JPH0566007B2 - - Google Patents

Info

Publication number
JPH0566007B2
JPH0566007B2 JP14860788A JP14860788A JPH0566007B2 JP H0566007 B2 JPH0566007 B2 JP H0566007B2 JP 14860788 A JP14860788 A JP 14860788A JP 14860788 A JP14860788 A JP 14860788A JP H0566007 B2 JPH0566007 B2 JP H0566007B2
Authority
JP
Japan
Prior art keywords
aluminum
particles
foil
aluminum foil
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14860788A
Other languages
Japanese (ja)
Other versions
JPH01316924A (en
Inventor
Takeshi Nishizaki
Masashi Sakaguchi
Tadao Fujihira
Kyoshi Tada
Osatsugu Nakaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP14860788A priority Critical patent/JPH01316924A/en
Publication of JPH01316924A publication Critical patent/JPH01316924A/en
Publication of JPH0566007B2 publication Critical patent/JPH0566007B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、電解コンデンサ電極用アルミニウ
ム材料及びその製造方法に関する。 従来の技術 電解コンデンサ用アルミニウム電極材として用
いられるアルミニウム箔は、可及的大きな表面積
を有して単位面積当りの静電容量の大きいもので
あることが要請される。このため、一般的に電気
化学的あるいは化学的なエツチング処理を施して
アルミニウム箔の実効面積を拡大することが行わ
れており、さらにこの拡面率の可及的増大を目的
として、エツチング孔をより多く、深く、太くす
ることに関して材料組成や金属組織の改善、エツ
チング方法の改善、箔の製造工程に関する研究等
種々の研究がなされている。 発明が解決しようとする課題 ところが、実際上、従来既知のエツチング技術
においては、概してエツチング孔形成の基礎とな
るエツチング核の発生部位が不均一であり、また
エツチングピツトどうしが連通して粗大孔となる
などして結果において十分に期待されるような拡
面率の増大効果を得ることが難しいという問題が
あつた。このため、エツチングピツトの発生部位
を予め意図的に決定して多数の深いエツチングピ
ツトを均一に形成し、拡面率に優れたものとなし
得る電解コンデンサ用アルミニウム電極材料の製
造方法として、フオトレジスト技術を用いた方法
も提案されているが(例えば特開昭59−161808
号)、コスト高であり実用的ではなかつた。 この発明はかかる技術的背景に鑑みてなされた
もので、多数の深いエツチングを均一かつ高密度
に形成することを可能として、拡面率すなわち静
電容量に優れたものとなし得るエツチング特性に
優れた電解コンデンサ電極用アルミニウム材料の
提供を意図してなされたものである。 課題を解決するための手段 上記目的の為に、この発明に係る電解コンデン
サ電極用アルミニウム材料は、図面の符号を参照
して示せば、エツチング前のアルミニウム箔1の
表面に、該アルミニウムよりも酸化されにくい平
均粒子径0.1〜2μmの難酸化物粒子2が70000〜
400000個/mm2の割合で定着状態に存在すると共
に、これら難酸化物粒子の存在部分を除いてアル
ミニウム箔1の表面に厚さ70〜5000Åの酸化皮膜
3が形成されてなることを特徴とするものであ
る。あるいはまた、この発明に係る電解コンデン
サ電極用アルミニウム材料の製造方法は、電気化
学的または化学的エツチング処理を施す前に、ア
ルミニウム箔1の表面に、アルミニウムよりも酸
化されにくい平均粒子径0.1〜2μmの難酸化物粒
子2を70000〜400000個/mm2の割合で定着状態に
存在させる工程と、アルミニウム箔1の表面に厚
さ70〜5000Åの酸化皮膜3を形成する工程とを順
次的に実施することを特徴とするものである。 上記アルミニウム箔1は、純度99.9%以上の高
純度のものが好ましいが、これに限定されること
はなく、電解コンデンサに使用される範囲内のも
のであれば良い。 上記アルミニウムより酸化されにくい難酸化物
粒子2としては、Ti、Au等の金属粒子あるいは
SiO2、MgO等の非金属粒子を挙げ得るが、これ
らに限定されることはなくアルミニウムよりも酸
化されにくい粒子状の物質であれば何でも良い。
係る難酸化物粒子2はアルミニウム箔1の表面に
定着状態に存在せられて、後に行われるエツチン
グ時にアルミニウム箔1と該難酸化物粒子2との
界面部分が優先的に腐食されることにより、難酸
化物粒子2の存在部分にエツチング孔4を形成さ
せる核としての役割を果たす。難酸化物粒子2は
箔1の片面に存在させても良いが、好ましくは両
面に存在させるのが良い。而して、難酸化物粒子
2の平均粒子径が0.1μm未満ではエツチングの際
にエツチング孔4が形成されない部位を多数生じ
て表面積の拡大による静電容量の増大効果を十分
発揮し得ず、逆に2μmを超えるとエツチング孔4
が大きくなり過ぎ、エツチング後の箔1の強度低
下を来たす。好ましい平均粒子径は0.2〜0.5μmで
ある。また、難酸化物粒子2の数が1mm2当り
70000個未満でも同じくエツチング後の表面積拡
大効果が少なく、逆に400000個/mm2を超えるとや
はりエツチング後の箔の強度が低下する。好まし
くは1mm2当り150000〜250000個存在させるのが良
い。 アルミニウム箔1表面に難酸化物粒子2を定着
状態に存在させる方法の1つとしては、該粒子を
箔表面に埋め込む方法がある。埋め込みは例えば
該難酸化物粒子を分散状態に添加した圧延油を用
いて圧延することにより行い得る。また他の方法
として、蒸着やスパツタリング法により箔表面に
難酸化物粒子を付着させたり、化学的方法により
箔表面に吸着させる方法等を挙げ得る。 難酸化物粒子の存在部分を除いてアルミニウム
箔の表面に被覆形成された酸化皮膜3は、該皮膜
部分におけるアルミニウム箔表面の溶解を阻止す
る役割を果たす。しかし酸化皮膜3の厚さが70Å
未満ではその効果に乏しく皮膜形成部分の表面溶
解を生じて結果的に表面積が小さくなる。逆に
5000Åを超える厚さでは難酸化物粒子の存在部分
であつてもエツチング孔を生じない部位が発生
し、同じく表面積の増大を図れない結果を招く。
また可撓性にも劣るものとなる。従つて、難酸化
物粒子の存在部分を除いてアルミニウム箔表面に
被覆形成される酸化皮膜3の厚さは70〜5000Åの
範囲でなければならない。好ましくは100〜2000
Åとするのが良い。係る酸化皮膜の形成は、例え
ば、アルミニウム箔表面に難酸化物粒子を存在さ
せた後、酸素雰囲気中で高温加熱処理する方法と
か硼酸系電解液を用いて陽極酸化処理する方法を
挙げ得る。係る処理の遂行により、第2図に示す
ように、難酸化物粒子2を避けてアルミニウム箔
1表面に酸化皮膜3が成長する。いずれの方法に
よる場合にも、酸化皮膜3の膜厚が70〜5000Åに
形成されることをもつて要件を満足するものであ
り、その為の処理条件は特に限定されない。 上記により酸化皮膜3を形成したアルミニウム
箔1は、その後これを電気化学的あるいは化学的
エツチング処理した後電解コンデンサ電極箔とし
て使用する。上記エツチング処理においては、難
酸化物粒子とアルミニウム箔との界面部分から優
先的に腐食が進行する一方、酸化皮膜の被覆部分
は表面溶解が防止される。その結果、第3図に示
すように、難酸化物粒子2の存在部分のみにエツ
チング孔4が形成される。 発明の効果 この発明に係る電解コンデンサ電極用アルミニ
ウム材料は、上述の次第で、これをエツチングし
た場合に難酸化物粒子の存在部分のみにおいてア
ルミニウム箔にエツチング孔を形成することがで
