JPH0567377B2 - - Google Patents

Info

Publication number
JPH0567377B2
JPH0567377B2 JP27349485A JP27349485A JPH0567377B2 JP H0567377 B2 JPH0567377 B2 JP H0567377B2 JP 27349485 A JP27349485 A JP 27349485A JP 27349485 A JP27349485 A JP 27349485A JP H0567377 B2 JPH0567377 B2 JP H0567377B2
Authority
JP
Japan
Prior art keywords
workpiece
uneven surface
grinding
speed
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27349485A
Other languages
Japanese (ja)
Other versions
JPS62136352A (en
Inventor
Gyokushin Cho
Masaya Watada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP27349485A priority Critical patent/JPS62136352A/en
Publication of JPS62136352A publication Critical patent/JPS62136352A/en
Publication of JPH0567377B2 publication Critical patent/JPH0567377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軸受案内面加工方法に係り、更に詳細
にはリニアモータの速度変動を利用し研削加工の
みの加工で被加工物の加工面に凹凸を生じさせ該
凹凸面に弾性流体潤滑処理を施すようにした軸受
面加工方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for machining a bearing guideway surface, and more specifically, the present invention relates to a method for machining a bearing guideway surface, and more specifically, it utilizes speed fluctuations of a linear motor to machining the machined surface of a workpiece by only grinding. The present invention relates to a bearing surface machining method in which unevenness is generated and elastohydrodynamic lubrication treatment is applied to the uneven surface.

[従来の技術] 従来、軸受案内面を加工する方法としては、被
加工物の加工面に通常の研削加工を行なつた後に
“きさげ”加工と呼ばれる加工を施して被加工物
の加工面に凹凸を生じさせ、次いで該凹凸面に弾
性流体潤滑処理を施していた。
[Prior Art] Conventionally, the method of machining a bearing guideway is to perform a normal grinding process on the machined surface of the workpiece, and then perform a process called "scraping" to improve the machined surface of the workpiece. The uneven surface was then subjected to elastohydrodynamic lubrication treatment.

[発明が解決しようとする問題点] しかしながら、従来の技術による軸受案内面加
工方法では、作業時間がかかるうえ、作業自体に
高度な熟練を必要としていた。また、特に“きさ
げ”加工は手作業による加工のため、被加工物の
加工面が不規則な凹凸面となり、“きさげ”加工
後の弾性流体潤滑による仕上精度も低かつたので
ある。
[Problems to be Solved by the Invention] However, in the conventional bearing guideway machining method, the work is time consuming and requires a high level of skill. In addition, since the "scraping" process in particular is done by hand, the machined surface of the workpiece becomes an irregularly uneven surface, and the finishing accuracy due to elastohydrodynamic lubrication after the "scraping" process is also low.

本発明の目的は上記事情に鑑み問題を解決する
ために提案されたものであつて、リニアモータの
速度変動によりテーブルを送り方向に直交する直
交方向に振動させ研削加工のみで被加工物の加工
面に凹凸を生じさせ高精度に仕上げるようにした
軸受案内面加工方法を提供するものである。
The purpose of the present invention was proposed in order to solve the problem in view of the above circumstances, and it is an object of the present invention to machine a workpiece by only grinding by vibrating a table in a direction perpendicular to the feeding direction by varying the speed of a linear motor. The present invention provides a bearing guide surface machining method that produces unevenness on the surface and finishes it with high precision.

[問題を解決するための手段] 本発明は上記目的を達成するために、研削盤に
おけるテーブルをリニアモータで駆動し、前記テ
ーブルの送り速度の速度変動により前記テーブル
を送り方向と直交する直交方向に振動させ、テー
ブル上に載置した被加工物に研削加工を行ない、
次いで被加工物の加工面に生じた凹凸面に弾性流
体潤滑処理を施すようにしたものである。
[Means for Solving the Problem] In order to achieve the above object, the present invention drives a table in a grinding machine with a linear motor, and moves the table in an orthogonal direction perpendicular to the feed direction by speed fluctuations in the feed rate of the table. The machine vibrates to grind the workpiece placed on the table.
Next, an elastohydrodynamic lubrication treatment is applied to the uneven surface formed on the machined surface of the workpiece.

