfides. In one embodiment, the content of S is limited to 0.001 to 0.005% by weight.

N: 0.005중량% 이하N: 0.005 wt% or less

N는 Al, Ti등과 강하게 결합함으로써 질화물을 형성하여 결정립 성장을 억제하는 등 자성에 해로운 원소이므로 적게 함유시키는 것이 바람직하며, 본 발명의 일실시예에서는 N의 함량을 0.005중량% 이하로 한정한다.N is an element which is detrimental to magnetism such as forming a nitride by binding strongly with Al, Ti or the like to inhibit grain growth. Therefore, it is preferable that N is contained in a small amount. In one embodiment of the present invention, N is limited to 0.005 wt% or less.

Ti: 0.005중량% 이하Ti: 0.005 wt% or less

Ti는 미세한 탄화물과 질화물을 형성하여 결정립 성장을 억제하며 많이 첨가될 수록 증가된 탄화물과 질화물로 인해 집합 조직도 열위하게 되어 자성이 나빠지게 되므로 본 발명의 일실시예에서는 Ti의 함량을 0.005중량%이하로 한정한다. Ti forms fine carbides and nitrides to inhibit crystal growth. As the amount of Ti is increased, the texture is disadvantageously lowered due to increased carbides and nitrides. Therefore, in one embodiment of the present invention, the content of Ti is less than 0.005 wt% .

Sn + Sb: 0.01~0.2중량% Sn + Sb: 0.01 to 0.2 wt%

상기 Sn과 Sb는 결정립계에 편석원소로써 결정립계를 통한 질소의 확산을 억제하며 자성에 해로운 {111} 집합조직(texture)을 억제하고, 자성에 유리한 {100} 집합조직을 증가시켜 자기적 특성을 향상시키기 위하여 첨가하며, Sn + Sb의 값이 0.2중량%를 초과하여 첨가하면 결정립 성장을 억제하여 자성을 저하시키고 압연성상이 나빠지기 때문에 본 발명의 일실시예에서는 Sn + Sb 값을 0.01~0.2중량%로 한정한다. The Sn and Sb suppress the diffusion of nitrogen through the grain boundaries as a segregated element in the grain boundaries and suppress the {111} texture which is detrimental to the magnetism and increase the magnetic property by increasing {100} When Sn + Sb is added in an amount exceeding 0.2% by weight, the grain growth is inhibited and the magnetism is lowered and the rolling property is deteriorated. Therefore, in one embodiment of the present invention, the value of Sn + %.

상기 원소 외에 제강 공정에서 불가피하게 첨가되는 원소인 Cu, Ni, Cr의 경우 불순물 원소들과 반응하여 미세한 황화물, 탄화물 및 질화물을 형성하여 자성에 유해한 영향을 미치므로 이들 함유량을 각각 0.05중량%이하로 한정한다. 또한, Zr, Mo, V도 강력한 탄질화물 형성 원소이기 때문에 첨가되지 않는 것이 바람직하므로 각각 0.01중량%이하로 한정한다. In addition to the above elements, Cu, Ni, and Cr, which are inevitably added in the steelmaking process, react with impurity elements to form fine sulfides, carbides, and nitrides, thereby detrimentally affecting the magnetic properties. It limits. Since Zr, Mo, and V are also strong carbonitride-forming elements, they are preferably not added, and are limited to 0.01 wt% or less.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다. In addition to the above composition, the remainder is composed of Fe and other unavoidable impurities.

본 발명의 일실시예에서는 Mn, Al, P의 첨가량을 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식을 만족하도록 하는데, 이는 Al에 비해 Mn은 비저항에 미치는 영향이 적기 때문에 Al 첨가량의 감소를 보상함으로써 고주파 영역에서의 자성을 향상시킬 수 있고, 집합조직을 향상시키기 위해서는 Mn이 다량 첨가되어야 하고, P는 결정립계에 편석하여 집합조직을 개선하는 원소이나 첨가량이 증가할 경우 결정립의 성장을 억제하는 효과가 크므로 첨가량이 적정하게 제어되도록 하기 위함이다. 즉, Mn 첨가량의 증가와 P의 첨가량 제어로 집합조직을 향상시켜 자속밀도를 향상시켜 고주파 및 저자장 영역에서의 자성을 향상시킬 수 있다.In one embodiment of the present invention, the addition amounts of Mn, Al and P satisfy a composition formula of 2 * ([Al] + [P]) / [Mn] 1, 10 * [P] / [Al] , Mn is less influenced on the resistivity than Al, and therefore it is possible to improve the magnetism in the high-frequency region by compensating for the decrease in the amount of Al, and to increase the texture, a large amount of Mn must be added. The effect of suppressing the growth of the crystal grains is enhanced when the element or the amount of addition improving the texture is increased, so that the addition amount can be properly controlled. That is, by increasing the amount of Mn and controlling the addition amount of P, it is possible to improve the magnetization in the high-frequency region and the author region by improving the magnetic flux density by improving the texture.

