JPH0565090B2 - - Google Patents

Info

Publication number
JPH0565090B2
JPH0565090B2 JP61203180A JP20318086A JPH0565090B2 JP H0565090 B2 JPH0565090 B2 JP H0565090B2 JP 61203180 A JP61203180 A JP 61203180A JP 20318086 A JP20318086 A JP 20318086A JP H0565090 B2 JPH0565090 B2 JP H0565090B2
Authority
JP
Japan
Prior art keywords
temperature
probe
heat
body surface
temperature sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61203180A
Other languages
Japanese (ja)
Other versions
JPS6358223A (en
Inventor
Tatsuo Togawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61203180A priority Critical patent/JPS6358223A/en
Publication of JPS6358223A publication Critical patent/JPS6358223A/en
Publication of JPH0565090B2 publication Critical patent/JPH0565090B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は臨床検温とくに体温の連続計測、基
礎体温の計測等に利用するのに適する体温計測装
置に関し、特に従来の体温計では計測が困難であ
つた日常生活時の連続的体温情報を得ることを可
能にしようとするものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to a body temperature measuring device suitable for use in clinical temperature measurement, particularly continuous measurement of body temperature, measurement of basal body temperature, etc., which is difficult to measure with conventional thermometers. The purpose is to make it possible to obtain continuous body temperature information during daily life.

「従来の技術」 従来、体温計測には水銀体温計または電子体温
計を用い、えき下または口腔に体温計を挿入して
計測を行なう方法が一般的であつた。しかし、長
時間の連続計測にはえき下あるいは口腔の計測は
困難である。そこで、従来は長時間の体温計測に
はおもに直腸温の計測が用いられてきた。しか
し、直腸温の計測は不快感がともなうため長時間
の施工は困難である。そのほか、食道温、鼓膜
温、外耳道温、ぼうこう温などを計測する方法も
あるが、不快感あるいは危険をともなうため、手
術中の計測等に限られ、一般には施行されない。
"Prior Art" Conventionally, body temperature has generally been measured by using a mercury thermometer or an electronic thermometer, and by inserting the thermometer into the armpit or oral cavity. However, it is difficult to measure the area under the armpit or the oral cavity for long periods of continuous measurement. Therefore, conventionally, rectal temperature measurement has been mainly used for long-term body temperature measurement. However, measuring rectal temperature is accompanied by discomfort and is difficult to perform for long periods of time. Other methods include measuring esophageal temperature, tympanic membrane temperature, external auditory canal temperature, and bladder temperature, but these methods are limited to measurements during surgery and are not generally performed because they are uncomfortable or dangerous.

熱流補償法を用いた体温計(例えば英国特許第
1354874号明細書、および特開昭49−111684号公
報)は体表にプローブを装着して体温を連続計測
できるものであり、不快感なく長時間体温計測す
ることのできる唯一の方法であつた。
Thermometers using heat flow compensation method (e.g. British patent no.
1354874 and Japanese Patent Application Laid-open No. 111684/1984), it was possible to continuously measure body temperature by attaching a probe to the body surface, and it was the only method that could measure body temperature for a long time without discomfort. .

「発明が解決しようとする問題点」 従来の技術のうちで、長時間の体温計測に適し
ている熱流補償法を用いた体温計には次のような
問題がある。
"Problems to be Solved by the Invention" Among the conventional techniques, thermometers using the heat flow compensation method, which are suitable for long-term body temperature measurement, have the following problems.

(a) 熱流補償を行なうために発熱体を用いてお
り、そのために電力消費が大きく、小型の電池
による長時間連続使用が困難である。
(a) A heating element is used to compensate for heat flow, which consumes a large amount of power, making it difficult to use a small battery continuously for long periods of time.

(b) 発熱体を用いているため、誤動作により過熱
の恐れがある。
(b) Since a heating element is used, there is a risk of overheating due to malfunction.

(c) 発熱量の制御のための電子回路が必要である
ため、構造が複雑になり高価となる。
(c) Since an electronic circuit is required to control the amount of heat generated, the structure becomes complicated and expensive.

この発明は、上述の問題を解決し、しかも従来
の熱流補償法を用いた体温計と同程度の性能を持
つ体温計測装置を提供することを目的とする。
It is an object of the present invention to provide a body temperature measuring device that solves the above-mentioned problems and has performance comparable to that of thermometers using conventional heat flow compensation methods.