[作用] 本発明によれば、研削盤におけるテーブルをリ
ニアモータで駆動し、被加工物の加工面に研削加
工を行なつた場合、テーブルの送り速度の変動に
よりテーブルの送り方向と直交する直交方向にテ
ーブルが振動する。テーブルの送り速度の変動が
小さい場合には狭く浅い研削加工面が生じ、テー
ブルの送り速度の変動が大きい場合には広く深い
研削加工面が生じる。その結果、被加工物の加工
面に、より大きな凹凸面とより小さな凹凸面が生
じ、次いで該凹凸面に弾性流体潤滑処理を施すこ
とによつてより小さな凹凸面を削り取つて軸受案
内面を高精度に仕上げることができる。
[Operation] According to the present invention, when a table in a grinding machine is driven by a linear motor and grinding is performed on the machined surface of a workpiece, fluctuations in the table feed speed cause the table to move perpendicularly to the feed direction of the table. The table vibrates in the direction. If the table feed rate has a small variation, a narrow and shallow ground surface will result, and if the table feed rate has a large variation, a wide and deep ground surface will result. As a result, a larger uneven surface and a smaller uneven surface are generated on the machined surface of the workpiece, and then by applying elastohydrodynamic lubrication treatment to the uneven surface, the smaller uneven surface is scraped off to form a bearing guide surface. Can be finished with high precision.

[実施例] 以下、本発明の一実施例を図面に基いて詳細に
説明する。
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は平面研削盤1の正面概略図であつて、
ベース3上にテーブル5が載置され、該テーブル
5は第1図において矢印の如く左右方向の送り方
向に移動される。テーブル5上には被加工物固定
磁性部材であるマグネテツクチヤツク7が載置さ
れ、しかも該マグネテツクチヤツク7上に被加工
物Wが固定される。砥石台9に下方へ向けて取付
けられた砥石11が図示省略の駆動装置により回
転し、マグネテツクチヤツク7上に固定された被
加工物Wに所定の研削加工が施される。なお、平
面研削盤1および砥石11は特に変わつたもので
はなく、従来あら使用されている通常のものでよ
い。
FIG. 1 is a schematic front view of a surface grinder 1,
A table 5 is placed on the base 3, and the table 5 is moved in the left-right feeding direction as shown by the arrow in FIG. A magnetic chuck 7, which is a magnetic member for fixing the workpiece, is placed on the table 5, and the workpiece W is fixed onto the magnetic chuck 7. A grindstone 11 attached to a grindstone head 9 facing downward is rotated by a drive device (not shown), and a predetermined grinding process is performed on a workpiece W fixed on a magnetic chuck 7. Incidentally, the surface grinder 1 and the grindstone 11 are not particularly unusual, and may be ordinary ones that are conventionally used.

第2図に示すように、テーブル5は該テーブル
5のほぼ中央下部に設けられたリニアモータ13
によりベース3の表面上に形成した案内面15に
案内されて第2図において左右方向の送り方向に
移動される。
As shown in FIG.
It is guided by a guide surface 15 formed on the surface of the base 3 and moved in the left-right feeding direction in FIG.

第1図および第2図から明らかなように、平面
研削盤1におけるテーブル5をリニアモータ13
で駆動し被加工物Wに研削加工を行なつた場合、
テーブル5の送り速度の速度変動によりテーブル
5が送り方向と直交する直交方向に振動し被加工
物Wの加工面に第3図に示すような凹凸面を生じ
る減少が生じる。
As is clear from FIGS. 1 and 2, the table 5 in the surface grinding machine 1 is moved by the linear motor 13.
When grinding is performed on the workpiece W by driving with
Due to the fluctuation in the feed rate of the table 5, the table 5 vibrates in a direction orthogonal to the feed direction, causing an uneven surface on the machined surface of the workpiece W as shown in FIG.

第3図に示すように、凹凸面はより大きな凹凸
面Waとより小さな凹凸面Wbとによ構成されて
いる。より大きな凹凸面Waはテーブル5の送り
速度の速度変動により、第3図において左右方向
(X方向)である送り方向と直交する直交方向
(Y方向)の振動により生じるものである。
As shown in FIG. 3, the uneven surface is composed of a larger uneven surface Wa and a smaller uneven surface Wb. The larger uneven surface Wa is caused by vibrations in the orthogonal direction (Y direction) orthogonal to the feed direction, which is the left-right direction (X direction) in FIG. 3, due to speed fluctuations in the feed speed of the table 5.