만약, Mn, Al, P가 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식으로 첨가량의 비율이 제어된다면 철손 및 자속밀도를 동시에 향상시켜 고주파 및 저자장 영역에서 자성이 우수한 무방향성 전기강판을 제조할 수 있다.If the proportion of Mn, Al and P added is controlled by a composition formula of 2 * ([Al] + [P]) / [Mn] 1 and 10 * [P] / [Al] Can be simultaneously improved to produce a non-oriented electrical steel sheet excellent in magnetic properties in high-frequency and low-field regions.

이하에서는 본 발명에 따른 무방향성 전기강판의 제조방법에 대하여 살펴본다.Hereinafter, a method for manufacturing a non-oriented electrical steel sheet according to the present invention will be described.

본 발명의 일실시예에 따른 무방향성 전기강판을 제조하기 위해서는 먼저, 중량%로, Si: 1.5~3.5%, Al: 0.15~0.45%, Mn: 0.61~1.12%, P: 0.026~0.049%, C: 0.005% 이하(0% 제외), N: 0.005%이하(0% 제외), S: 0.001~0.005%, 및 Ti: 0.005% 이하(0% 제외), 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물로 구성되고, 상기 Mn, Al, P는 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식을 만족하는 무방향성 전기강판 강 슬라브를 1200℃이하로 재가열한 다음 열간압연 한다. In order to manufacture the non-oriented electrical steel sheet according to an embodiment of the present invention, the steel sheet may contain 1.5 to 3.5% of Si, 0.15 to 0.45% of Al, 0.61 to 1.12% of Mn, 0.026 to 0.049% of P, C: not more than 0.005% (excluding 0%), N: not more than 0.005% (excluding 0%), S: 0.001 to 0.005%, and Ti: not more than 0.005% Wherein the Mn, Al and P satisfy the following composition formula of 2 * ([Al] + [P]) / [Mn] 1, 10 * [P] / [Al] The steel slab is reheated to 1200 ° C or less and then hot rolled.

만약, 재가열 온도가 1200℃초과일 경우 슬라브 내에 존재하는 AlN, MnS등의 석출물이 재고용된 후 열간압연시 미세 석출되어 결정립 성장을 억제하고 자성을 저하시키므로 재가열 온도는 1200℃이하로 한정한다. 또한, 열간압연시 사상압연에서의 마무리압연은 페라이트상에서 종료하며 판형상 교정을 위하여 최종 압하율은 20%이하로 실시한다. If the reheating temperature is higher than 1200 ° C., the precipitates such as AlN and MnS existing in the slab may be re-heated at the time of hot rolling to suppress the grain growth and decrease the magnetism, so that the reheating temperature is limited to below 1200 ° C. In addition, finish rolling in hot rolling is finished in ferrite and final rolling reduction is 20% or less for plate shape calibrating.

상기와 같이 제조된 열연판은 700℃이하에서 권취하고, 공기중에서 냉각한다. 권취 냉각된 열연판은 필요에 따라 열연판 소둔, 산세를 할 수 있다. 이후에는 냉간압연을 하고 마지막으로 냉연판 소둔을 실시한다.The hot-rolled sheet prepared as described above is rolled up at 700 ° C or less and cooled in air. The rolled hot-rolled sheet can be subjected to hot-rolled sheet annealing and pickling, if necessary. After that, cold rolling is performed and finally cold rolled sheet annealing is performed.

상기 열연판소둔은 자성 개선을 위하여 필요할 경우에 열연판을 소둔하는 것이며, 열연판 소둔은 850~1150℃의 온도 범위에서 실시한다. 열연판 소둔온도가 850℃보다 낮으면 결정립 성장이 불충분하며, 1150℃를 초과하는 경우에는 결정립이 과도하게 성장하고 판의 표면 결함이 과다해지므로 본 발명의 일실시예에서의 소둔온도는 850~1150℃로 한정한다. The hot-rolled sheet annealing is to anneal the hot-rolled sheet when necessary for improving the magnetic properties, and the hot-rolled sheet annealing is performed at a temperature in the range of 850 to 1150 ° C. If the annealing temperature of the hot-rolled sheet is lower than 850 캜, the grain growth is insufficient. If the annealing temperature exceeds 1150 캜, the grain grows excessively and the surface defects of the plate become excessively excessive. It is limited to 1150 ℃.