「問題点を解決するための手段」 この発明によれば、プローブと演算部とよりな
り、そのプローブはこれが体表に装着された時
に、その体表と熱的に接触を保つ複数の温度セン
サと、これら温度センサを覆う断熱体を備え、そ
の断熱体は、プローブを体表に装着した時に、少
なくとも二つの温度センサの位置から外界への断
熱体を通じる放熱抵抗が異ならされている。つま
りこれら外界への放熱抵抗が異なる個所における
体表温度を検出し、この検出温度からその体表深
部の温度を推定する。これら複数の温度センサよ
りの検出温度を上記演算部に入力し、演算部はそ
の検出温度から深部の温度の推定演算を行う。
"Means for Solving the Problem" According to the present invention, the present invention comprises a probe and a calculation unit, and when the probe is attached to the body surface, the probe has a plurality of temperature sensors that maintain thermal contact with the body surface. and a heat insulating body that covers these temperature sensors, and the heat insulating body has different heat radiation resistance from the positions of at least two temperature sensors to the outside world through the heat insulating body when the probe is attached to the body surface. In other words, the body surface temperatures at these locations with different heat dissipation resistances to the outside world are detected, and the temperature deep within the body surface is estimated from the detected temperatures. The detected temperatures from the plurality of temperature sensors are input to the calculation section, and the calculation section performs an estimation calculation of the deep temperature from the detected temperatures.

なお、性能を向上させるため、断熱体の外側を
熱抵抗の小さい熱伝導層で覆うこと、その熱伝導
層の温度を検出して体表温度とともに深部組織温
度の推定に利用すること、その熱伝導層の外側を
さらに断熱層で覆うこと、体表に接する温度セン
サを3個以上使用して体表との熱的接触不良によ
る誤差を減らすことなどの各種手段を同時に又は
選択的に付加してもよい。
In order to improve performance, it is necessary to cover the outside of the heat insulator with a thermally conductive layer with low thermal resistance, to detect the temperature of the thermally conductive layer and use it to estimate deep tissue temperature along with the body surface temperature, and to Various measures such as further covering the outside of the conductive layer with a heat insulating layer and using three or more temperature sensors in contact with the body surface to reduce errors due to poor thermal contact with the body surface are added simultaneously or selectively. It's okay.

「実施例」 以下、図面を用いてこの発明の実施例を説明す
る。
"Example" Hereinafter, an example of the present invention will be described using the drawings.

第1図及び第2図はこの発明の体温計測装置に
おけるプローブの一例の断面および底面をそれぞ
れ示す。プローブは体表に装着されて用いられる
ものであつて、プローブが体表に装着された時に
その体表と熱的に接触を保つ温度センサ11,1
2が設けられる。このためほぼ円板状の断熱体1
3が設けられ、断熱体13の体表と接触されるべ
き面(接触面)14の中心部に円板状熱伝導層1
5が取付けられ、接触面14の周縁近くにリング
状熱伝導層16が取付けられる。これら熱伝導層
15,16の内面に温度センサ11,12がそれ
ぞれ接して取付けられる。従つて温度センサ1
1,12は熱伝導層15,16側以外は断熱体1
3で覆われている。またこの例では熱伝導層1
5,16の外面は接触面14と同一平面上に位置
されている。
FIGS. 1 and 2 respectively show a cross section and a bottom surface of an example of the probe in the body temperature measuring device of the present invention. The probe is used by being attached to the body surface, and the temperature sensor 11, 1 maintains thermal contact with the body surface when the probe is attached to the body surface.
2 is provided. Therefore, the almost disk-shaped heat insulator 1
3 is provided, and a disc-shaped heat conductive layer 1 is provided at the center of the surface (contact surface) 14 that is to be in contact with the body surface of the heat insulator 13.
5 is attached, and a ring-shaped thermally conductive layer 16 is attached near the periphery of the contact surface 14. Temperature sensors 11 and 12 are attached to the inner surfaces of these thermally conductive layers 15 and 16 in contact with each other, respectively. Therefore temperature sensor 1
1 and 12 are heat insulators 1 except for the heat conductive layers 15 and 16 side
Covered by 3. Also, in this example, the thermally conductive layer 1
The outer surfaces of 5 and 16 are located on the same plane as the contact surface 14.