テーブル5の送り速度の速度変動が小さい場合
には第3図に示す如く、被加工物Wの加工面Wd
が狭く浅くなり、前記速度変動が大きい場合には
被加工物Wの加工面Wcが広く深くなる。このよ
うな被加工物Wの加工面Wc、Wdにおける速度
変動と凹凸面との関係は第4図に示す状態とな
る。したがつて、テーブル5の送り速度の速度変
動が増すほど凹凸面は大きくなる。
When the speed fluctuation of the feed rate of the table 5 is small, as shown in FIG.
becomes narrow and shallow, and when the speed fluctuation is large, the machined surface Wc of the workpiece W becomes wide and deep. The relationship between speed fluctuations and uneven surfaces on the machined surfaces Wc and Wd of the workpiece W is as shown in FIG. 4. Therefore, as the speed fluctuation of the feed rate of the table 5 increases, the uneven surface becomes larger.

より小さな凹凸面Wbはリニアモータ13のト
ルク変動により生ずるものである。
The smaller uneven surface Wb is caused by torque fluctuations of the linear motor 13.

上述したテーブル5の送り速度の速度変動を大
きくする手段としては、リニアモータ13の制御
等においては第5図に示すごとき速度指令図の最
高一定速度域で小さな速度変動Vdを生じさせた
りあるいは速度ループをかけたりすることで行な
われる。また、機械的な手段としては、例えばリ
ニアパルスモータの場合ピツチを大きく、ギヤツ
プを小さくしてトルク変動を大きくすること等で
行なわれる。
As a means of increasing the speed fluctuation of the feed speed of the table 5 mentioned above, in controlling the linear motor 13, etc., it is possible to cause a small speed fluctuation Vd in the maximum constant speed range of the speed command diagram shown in FIG. This is done by applying a loop. Further, mechanical means include, for example, in the case of a linear pulse motor, increasing the pitch and decreasing the gap to increase the torque fluctuation.

上記の加工方法により第3図に示されるような
被加工物Wの加工面となるが、そのままの状態で
は軸受案内面として使用できないため、さらに通
常の弾性流体潤滑を行ない、より小さな凹凸面
Wbを削り取ることにより軸受案内面が高精度に
仕上がる。
The above machining method produces the machined surface of the workpiece W as shown in Figure 3, but since it cannot be used as a bearing guide surface in that state, normal elastohydrodynamic lubrication is further performed to create a surface with smaller irregularities.
By removing Wb, the bearing guideway can be finished with high precision.

[効果] 以上のごとき実施例の説明から理解されるよう
に、本発明によれば、研削盤におけるテーブルを
リニアモータで駆動し、前記テーブルの送り速度
の速度変動により前記テーブルを送り方向と直交
する直交方向に振動させ、テーブル上に載置した
被加工物に研削加工を行ない、次いで被加工物の
加工面に生じた凹凸面に弾性流体潤滑処理を施す
ようにしたので、“きさげ”加工を削除すること
ができる。したがつて、本発明の加工方法は作業
時間を短縮することができると共に、未熟練作業
者でも正確な軸受案内面の加工ができる。さら
に、研削加工後にできる凹凸面がより精密にな
り、弾性流体潤滑の効果を高めることができるの
で、軸受案内面を高精度に仕上げることができる
という効果を奏する。
[Effects] As can be understood from the above description of the embodiments, according to the present invention, a table in a grinding machine is driven by a linear motor, and the table is moved perpendicular to the feed direction by speed fluctuations in the feed rate of the table. The workpiece placed on the table is vibrated in the perpendicular direction to grind the workpiece, and then elastohydrodynamic lubrication is applied to the uneven surface of the workpiece. Processing can be deleted. Therefore, the machining method of the present invention can shorten the working time, and even an unskilled worker can accurately machine the bearing guide surface. Furthermore, the uneven surface formed after the grinding process becomes more precise, and the effect of elastohydrodynamic lubrication can be enhanced, resulting in the effect that the bearing guide surface can be finished with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平面研削盤の正面概略図である。第2
図はテーブルの送りを説明する一部断面を示した
斜視図である。第3図は本発明の加工方法で加工
した被加工物の平面拡大説明図である。第4図は
テーブルの送り速度の速度変動と被加工物の加工
面における凹凸面の程度との関係を示す図であ
る。第5図はリニアモータの速度指令図である。 1……平面研削盤、5……テーブル、7……マ
グネテツクチヤツク、11……砥石、13……リ
ニアモータ。
FIG. 1 is a schematic front view of a surface grinder. Second
The figure is a partially sectional perspective view illustrating table feeding. FIG. 3 is an enlarged plan view of a workpiece processed by the processing method of the present invention. FIG. 4 is a diagram showing the relationship between the speed fluctuation of the table feed rate and the degree of unevenness on the machined surface of the workpiece. FIG. 5 is a speed command diagram of the linear motor. 1... Surface grinder, 5... Table, 7... Magnetic chuck, 11... Grinding wheel, 13... Linear motor.