통상의 방법으로 산세한 열연판 또는 열연판 소둔을 거친 소둔 열연판을 0.10mm에서 0.70mm의 두께로 최종 냉간압연한다. 필요시 1차 냉간압연과 중간소둔 을 사이에 둔 2회 이상의 냉간압연을 실시할 수 있으며, 최종 압하율은 50~95%의 범위로 한다. The hot-rolled sheet picked up by a conventional method or the annealed hot-rolled sheet obtained by annealing the hot-rolled sheet is finally cold-rolled to a thickness of 0.10 mm to 0.70 mm. If necessary, cold rolling can be carried out twice or more between primary cold rolling and intermediate annealing, and the final rolling reduction is in the range of 50 to 95%.

최종 냉간압연된 강판은 냉연판 소둔한다. 냉연판을 소둔하는 공정에서 소둔시 냉연판 소둔의 균열온도는 850~1100℃로 한다. 냉연판 소둔온도가 850℃미만에서는 결정립의 성장이 미흡하여 결정립 성장이 미흡하며, 1100℃초과에서는 결정립이 과도하게 성장하여 자성에 나쁜 영향을 미칠 수 있기 때문에 본 발명의 일실시예에서의 냉연판의 균열온도는 850~1100℃로 한정한다. The final cold-rolled steel sheet is cold-rolled sheet annealed. In the step of annealing the cold rolled sheet, the temperature of the annealing of the cold rolled sheet during annealing is 850 to 1100 占 폚. If the annealing temperature of the cold-rolled sheet is less than 850 캜, the grain growth is insufficient and the grain growth is insufficient. When the annealing temperature is more than 1100 캜, the grain growth excessively affects the magnetism badly. Therefore, Is limited to 850 ~ 1100 ℃.

상기 냉연 소둔판은 절연피막처리 후 고객사로 출하된다. 상기 절연피막은 유기질, 무기질 및 유무기 복합피막으로 처리될 수 있으며, 기타 절연이 가능한 피막제로 처리하는 것도 가능하다. 고객사는 강판을 가공 후 그대로 사용할 수 있다. The cold-rolled annealed sheet is shipped to the customer after the insulating coating treatment. The insulating coating may be treated with an organic, inorganic and organic composite coating, or may be treated with other insulating coatings. The customer can use the steel sheet after processing.

이하에서는 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1] [Example 1]

진공 용해를 통하여 하기 표 1과 같이 조성되는 강괴를 제조하여 Mn, Al, P의 양을 변화시켜 그 영향을 보고자 하였다. 각 강괴는 1160℃에서 가열하고, 2.5mm의 두께로 열간압연한 후 권취하였다. 공기 중에서 권취하고 냉각한 열연강판은 1050℃에서 2분간 소둔하고, 산세한 다음 0.35mm 두께로 냉간압연하고, 냉연판 소둔은 1010℃에서 100초간 최종 소둔을 하였다. 각각의 시편에 대하여 X-ray pole figure test를 통해 집합조직의 분율을 측정하였으며 입자 크기(grain size)를 절편법(intercept method)을 사용하여 측정하였고 철손(W10/400)과 자속밀도(B1)를 측정하여 그 결과를 하기 표 2에 나타내었다.Alloys were prepared by vacuum melting to form the steel ingots as shown in Table 1 below. Each steel ingot was heated at 1160 DEG C, hot rolled to a thickness of 2.5 mm, and then wound. The hot-rolled steel sheet wound and cooled in air was annealed at 1,050 ° C for 2 minutes, pickled, cold-rolled to a thickness of 0.35 mm, and finally annealed at 1010 ° C for 100 seconds. The grain size was measured by the intercept method and the iron loss (W 10/400 ) and the magnetic flux density (B) were measured by X-ray pole figure test for each specimen. 1 ) were measured. The results are shown in Table 2 below.

상기 X-ray pole figure 측정 방법은 시편의 표면을 두께의 3/4t가 되는 부분까지 연마 후 X-ray 회절 분석기로 (110), (200), (211) 극점도(pole figure)를 측정하였고 그 결과 (100)[001], (110)[001], (100)[011] 집합조직의 분율 Vc, Vg, Vrc와, {111} 집합조직의 분율을 V{111}의 부피 분율(volume fraction)을 계산하였다.In the X-ray pole figure measurement method, the surface of the specimen was polished to a thickness of 3 / 4t, and poles of (110), (200) and (211) were measured with an X-ray diffractometer as a result, 100 [001] 110 [001] 100 [011] texture fraction V c, V g, V rc and (111) sets the volume of the fraction of the tissue V (111) of The volume fraction was calculated.