き、他の部分は酸化皮膜により表面溶解を防止で
きる。そしてこのような難酸化物粒子を所定の大
きさ、数量をもつて存在せしめたものであるか
ら、ひいてはエツチング孔を均一高密度に分布形
成せしめることができると共に、エツチング孔ど
うしの連通を防止し得てその1つ1つを太くて深
いものに形成できる。その結果、電極箔の拡面率
を増大でき、ひいては静電容量の増大を実現でき
る。 またこの発明の製造方法はフオトエツチング法
を使用するものではないから、上記のようなエツ
チング特性に優れたアルミニウム材料を安価に提
供できる。 実施例 実施例 1 純度99.99%の高純度アルミニウム材を用い、
該アルミニウム材を常法により熱間圧延した後、
厚さ0.3mmに冷間圧延した。次いで、50℃、5%
の苛性ソーダによつて30秒間アルミニウム材の表
面除去処理を行つた。そしてその後箔圧延に際
し、Ti粒子を分散した圧延油を用いることによ
り、該圧延油を介して前記粒子をアルミニウム材
表面へ付着保持せしめた後、圧延を施してTi粒
子を埋め込んだ厚さ0.1mmの箔を複数枚製作した。
ここに、Ti粒子の粒径と該粒子の圧延油への分
散数量を適宜変えることにより、各箔の表面に埋
め込んだTi粒子の平均粒子径と存在個数を第1
表のように設定した。 次に上記各箔を、5wt%の硼酸液中で陽極酸化
処理し、その表面に厚さ約150Åの酸化皮膜を形
成した。なお、酸化皮膜はTi粒子の埋め込み部
分には形成されていなかつた。 上記により得た各アルミニウム材料を、3%塩
酸水溶液(85℃)中で電流密度を直流10A/dm2
とし、3分間電解エツチング処理した後、さらに
液を取り替えることなく10分間化学エツチング処
理した。 エツチング後得られたアルミニウム電極箔の拡
面倍率及び強度を調べたところ、第1表に示すと
おりであつた。
INDUSTRIAL APPLICATION FIELD This invention relates to an aluminum material for electrolytic capacitor electrodes and a method for manufacturing the same. BACKGROUND OF THE INVENTION Aluminum foil used as an aluminum electrode material for electrolytic capacitors is required to have as large a surface area as possible and a large capacitance per unit area. For this reason, it is generally done to enlarge the effective area of aluminum foil by electrochemical or chemical etching treatment, and furthermore, with the aim of increasing this area enlargement ratio as much as possible, etching holes are formed. In order to make the foil larger, deeper, and thicker, various studies are being conducted, including improving the material composition and metal structure, improving the etching method, and researching the manufacturing process of the foil. Problems to be Solved by the Invention However, in practice, in conventionally known etching techniques, the locations where etching nuclei, which form the basis of etching holes, are generated are generally non-uniform, and etching pits communicate with each other, resulting in coarse holes. As a result, there was a problem in that it was difficult to obtain the expected effect of increasing the area enlargement ratio. For this reason, photoresist technology has been developed as a manufacturing method for aluminum electrode materials for electrolytic capacitors, which can intentionally determine the locations where etching pits occur in advance and uniformly form many deep etching pits, resulting in an excellent area expansion ratio. Although methods using the method have also been proposed (for example,
(No.), which was expensive and impractical. This invention was made in view of this technical background, and it is possible to form a large number of deep etchings uniformly and with high density, and has excellent etching characteristics such as an excellent area enlargement ratio, that is, an excellent capacitance. This invention was developed with the intention of providing an aluminum material for electrolytic capacitor electrodes. Means for Solving the Problems For the above purpose, the aluminum material for electrolytic capacitor electrodes according to the present invention, as shown with reference to the reference numerals in the drawings, has a surface that is more oxidized than the aluminum before etching. Oxide-resistant particles 2 with an average particle diameter of 0.1-2μm are 70,000~