この例では断熱体13の厚さは中心が周辺部よ
り大とされており、つまり温度センサ11が設け
られた中心部の高さが温度センサ12が設けられ
た周辺部より高くされている。このようにして、
プローブが体表21に装着された時に、温度セン
サ11,12の位置から外界への放熱抵抗が異な
らされ、つまりこの例では温度センサ11の位置
の方が、温度センサ12の位置よりも放熱抵抗が
高くされた場合である。
In this example, the thickness of the heat insulator 13 is greater at the center than at the periphery, that is, the height at the center where the temperature sensor 11 is provided is higher than at the periphery where the temperature sensor 12 is provided. In this way,
When the probe is attached to the body surface 21, the heat radiation resistance from the positions of the temperature sensors 11 and 12 to the outside world is different, that is, in this example, the position of the temperature sensor 11 has a higher heat radiation resistance than the position of the temperature sensor 12. This is the case when the value is increased.

更にこの例では測定性能を向上させるために、
断熱体13の接触面14と対向する外面に、温度
センサ11,12とそれぞれ断熱体13を介して
対向して温度センサ17,18が配される。ま
た、この例ではその温度センサ17,18を覆つ
て断熱体13の接触面14と反対の面に熱伝導層
19が全面に形成されている。
Furthermore, in this example, to improve measurement performance,
Temperature sensors 17 and 18 are disposed on the outer surface of the heat insulator 13 facing the contact surface 14, facing the temperature sensors 11 and 12, respectively, with the heat insulator 13 interposed therebetween. Further, in this example, a heat conductive layer 19 is formed entirely on the surface of the heat insulator 13 opposite to the contact surface 14, covering the temperature sensors 17 and 18.

温度センサ11,12,17,18は例えば負
温度係数抵抗素子やPN接合の温度特性を利用す
るトランジスタなどを用いることができる。断熱
体13としてはスポンジゴム、コルクなど熱伝導
率が小さいものが用いられる。熱伝導層15,1
6,19は熱伝導率の高い金属例えばアルミニウ
ム、銅、銀などを用いることができる。温度セン
サ11,12と、接触面14が接する体表21が
熱的に良好な接触状態を保つように、熱伝導層1
5,16は体表21と密着しやすい構造とし、温
度センサ11,12とは熱伝導性の良い接着材で
接着する。熱伝導層19はその熱伝導層19全体
がほぼ等温となるように、十分な厚みをとる。
For the temperature sensors 11, 12, 17, and 18, for example, a negative temperature coefficient resistance element or a transistor that utilizes the temperature characteristics of a PN junction can be used. As the heat insulator 13, a material having low thermal conductivity such as sponge rubber or cork is used. Thermal conductive layer 15,1
For 6 and 19, metals with high thermal conductivity, such as aluminum, copper, and silver, can be used. The thermally conductive layer 1 is designed to maintain good thermal contact between the temperature sensors 11 and 12 and the body surface 21 in contact with the contact surface 14.
5 and 16 have a structure that allows easy contact with the body surface 21, and are bonded to the temperature sensors 11 and 12 with an adhesive having good thermal conductivity. The thermally conductive layer 19 has a sufficient thickness so that the entire thermally conductive layer 19 has approximately the same temperature.

第3図に示すように外気の影響を減らすために
熱伝導層19の外側に断熱層22を施し、熱伝導
層19を断熱材中に埋込んでもよい。その他は第
1図の場合と同様である。
As shown in FIG. 3, a heat insulating layer 22 may be provided on the outside of the heat conductive layer 19 to reduce the influence of outside air, and the heat conductive layer 19 may be embedded in the heat insulating material. The rest is the same as in the case of FIG.

第4図に示すように体表に接する接触面14の
周辺に複数の温度センサ12を配置し、各温度セ
ンサ12は熱伝導層23に接着させ、熱伝導層2
3が直接体表と接触するようにした場合である。
複数の温度センサ12で検出された温度の最大値
を演算に用いることにより、体表との熱的接触不
良による誤差を減らすことができる。
As shown in FIG. 4, a plurality of temperature sensors 12 are arranged around the contact surface 14 in contact with the body surface, and each temperature sensor 12 is adhered to a heat conductive layer 23.
3 is the case where it comes into direct contact with the body surface.
By using the maximum value of the temperatures detected by the plurality of temperature sensors 12 for calculation, errors due to poor thermal contact with the body surface can be reduced.