강종Steel grade CC SiSi MnMn PP SS AlAl NN TiTi SnSn SbSb A1A1 0.0027 0.0027 1.91.9 0.660.66 0.0340.034 0.00140.0014 0.090.09 0.00210.0021 0.00210.0021 00 0.0560.056 A2A2 0.0026 0.0026 2.62.6 0.440.44 0.0290.029 0.00330.0033 0.240.24 0.00260.0026 0.00180.0018 00 0.0370.037 A3A3 0.0015 0.0015 2.72.7 0.800.80 0.0340.034 0.00270.0027 0.210.21 0.00160.0016 0.00210.0021 0.0570.057 0.0460.046 A4A4 0.0034 0.0034 3.43.4 0.750.75 0.0270.027 0.00120.0012 0.270.27 0.00180.0018 0.00160.0016 0.0890.089 0.0120.012 A5A5 0.0033 0.0033 3.03.0 0.810.81 0.0440.044 0.00190.0019 0.350.35 0.00260.0026 0.00110.0011 00 0.0340.034 A6A6 0.0025 0.0025 2.92.9 0.730.73 0.0460.046 0.00150.0015 0.310.31 0.00270.0027 0.00080.0008 0.0370.037 00 A7A7 0.0037 0.0037 2.82.8 0.880.88 0.0130.013 0.0030.003 0.460.46 0.00140.0014 0.00120.0012 0.0190.019 0.0160.016 A8A8 0.0016 0.0016 3.13.1 0.860.86 0.0610.061 0.00210.0021 0.310.31 0.00190.0019 0.00160.0016 0.0270.027 0.0280.028 A9A9 0.0019 0.0019 3.23.2 0.610.61 0.0210.021 0.00380.0038 0.240.24 0.00170.0017 0.00310.0031 0.0340.034 00 A10A10 0.0023 0.0023 3.43.4 0.640.64 0.0270.027 0.00260.0026 0.340.34 0.00370.0037 0.00340.0034 0.0190.019 0.0670.067 A11A11 0.0027 0.0027 2.72.7 0.610.61 0.0280.028 0.00320.0032 0.260.26 0.00230.0023 0.00160.0016 0.0670.067 00 A12A12 0.0017 0.0017 3.33.3 0.860.86 0.0410.041 0.00220.0022 0.330.33 0.0030.003 0.00120.0012 0.0550.055 0.0240.024 A13A13 0.0018 0.0018 3.23.2 1.121.12 0.0480.048 0.00240.0024 0.450.45 0.00190.0019 0.0020.002 0.0420.042 0.0180.018

강종Steel grade 2*([Al]+[P])
/[Mn]
2 * ([Al] + [P])
/ [Mn]
10*[P]
/[Al]
10 * [P]
/ [Al]
(Vc+Vg+Vrc)
/V{111}
(V c + V g + V rc )
/ V {111}
입자 크기
(㎛)
Particle size
(탆)
철손
W10/400
Iron loss
W 10/400
자속밀도
B1
Magnetic flux density
B 1
비고Remarks
A1A1 0.380.38 3.783.78 0.350.35 7272 19.219.2 1.041.04 비교예Comparative Example A2A2 1.221.22 1.211.21 0.310.31 8787 18.618.6 0.940.94 비교예Comparative Example A3A3 0.610.61 1.621.62 0.370.37 8989 16.416.4 1.151.15 발명예Honor A4A4 0.790.79 1.001.00 0.360.36 9191 15.815.8 1.131.13 발명예Honor A5A5 0.970.97 1.261.26 0.410.41 9797 15.715.7 1.031.03 발명예Honor A6A6 0.980.98 1.481.48 0.440.44 103103 16.316.3 1.161.16 발명예Honor A7A7 1.081.08 0.280.28 0.330.33 103103 17.617.6 0.970.97 비교예Comparative Example A8A8 0.860.86 1.971.97 0.340.34 6969 17.517.5 0.950.95 비교예Comparative Example A9A9 0.860.86 0.880.88 0.30.3 9494 17.917.9 0.980.98 비교예Comparative Example A10A10 1.151.15 0.790.79 0.330.33 9797 17.517.5 0.960.96 비교예Comparative Example A11A11 0.940.94 1.081.08 0.380.38 110110 16.216.2 1.151.15 발명예Honor A12A12 0.860.86 1.241.24 0.360.36 9191 15.715.7 1.081.08 발명예Honor A13A13 0.890.89 1.071.07 0.420.42 106106 15.515.5 1.11.1 발명예Honor

1) 철손(W10/400)은 400Hz주파수에서 1.0Tesla의 자속밀도가 유기되었을 때의 압연방향과 압연방향 수직방향의 평균 손실(W/kg)임.1) Iron loss (W 10/400 ) is the average loss (W / kg) in the rolling direction and in the rolling direction perpendicular to the magnetic flux density of 1.0 Tesla at 400 Hz frequency.