The aluminum foil 1 is characterized by being present in a fixed state at a rate of 400,000 particles/mm 2 , and an oxide film 3 having a thickness of 70 to 5,000 Å is formed on the surface of the aluminum foil 1 except for the areas where these difficult-to-oxidize particles are present. It is something to do. Alternatively, in the method for manufacturing an aluminum material for electrolytic capacitor electrodes according to the present invention, before electrochemical or chemical etching treatment, the surface of the aluminum foil 1 is coated with an average particle size of 0.1 to 2 μm, which is less oxidized than aluminum. A step of causing oxidation-resistant particles 2 to exist in a fixed state at a rate of 70,000 to 400,000 particles/mm 2 and a step of forming an oxide film 3 with a thickness of 70 to 5,000 Å on the surface of the aluminum foil 1 are sequentially carried out. It is characterized by: The aluminum foil 1 preferably has a high purity of 99.9% or higher, but is not limited to this, and may be any foil within the range used for electrolytic capacitors. As the above-mentioned hard-to-oxidize particles 2 that are less oxidized than aluminum, metal particles such as Ti, Au, etc.
Examples include non-metallic particles such as SiO 2 and MgO, but the present invention is not limited to these, and any particulate substance that is less oxidizable than aluminum may be used.
The oxidation-resistant particles 2 are present in a fixed state on the surface of the aluminum foil 1, and the interface between the aluminum foil 1 and the oxidation-resistant particles 2 is preferentially corroded during subsequent etching. It serves as a nucleus for forming etching holes 4 in the areas where the oxidation-resistant particles 2 are present. The oxidant-resistant particles 2 may be present on one side of the foil 1, but preferably on both sides. If the average particle diameter of the oxide-resistant particles 2 is less than 0.1 μm, there will be many areas where no etching holes 4 will be formed during etching, and the effect of increasing capacitance due to the expansion of the surface area will not be sufficiently exhibited. On the other hand, if it exceeds 2 μm, etching hole 4
becomes too large, resulting in a decrease in the strength of the foil 1 after etching. The preferred average particle size is 0.2 to 0.5 μm. In addition, the number of difficult-to-oxidize particles 2 per mm 2
If the number is less than 70,000, the effect of expanding the surface area after etching will be small, and if it exceeds 400,000 , the strength of the etched foil will decrease. Preferably, 150,000 to 250,000 particles are present per mm 2 . One method for making the hard-to-oxidize particles 2 exist in a fixed state on the surface of the aluminum foil 1 is to embed the particles in the surface of the foil. The embedding can be performed, for example, by rolling using rolling oil to which the oxidation-resistant particles are added in a dispersed state. Other methods include attaching oxidant-resistant particles to the foil surface by vapor deposition or sputtering, or adsorbing them to the foil surface by a chemical method. The oxide film 3 formed on the surface of the aluminum foil except for the part where the oxidation-resistant particles are present serves to prevent the surface of the aluminum foil from dissolving in the film part. However, the thickness of oxide film 3 is 70Å
If it is less than that, the effect will be poor and the surface of the film-forming portion will dissolve, resulting in a small surface area. vice versa
If the thickness exceeds 5000 Å, there will be areas where no etching holes are formed even in areas where oxidation-resistant particles are present, resulting in the inability to increase the surface area.
It also has poor flexibility. Therefore, the thickness of the oxide film 3 formed on the surface of the aluminum foil, excluding the portion where the oxidation-resistant particles are present, must be in the range of 70 to 5000 Å. Preferably 100-2000