Claims (1)

【特許請求の範囲】[Claims] 1 研削盤におけるテーブルをリニアモータで駆
動し、前記テーブルの送り速度の速度変動により
前記テーブルを送り方向と直交する直交方向に振
動させ、テーブル上に載置した被加工物に研削加
工を行ない、次いで被加工物の加工面に生じた凹
凸面に弾性流体潤滑処理を施すことを特徴とする
軸受案内面加工方法。
1. Driving a table in a grinding machine with a linear motor, vibrating the table in an orthogonal direction perpendicular to the feed direction due to speed fluctuations in the feed rate of the table, and grinding a workpiece placed on the table, A method for machining a bearing guide surface, the method comprising: then applying elastohydrodynamic lubrication to the uneven surface produced on the machining surface of the workpiece.
JP27349485A 1985-12-06 1985-12-06 Method of machining bearing guide surface Granted JPS62136352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27349485A JPS62136352A (en) 1985-12-06 1985-12-06 Method of machining bearing guide surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27349485A JPS62136352A (en) 1985-12-06 1985-12-06 Method of machining bearing guide surface

Publications (2)

Publication Number Publication Date
JPS62136352A JPS62136352A (en) 1987-06-19
JPH0567377B2 true JPH0567377B2 (en) 1993-09-24

Family

ID=17528683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27349485A Granted JPS62136352A (en) 1985-12-06 1985-12-06 Method of machining bearing guide surface

Country Status (1)

Country Link
JP (1) JPS62136352A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0336312A3 (en) * 1988-04-04 1991-01-09 Michel A. Pierrat Computer controlled universal grinder and method for grinding hypotrochoidal, epitrochoidal and circular bearing races
JP2600063Y2 (en) * 1991-04-25 1999-09-27 キヤノン株式会社 Spherical grinding machine
CN109465679A (en) * 2018-11-18 2019-03-15 柳州中通科技有限公司 A kind of rail traffic high-precision bearing production technology

Also Published As

Publication number Publication date
JPS62136352A (en) 1987-06-19

Similar Documents

Publication Publication Date Title
US4524543A (en) Vibratory abrasive contour-finishing method and apparatus
US5083401A (en) Method of polishing
JPH0567377B2 (en)
JP2835002B2 (en) Automatic deburring method
JPS6347033A (en) High-speed machining device
JPS6268269A (en) Precision machining method and device for work of rotation symmetry
JP3071640B2 (en) Deep hole inner surface grinding method for workpieces
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
JPS61214963A (en) Method for precise cutting of vibrating plane of ceramics
JPS6362659A (en) Precise finishing method with complex vibration grinding wheel
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JP2613081B2 (en) Mirror polishing method for wafer periphery
JPS6234678Y2 (en)
JPH10180620A (en) Polishing device and polishing method
JPS6362658A (en) Precise finishing method with complex vibration grinding wheel
RU2490113C2 (en) Automatic control over dressing of aligned surfacing wheels
JP2710857B2 (en) Dressing method in polishing
JP2883279B2 (en) Wrap jig and lap processing method using the same
JPH06182664A (en) Vibrating table device
SU1514570A1 (en) Method of working optical parts
SU831561A1 (en) Method of controlling ball finishing process
JP2004025345A (en) Cutting method for iron material
JPH0349705B2 (en)
SU576597A1 (en) Method of working magnetic head surface
JPH04226858A (en) Improvement of surface grinding machine tool