2) 자속밀도(B1)은 100A/m의 자기장을 부가하였을 때 유도되는 자속밀도의 크기(Tesla)임.2) The magnetic flux density (B 1 ) is the magnitude of the magnetic flux density (Tesla) induced when a magnetic field of 100 A / m is added.

상기 표 2에 나타난 바와 같이, 본 발명의 [Mn], [Al], [P] 및 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식을 만족하는 강종 A3, A4, A5, A6, A11, A12, A13은 집합조직 측정 결과 (Vc+Vg+Vrc)/V{111}도 0.35~0.45를 만족하였으며, 결정립 크기도 50~150㎛를 만족하여 그 결과 고주파 철손 W10/400도 낮고 고자장 영역에서의 자속밀도 B1도 높게 나타났다.[Al], [P] and 2 * ([Al] + [P]) / [Mn] 1, 10 * [P] / [Al] (V c + V g + V rc ) / V {111} of 0.35 to 0.45 were obtained from the texture measurement results of the grades A3, A4, A5, A6, A11, A12 and A13 satisfying the composition formula of & As a result, the high frequency iron loss W 10/400 was low and the magnetic flux density B 1 in the high magnetic field region was also high.

반면, A2는 Mn이 관리범위를 벗어나 상기 조성식을 만족하지 못하였으며 집합조직 측정 결과 (Vc+Vg+Vrc)/V{111}도 0.35이하로 나타났고 그 결과 철손이 높게 나타났고 자속밀도도 낮게 나타났다.On the other hand, A2 did not satisfy the composition formula above the Mn range beyond the control range, and the result of the texture measurement (V c + V g + V rc ) / V {111} was 0.35 or less. As a result, The density was also low.

A1은 상기 조성식을 만족하였고 집합조직 측정값 (Vc+Vg+Vrc)/V{111}도 양호하게 나타났으나 Al이 관리범위를 벗어났고 그 결과 철손이 열위하게 나타났다.A1 satisfies the above formula and the aggregate texture measurement value (V c + V g + V rc ) / V {111} is also good, but Al is out of the management range and the iron loss is inferior.

A8은 상기 조성식은 만족하였으나 P가 관리 범위를 벗어났고 집합조직 측정 결과 (Vc+Vg+Vrc)/V{111}도 0.35이하로 나타났으며 그 결과 철손과 자속밀도가 열위하게 나타났다. A8 was satisfied with the composition formula but P exceeded the control range and the aggregate structure measurement result (V c + V g + V rc ) / V {111} was 0.35 or less. As a result, iron loss and magnetic flux density were inferior .

A7, A9, A10은 [Mn], [Al], [P]의 첨가량은 만족하였으나 상기의 조성식을 만족하지 못하였으며, 집합조직 측정 결과 (Vc+Vg+Vrc)/V{111}도 0.35이하로 나타났고 그 결과 철손과 자속밀도가 열위하게 나타났다. A7, A9, A10 is [Mn], [Al], but the amount of [P] is satisfied were not satisfy the above formula, the texture measurements (V c + V g + V rc) / V {111} Of 0.35 or less. As a result, iron loss and magnetic flux density were inferior.

[실시예 2] [Example 2]

진공 용해를 통하여 하기 표 3과 같이 조성되는 강괴를 제조하였다. 이 때, 열연판 소둔 및 냉연판 소둔 온도가 집합조직, 결정립 크기 및 자성에 미치는 영향을 보고자 하였다. 각 강괴는 1190℃에서 가열하고, 2.7mm의 두께로 열간압연한 후 권취하였다. 공기 중에서 권취하고 냉각한 열연강판은 800~1200℃에서 2분간 소둔하고, 산세한 다음 0.35mm 두께로 냉간압연하고, 냉연판 소둔은 800~1150℃에서 90초간 최종 소둔을 하였다. 각각의 시편에 대하여 X-ray pole figure test를 통해 집합조직의 분율을 측정하였으며 입자 크기를 절편법(intercept method)을 사용하여 측정하였고 철손(W10/400)과 자속밀도(B1)를 측정하여 그 결과를 하기 표 4에 나타내었다.A steel ingot was prepared as shown in Table 3 through vacuum melting. At this time, the effect of the annealing temperature of the hot - rolled sheet and the annealing temperature of the cold - rolled sheet on the texture, crystal grain size and magnetism was investigated. Each steel ingot was heated at 1190 占 폚, hot rolled to a thickness of 2.7 mm, and then wound. The hot-rolled steel sheet was rolled in air and cooled and annealed at 800 to 1200 ° C for 2 minutes, pickled, cold-rolled to a thickness of 0.35 mm, and cold rolled sheet annealed at 800 to 1150 ° C for 90 seconds. For each specimen, the fraction of the texture was measured by an X-ray pole figure test. The particle size was measured using the intercept method and the iron loss (W 10/400 ) and magnetic flux density (B 1 ) were measured The results are shown in Table 4 below.