It is better to set it as Å. The formation of such an oxide film can be carried out, for example, by a method in which hard-to-oxidize particles are present on the surface of the aluminum foil and then subjected to high-temperature heat treatment in an oxygen atmosphere, or a method in which the aluminum foil is subjected to anodization treatment using a boric acid electrolyte. By performing such processing, an oxide film 3 grows on the surface of the aluminum foil 1, avoiding the oxidation-resistant particles 2, as shown in FIG. In either method, the requirements are satisfied as long as the oxide film 3 is formed with a thickness of 70 to 5000 Å, and the processing conditions therefor are not particularly limited. The aluminum foil 1 on which the oxide film 3 has been formed as described above is then electrochemically or chemically etched and used as an electrolytic capacitor electrode foil. In the above etching treatment, corrosion preferentially progresses from the interface between the oxidation-resistant particles and the aluminum foil, while surface dissolution of the oxide film-covered portion is prevented. As a result, as shown in FIG. 3, etching holes 4 are formed only in the areas where the oxidation-resistant particles 2 are present. Effects of the Invention As described above, when the aluminum material for electrolytic capacitor electrodes according to the present invention is etched, etching holes can be formed in the aluminum foil only in the areas where oxidation-resistant particles are present, and in other areas. can prevent surface dissolution due to the oxide film. Since such oxidation-resistant particles are present in a predetermined size and quantity, etching holes can be formed in a uniform and dense distribution, and communication between etching holes can be prevented. You can form each one into something thick and deep. As a result, it is possible to increase the area expansion ratio of the electrode foil, and as a result, it is possible to realize an increase in capacitance. Further, since the manufacturing method of the present invention does not use a photoetching method, an aluminum material having excellent etching properties as described above can be provided at a low cost. Examples Example 1 Using high purity aluminum material with a purity of 99.99%,
After hot rolling the aluminum material by a conventional method,
It was cold rolled to a thickness of 0.3 mm. Then, 50℃, 5%
The surface of the aluminum material was removed using caustic soda for 30 seconds. Then, when rolling the foil, by using rolling oil in which Ti particles are dispersed, the particles are adhered to and held on the surface of the aluminum material via the rolling oil, and then rolled to a thickness of 0.1 mm in which the Ti particles are embedded. I made multiple sheets of foil.
Here, by appropriately changing the particle size of the Ti particles and the number of particles dispersed in the rolling oil, the average particle size and number of Ti particles embedded in the surface of each foil can be adjusted to the first
I set it up as shown in the table. Next, each of the above foils was anodized in a 5 wt % boric acid solution to form an oxide film with a thickness of about 150 Å on its surface. Note that no oxide film was formed in the part where the Ti particles were embedded. Each aluminum material obtained above was heated to a DC current density of 10 A/dm 2 in a 3% aqueous hydrochloric acid solution (85°C).
After performing electrolytic etching for 3 minutes, chemical etching was further performed for 10 minutes without changing the solution. The area enlargement magnification and strength of the aluminum electrode foil obtained after etching were examined and were as shown in Table 1.