体温の計測にあたつては前述したプローブを前
額部、胸部、腹部などの体表に接触面14を密着
させて装着し、十分な時間が経過した後、各温度
センサ11,12,17,18の温度を計測し、
これら計測温度から体温の算出を行なう。第5図
は体温の算出のための、生体組織およびプローブ
内部の熱流の電気的等価回路を示す。体表に近い
組織を熱抵抗がほぼ一様の伝熱層24とみなし、
伝熱層24より深部25は一様な温度TBとす
る。温度センサ11,12,17,18の各温度
をT1、T2、T7、T8とし、温度センサ11と1
2間、11と17間、12と18間の各熱抵抗値
をそれぞれR12、R17、R28とする。また組織深
部25と温度センサ11,12との間の熱抵抗値
をそれぞれRS、kRsとする、このとき、深部2
5の温度TBを、電圧TBの起電力、各測定温度
T1、T2、T7、T8を測定電圧とみなして温度TB
は次の式で求められる。
To measure body temperature, the aforementioned probe is attached to the body surface such as the forehead, chest, abdomen, etc. with the contact surface 14 in close contact, and after a sufficient time has passed, each temperature sensor 11, 12, 17 is attached. , 18 temperatures were measured;
The body temperature is calculated from these measured temperatures. FIG. 5 shows an electrical equivalent circuit of heat flow inside a living tissue and a probe for calculating body temperature. The tissue near the body surface is regarded as a heat transfer layer 24 with almost uniform thermal resistance,
A portion 25 deeper than the heat transfer layer 24 has a uniform temperature TB. Let the respective temperatures of temperature sensors 11, 12, 17, and 18 be T1, T2, T7, and T8.
The thermal resistance values between 2, 11 and 17, and 12 and 18 are R12, R17, and R28, respectively. Further, the thermal resistance values between the deep tissue part 25 and the temperature sensors 11 and 12 are respectively RS and kRs.
5 temperature TB, voltage TB electromotive force, each measurement temperature
Temperature TB considering T1, T2, T7, T8 as measurement voltage
is calculated using the following formula.

TB=(AT2−kBT1)/(A−kB) (1) A=(T1−T7)/R17+(T1−T2)/R12 (2) B=(T2−T8)/R28+(T1−T2)/R12 (3) ここでR12、R17、R28およびkはプローブの
構造によつて決まる定数である。第6図に示すよ
うに温度センサ11,12,17,18の各測定
温度を演算部26に入力して、(1)〜(3)の演算を行
い、その演算結果を表示部27に表示する。な
お、演算部26としてマイクロコンピユータを用
い、周期的に温度センサ11,12,17,18
の測定温度にデイジタル値を取込み、(1)〜(3)を演
算して、表示記録を行うようにすることもでき
る。
TB=(AT2-kBT1)/(A-kB) (1) A=(T1-T7)/R17+(T1-T2)/R12 (2) B=(T2-T8)/R28+(T1-T2)/ R12 (3) Here, R12, R17, R28 and k are constants determined by the structure of the probe. As shown in FIG. 6, each temperature measured by the temperature sensors 11, 12, 17, and 18 is input to the calculation unit 26, calculations (1) to (3) are performed, and the calculation results are displayed on the display unit 27. do. Note that a microcomputer is used as the calculation unit 26, and the temperature sensors 11, 12, 17, 18 are periodically
It is also possible to import digital values into the measured temperature, calculate (1) to (3), and display and record the results.

熱伝導層19の熱伝導が良く温度が一様とみな
せる場合には、T7=T8となり、温度センサ17
または温度センサ18のいずれかを省略すること
ができる。また第4図に示したように温度センサ
12を複数個用いた場合には、それらの温度セン
サ12で検出された温度の最大値をT2とする。
If the heat conduction layer 19 has good heat conduction and the temperature can be considered uniform, T7=T8, and the temperature sensor 17
Alternatively, either the temperature sensor 18 can be omitted. Further, when a plurality of temperature sensors 12 are used as shown in FIG. 4, the maximum value of the temperatures detected by those temperature sensors 12 is set as T2.

深部温度TBを算出する簡便な方法として、次
のような1次式を用いてもよい。
As a simple method of calculating the deep temperature TB, the following linear equation may be used.

TB=T1+α(T1−T2)+β(T1−T7) (4) ここでα、βはプローブの構造によつて決る定
数である。さらに、プローブの構造を適当に設計
することにより、βを1より十分小さくすること
ができ、その場合には(4)式の右辺第3項を省略す
ることができる。すなわち、 TB≒T1+α(T1−T2) (5) となり、この式を用いる場合には、温度センサ1
7,18を省略することができる。
TB=T1+α(T1-T2)+β(T1-T7) (4) Here, α and β are constants determined by the structure of the probe. Furthermore, by appropriately designing the structure of the probe, β can be made sufficiently smaller than 1, and in that case, the third term on the right side of equation (4) can be omitted. In other words, TB≒T1+α(T1−T2) (5) When using this formula, temperature sensor 1
7 and 18 can be omitted.