강종Steel grade CC SiSi MnMn PP SS AlAl NN TiTi SnSn SbSb B1B1 0.00340.0034 2.72.7 0.740.74 0.0370.037 0.00130.0013 0.310.31 0.00240.0024 0.00080.0008 0.0240.024 0.0270.027 B2B2 0.00210.0021 3.33.3 0.860.86 0.0410.041 0.00290.0029 0.370.37 0.00160.0016 0.00160.0016 00 0.0240.024 B3B3 0.00190.0019 3.43.4 0.760.76 0.0640.064 0.00360.0036 0.260.26 0.00110.0011 0.00210.0021 0.0640.064 0.0340.034 B4B4 0.00340.0034 2.72.7 0.470.47 0.0310.031 0.00210.0021 0.110.11 0.00190.0019 0.0020.002 0.0310.031 00 B5B5 0.00410.0041 3.23.2 0.550.55 0.0260.026 0.00240.0024 0.210.21 0.00270.0027 0.00190.0019 0.0180.018 0.0370.037 B6B6 0.00330.0033 2.82.8 0.620.62 0.0340.034 0.00340.0034 0.150.15 0.00340.0034 0.00350.0035 0.0290.029 0.0670.067 B7B7 0.00160.0016 3.23.2 1.011.01 0.0490.049 0.00170.0017 0.440.44 0.00310.0031 0.00310.0031 00 0.0320.032 B8B8 0.00260.0026 2.92.9 0.530.53 0.0180.018 0.00160.0016 0.160.16 0.00220.0022 0.00240.0024 0.0280.028 0.0160.016 B9B9 0.00210.0021 3.13.1 0.510.51 0.0240.024 0.00220.0022 0.210.21 0.00260.0026 0.00230.0023 0.0090.009 0.0440.044 B10B10 0.00170.0017 33 0.830.83 0.0380.038 0.00270.0027 0.350.35 0.00160.0016 0.00170.0017 0.0680.068 00

강종Steel grade 2*([Al]+
[P])/[Mn]
2 * ([Al] +
[P]) / [Mn]
10*[P]
/[Al]
10 * [P]
/ [Al]
열연판
소둔온도
(℃)
Hot-rolled plate
Annealing temperature
(° C)
냉연판
소둔온도
(℃)
Cold rolled plate
Annealing temperature
(° C)
(Vc+Vg+
Vrc)/V{111}
(V c + V g +
V rc ) / V {111}
입자
크기
(㎛)
particle
size
(탆)
철손
W10/400
Iron loss
W 10/400
자속
밀도
B1
Magnetic flux
density
B 1
비고Remarks
B1B1 0.940.94 1.191.19 11201120 10301030 0.360.36 116116 16.416.4 1.161.16 발명예Honor B2B2 0.960.96 1.111.11 10801080 960960 0.410.41 103103 15.715.7 1.071.07 발명예Honor B3B3 0.850.85 2.462.46 10301030 870870 0.290.29 4747 18.118.1 0.980.98 비교예Comparative Example B4B4 0.600.60 2.822.82 10301030 840840 0.320.32 5959 18.618.6 0.940.94 비교예Comparative Example B5B5 0.860.86 1.241.24 10301030 10801080 0.380.38 135135 15.815.8 1.121.12 발명예Honor B6B6 0.590.59 2.272.27 10701070 910910 0.440.44 7575 16.716.7 1.111.11 발명예Honor B7B7 0.970.97 1.111.11 980980 960960 0.420.42 8181 16.216.2 1.041.04 발명예Honor B8B8 0.670.67 1.131.13 11801180 11201120 0.280.28 164164 17.317.3 0.980.98 비교예Comparative Example B9B9 0.920.92 1.141.14 830830 960960 0.330.33 8686 17.817.8 0.950.95 비교예Comparative Example B10B10 0.930.93 1.091.09 11301130 10101010 0.440.44 9494 15.415.4 1.061.06 발명예Honor