【表】【table】

【表】 実施例 2 実施例1と同じアルミニウム材料を用いると共
に、同じ方法により表面にTi粒子が埋め込み状
態に存在する厚さ0.1mmの複数枚のアルミニウム
箔を製作した。ここに、Ti粒子は全て平均粒子
径0.25μmのものを用いると共に、箔表面のTi粒
子の分布個数も全て約250000個/mm2とした。 次に各アルミニウム箔を、上記実施例1と同じ
硼酸電解液を用いて陽極酸化処理すると共に、処
理時間を適宜変えてTi粒子の存在部分を除く箔
表面に第2表に示すような種々の厚さの酸化皮膜
を形成した。 そして、上記により得た各アルミニウム材料
を、実施例1と同じ条件でエツチング処理した
後、得られた電極箔の拡面倍率、強度を測定した
ところ、第2表のとおりであつた。
[Table] Example 2 Using the same aluminum material as in Example 1, and using the same method, a plurality of aluminum foils each having a thickness of 0.1 mm and having Ti particles embedded in their surfaces were manufactured. Here, all Ti particles used had an average particle diameter of 0.25 μm, and the number of Ti particles distributed on the foil surface was also approximately 250,000 particles/mm 2 . Next, each aluminum foil was anodized using the same boric acid electrolyte as in Example 1, and the treatment time was changed appropriately to apply various treatments as shown in Table 2 on the foil surface except for the areas where Ti particles were present. A thick oxide film was formed. Each of the aluminum materials obtained above was etched under the same conditions as in Example 1, and the area enlargement ratio and strength of the obtained electrode foils were measured, and the results were as shown in Table 2.

【表】 以上の結果から、この発明に係るアルミニウム
材料は、エツチング後の拡面倍率が大きく、従つ
て大きな静電容量が得られることを当然に予想し
得るものであつた。またエツチング後の箔の強度
低下も生じないことがわかる。
[Table] From the above results, it could be naturally expected that the aluminum material according to the present invention has a large area enlargement ratio after etching, and therefore a large capacitance can be obtained. It is also seen that the strength of the foil does not decrease after etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルミニウム箔表面に難酸化物粒子を
定着状態に存在させた状態を模式的に示す斜視
図、第2図は難酸化物粒子を埋め込んだアルミニ
ウム箔表面に酸化皮膜を形成した状態を示す模式
的断面図、第3図はエツチング後のアルミニウム
箔表面の模式的断面図である。 1…アルミニウム箔、2…難酸化物粒子、3…
酸化皮膜、4…エツチング孔。
Figure 1 is a perspective view schematically showing a state in which oxidation-resistant particles are present in a fixed state on the surface of an aluminum foil, and Figure 2 is a diagram showing a state in which an oxide film is formed on the surface of an aluminum foil in which oxidation-resistant particles are embedded. The schematic cross-sectional view shown in FIG. 3 is a schematic cross-sectional view of the surface of the aluminum foil after etching. 1... Aluminum foil, 2... Hard-to-oxidize particles, 3...
Oxide film, 4...etching holes.