상기 표 4에 나타난 바와 같이, 본 발명의 [Mn], [Al], [P] 및 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식을 만족하며 열연판 소둔온도와 냉연판 소둔 온도를 만족하는 강종 B1, B2, B5, B6, B7, B10은 집합조직 측정 결과 (Vc+Vg+Vrc)/V{111}도 0.35~0.45를 만족하였으며, 결정립 크기도 50~150㎛를 만족하여 그 결과 고주파 철손 W10/400도 낮고 고자장 영역에서의 자속밀도 B1도 높게 나타났다.[Al], [P] and 2 * ([Al] + [P]) / [Mn] 1, 10 * [P] / [Al] (V c + V g + V rc ) / V {111} satisfying the composition formula of > = 1 and satisfying the annealing temperature of the hot-rolled sheet and the annealing temperature of the cold- } Of 0.35 to 0.45 and the grain size of 50 ~ 150 . As a result, the high frequency iron loss W 10/400 was low and the magnetic flux density B 1 in the high magnetic field region was also high.

반면, B3은 상기 조성식과 열연판 소둔온도와 냉연판 소둔온도를 만족하나 P의 첨가량이 관리범위를 벗어났고 집합조직 측정 결과, (Vc+Vg+Vrc)/V{111}도 0.35이하였으며 결정립 크기도 50㎛이하로 나타나 그 결과 철손과 자속밀도가 열위하게 나타났다.On the other hand, B3 is the formula and the hot-rolled sheet annealing temperature and the cold-rolled sheet satisfy the annealing temperature for the addition amount of a P escaped the administrative scope texture measurements, (V c + V g + V rc) / V {111} Fig. 0.35 And the grain size was less than 50 ㎛. As a result, iron loss and magnetic flux density were inferior.

또한, B4와 B9는 [Mn], [Al], [P] 및 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식을 만족하였으나 각각 냉연판 소둔 온도와 열연판 소둔온도를 만족하지 못하여 집합조직 측정 결과 (Vc+Vg+Vrc)/V{111}도 0.35이하로 나타나 철손과 자속밀도가 열위하게 나타났다. Further, B4 and B9 have a composition formula of [Mn], [Al], [P] and 2 * ([Al] + [P]) / [Mn] (V c + V g + V rc ) / V {111} was less than 0.35, indicating that iron loss and magnetic flux density were inferior to those of the cold rolled and annealed hot rolled sheets.

B8은 [Mn], [Al], [P] 및 2*([Al]+[P])/[Mn]≤1, 10*[P]/[Al]≥1의 조성식을 만족하였으나 열연판 소둔온도와 냉연판 소둔 온도가 모두 관리범위를 벗어났고 그 결과 집합조직 측정 결과, (Vc+Vg+Vrc)/V{111}도 0.35이하로 나타났고 또한 과도하게 높게 소둔이 됨으로써 결정립 크기도 150㎛이상으로 나타나 그 결과 철손과 자속밀도가 열위하게 나타난 것을 알 수 있다. B8 satisfied the composition formula of [Mn], [Al], [P] and 2 * ([Al] + [P]) / [Mn]? 1, 10 * [P] / [Al]? 1, (V c + V g + V rc ) / V {111} was 0.35 or less as a result of the aggregate structure measurement. Further, the annealing temperature was too high and the annealing temperature was too high, And the size is 150 mu m or more. As a result, iron loss and magnetic flux density are inferior.

이상 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.While the present invention has been described in connection with certain exemplary embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.

그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention .

Claims (3)

중량%로, Si: 1.5~3.5%, Al: 0.15~0.45%, Mn: 0.61~1.12%, P: 0.026~0.049%, C: 0.005% 이하(0% 제외), N: 0.005%이하(0% 제외), S: 0.001~0.005%, 및 Ti: 0.005% 이하(0% 제외)를 포함하고, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물로 구성되고, 상기 Mn, Al, P는 조성식 2*([Al]+[P])/[Mn]≤0.98 및 10*[P]/[Al]≥1 를 만족하고,
Sn + Sb: 0.01~0.2중량%를 더 포함하는 슬라브를 1200℃이하로 재가열하는 단계;
재가열된 슬라브를 열간압연하는 단계;
열간압연된 열연판을 850~1150℃의 온도 범위에서 열연판 소둔하고 냉간압연하는 단계; 및
냉간압연된 냉연판을 850~1100℃의 온도에서 최종소둔하는 단계를 포함하고,
제조된 무방향성 전기강판의 집합조직은 0.35≤(Vc+Vg+Vrc)/V{111}≤0.45를 만족하는 무방향성 전기강판 제조방법.
단, [Al], [P] 및 [Mn]은 각각 첨가되는 Al, P 및 Mn의 중량%이다.
단, 상기에서 Vc, Vg, Vrc는 (100)[001], (110)[001], (100)[011] 집합조직의 부피 분율이고, V{111}은 {111} 집합조직의 부피 분율을 의미한다.
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet comprises, by weight, 1.5 to 3.5% of Si, 0.15 to 0.45% of Al, 0.61 to 1.12% of Mn, 0.026 to 0.049% of P, 0.001 to 0.005% of S, and 0.005% or less of Ti (exclusive of 0%), the balance being Fe and other inevitably added impurities, and Mn, Al, ([Al] + [P]) / [Mn]? 0.98 and 10 * [P] / [Al]
Reheating the slab further containing 0.01 to 0.2% by weight of Sn + Sb to 1200 ° C or less;
Hot rolling the reheated slab;
Annealing the hot-rolled hot-rolled sheet in a temperature range of 850 to 1150 캜 and cold-rolling the hot-rolled sheet; And
And finally annealing the cold-rolled cold-rolled sheet at a temperature of 850 to 1100 ° C,
(V c + V g + V rc ) / V {111} < / = 0.45 in the non-oriented electrical steel sheet.
Here, [Al], [P] and [Mn] are the weight percentages of Al, P and Mn added, respectively.
However, the above V c, V g, V rc is 100 [001] 110 [001] 100 [011] The volume fraction of texture, V (111) is {111} texture .
제1항에 있어서,
Cu, Ni 및 Cr을 각각 0.05중량% 이하(0 중량% 제외)로 더 포함하고, Zr, Mo 및 V를 각각 0.01중량% 이하(0 중량% 제외)로 더 포함하는 무방향성 전기강판 제조방법.
The method according to claim 1,
Further comprising 0.05 wt% or less (excluding 0 wt%) of Cu, Ni and Cr, respectively, and further containing 0.01 wt% or less (excluding 0 wt%) of Zr, Mo and V, respectively.
제1항에 있어서,
상기 냉간압연은 1차 냉간압연 또는 중간소둔을 사이에 둔 2회 이상의 냉간압연인 무방향성 전기강판 제조방법.
The method according to claim 1,
Wherein said cold rolling is cold rolling at least two times with primary cold rolling or intermediate annealing being interposed therebetween.
KR1020150149430A 2015-10-27 2015-10-27 Non-oriented electrical steel sheet and manufacturing method for the same KR101633249B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150149430A KR101633249B1 (en) 2015-10-27 2015-10-27 Non-oriented electrical steel sheet and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150149430A KR101633249B1 (en) 2015-10-27 2015-10-27 Non-oriented electrical steel sheet and manufacturing method for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR20130052707A Division KR20140133100A (en) 2013-05-09 2013-05-09 Non-oriented electrical steel sheet and manufacturing method for the same

Publications (2)

Publication Number Publication Date
KR20150126334A KR20150126334A (en) 2015-11-11
KR101633249B1 true KR101633249B1 (en) 2016-06-27

Family

ID=54605763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150149430A KR101633249B1 (en) 2015-10-27 2015-10-27 Non-oriented electrical steel sheet and manufacturing method for the same

Country Status (1)

Country Link
KR (1) KR101633249B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701194B1 (en) * 2015-12-23 2017-02-01 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
JP6903996B2 (en) * 2017-03-28 2021-07-14 日本製鉄株式会社 Non-oriented electrical steel sheet
KR102018181B1 (en) 2017-12-26 2019-09-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256751A (en) 1999-03-03 2000-09-19 Nkk Corp Production of non-oriented silicon steel sheet low in core loss
JP2005113185A (en) 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950004934B1 (en) * 1992-10-09 1995-05-16 포항종합제철주식회사 Method of making non-oriented electro magnetic steel plates with excellent magnetic characteristic
US7922834B2 (en) * 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256751A (en) 1999-03-03 2000-09-19 Nkk Corp Production of non-oriented silicon steel sheet low in core loss
JP2005113185A (en) 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method

Also Published As

Publication number Publication date
KR20150126334A (en) 2015-11-11

Similar Documents

Publication Publication Date Title
KR101634092B1 (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR101648334B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20140133100A (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR101223113B1 (en) Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
JP7260546B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101507942B1 (en) Non-oriented electrical steel steet and method for the same
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
KR101089305B1 (en) Non-directional Electrical Steel Sheets having Low Anisotropy and Manufacturing Method thereof
KR101728827B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101633249B1 (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR20150016434A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101410476B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101707452B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20140058935A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101919529B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20160061797A (en) Non-oriented electrical sheet, and method for manufacturing the same
KR20140133681A (en) Non-oriented electrical steel sheet and manufacturing method for the same
KR20160021164A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR102134311B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101632890B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101630425B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150015308A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150016435A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150062245A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20140133101A (en) Non-oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190610

Year of fee payment: 4