Claims (1)

【特許請求の範囲】 1 エツチング前のアルミニウム箔の表面に、該
アルミニウムよりも酸化されにくい平均粒子径
0.1〜2μmの難酸化物粒子が70000〜400000個/mm2
の割合で定着状態に存在すると共に、これら難酸
化物粒子の存在部分を除いてアルミニウム箔の表
面に厚さ70〜5000Åの酸化皮膜が形成されてなる
ことを特徴とする電解コンデンサ電極用アルミニ
ウム材料。 2 電気化学的または化学的エツチング処理を施
す前に、アルミニウム箔の表面に、アルミニウム
よりも酸化されにくい平均粒子径0.1〜2μmの難
酸化物粒子を70000〜400000個/mm2の割合で定着
状態に存在させる工程と、アルミニウム箔の表面
に厚さ70〜5000Åの酸化皮膜を形成する工程とを
順次的に実施することを特徴とする電解コンデン
サ電極用アルミニウム材料の製造方法。
[Claims] 1. On the surface of the aluminum foil before etching, an average particle size that is less likely to be oxidized than the aluminum is added.
70,000 to 400,000 0.1 to 2 μm oxidant-resistant particles/mm 2
An aluminum material for electrolytic capacitor electrodes, characterized in that the aluminum foil is present in a fixed state at a ratio of . 2. Before electrochemical or chemical etching treatment, oxidation-resistant particles with an average particle diameter of 0.1 to 2 μm, which are less oxidized than aluminum, are fixed on the surface of the aluminum foil at a rate of 70,000 to 400,000 particles/ mm2. 1. A method for producing an aluminum material for an electrolytic capacitor electrode, comprising sequentially carrying out a step of causing an oxide film to exist on the surface of an aluminum foil, and a step of forming an oxide film with a thickness of 70 to 5000 Å on the surface of an aluminum foil.
JP14860788A 1988-06-16 1988-06-16 Aluminum material for electrolytic capacitor electrode and manufacture thereof Granted JPH01316924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14860788A JPH01316924A (en) 1988-06-16 1988-06-16 Aluminum material for electrolytic capacitor electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14860788A JPH01316924A (en) 1988-06-16 1988-06-16 Aluminum material for electrolytic capacitor electrode and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH01316924A JPH01316924A (en) 1989-12-21
JPH0566007B2 true JPH0566007B2 (en) 1993-09-20

Family

ID=15456555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14860788A Granted JPH01316924A (en) 1988-06-16 1988-06-16 Aluminum material for electrolytic capacitor electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01316924A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009321A1 (en) * 2000-01-19 2003-01-30 Nihon Parkerizing Co., Ltd. Aluminum foil for electrolytic capacitor
JP4763363B2 (en) * 2005-07-05 2011-08-31 幸子 小野 Aluminum material for electrolytic capacitor electrode having excellent etching characteristics and method for producing the same, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2008166602A (en) * 2006-12-28 2008-07-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP5373745B2 (en) * 2010-11-05 2013-12-18 幸子 小野 Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5329686B2 (en) * 2012-02-03 2013-10-30 幸子 小野 Aluminum material for electrolytic capacitor electrode and manufacturing method thereof, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JPH01316924A (en) 1989-12-21

Similar Documents

Publication Publication Date Title
US20100126870A1 (en) Controlled electrodeposition of nanoparticles
TW201135770A (en) Electrode material for aluminum electrolytic capacitor and production method therefor
JP2907718B2 (en) Etching method of aluminum foil for electrolytic capacitor electrode
JPH0566007B2 (en)
US7531078B1 (en) Chemical printing of raw aluminum anode foil to induce uniform patterning etching
JPH06204094A (en) Manufacture of aluminium material for electrode of electrolytic capacitor
JP2000068159A (en) Solid electrolytic capacitor electrode foil therefor and its manufacture
WO2003062506A1 (en) Composite metal material and production method therefor, etched metal material and production method therefor, and electrolytic capacitor
JPS63160322A (en) Aluminum electrode material for electrolytic capacitor
JP3403444B2 (en) Aluminum foil for electrode of electrolytic capacitor
JPH0722094B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode
JP2635357B2 (en) Manufacturing method of aluminum material for electrolytic capacitor
JP2758040B2 (en) Electrode etching method for electrolytic capacitor
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP3498349B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2638038B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2629241B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2000228333A (en) Manufacture of aluminum foil for electrolytic capacitor electrode
JP2745575B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3537127B2 (en) Aluminum foil for electrolytic capacitor electrodes
JP2809988B2 (en) Aluminum foil for electrolytic capacitor electrode and etching method thereof
JP2696882B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2692107B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4421765B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPH0423412B2 (en)