この発明の体温計測装置の性能を、生体と熱的
にほぼ等価なモデルについて理論的に解析した。
体表より2−10mmを熱伝導率0.2〜1.6W/mKの
一様な熱伝達層とみなし、それより深部は37℃と
する。プローブは、直径40mm、中央部の厚さd1
10mm、周辺部の厚さd2が6mmであり、各熱伝導層
15,16,19は熱抵抗が十分小さく、温度は
一様とみなせるものとする。また断熱体13の熱
伝導率は0.08W/mKとする。外気温は22℃と
し、体表およびプローブの表面から大気への熱伝
達は、垂直平板対流熱伝導の場合の値を用いる。
この条件で熱平衡に達した時の各温度センサの温
度を有限要素法によつて求め、実際の体温計測に
近い条件で誤差が小さくなるように定数を決め、
熱伝達層の厚さDおよび熱伝導率を変えたときの
誤差Eを算出した。第7図は、(1)、(2)、(3)式を用
いた場合の結果の1例である。ここで曲線a,
b,c,dはそれぞれ熱伝達層の熱伝導率がそれ
ぞれ0.2、0.4、0.8、1.6W/mKに対するもので
ある。また、第8図は(4)式を用いた場合の結果で
ある。曲線a,b,c,dのグラフは第6図の場
合と同じ条件に対応する。この例では、(4)式にお
いてα=1.011、β=−0.003であり、(5)式を用い
ても誤差は2%以下である。
The performance of the body temperature measuring device of this invention was theoretically analyzed using a model that is thermally almost equivalent to a living body.
The area 2-10mm from the body surface is considered to be a uniform heat transfer layer with a thermal conductivity of 0.2-1.6W/mK, and the temperature deeper than that is 37℃. The probe has a diameter of 40 mm and a central thickness of d 1 .
10 mm, and the thickness d 2 of the peripheral part is 6 mm, and each heat conductive layer 15, 16, 19 has a sufficiently small thermal resistance and the temperature can be considered to be uniform. Further, the thermal conductivity of the heat insulator 13 is 0.08 W/mK. The outside temperature is 22°C, and the heat transfer from the body surface and the probe surface to the atmosphere uses the values for vertical plate convection heat conduction.
The temperature of each temperature sensor when thermal equilibrium is reached under these conditions is determined using the finite element method, and a constant is determined so that the error is small under conditions close to actual body temperature measurement.
The error E when changing the thickness D and thermal conductivity of the heat transfer layer was calculated. FIG. 7 shows an example of the results obtained when formulas (1), (2), and (3) are used. Here, curve a,
b, c, and d are for the thermal conductivity of the heat transfer layer of 0.2, 0.4, 0.8, and 1.6 W/mK, respectively. Moreover, FIG. 8 shows the results when formula (4) is used. The graphs of curves a, b, c, d correspond to the same conditions as in FIG. In this example, α=1.011 and β=−0.003 in equation (4), and even if equation (5) is used, the error is less than 2%.

実験的には、37℃の銅板の上に熱伝導率約
0.2W/mKのゴムシートを置き、第1図とほぼ
同様の構造の直径48mmのプローブを置いたとき、
外気温25℃および30℃でゴムシートの厚さ6mm以
下では誤差0.2℃以下で銅板の温度が算出できる
ことを確認した。
Experimentally, on a copper plate at 37°C, the thermal conductivity is approx.
When a 0.2W/mK rubber sheet is placed and a 48mm diameter probe with a structure similar to that shown in Figure 1 is placed,
It was confirmed that the temperature of the copper plate could be calculated with an error of less than 0.2°C when the rubber sheet was 6 mm or less thick at outside temperatures of 25°C and 30°C.

また人体に使用した実験においては、直径48mm
のプローブを前額部に装着した場合、舌下温との
差は室温25℃において0.28℃、室温30℃において
0.16℃であつた。
In addition, in experiments using the human body, the diameter was 48 mm.
When the probe is attached to the forehead, the difference from the sublingual temperature is 0.28°C at room temperature of 25°C, and 0.28°C at room temperature of 30°C.
It was 0.16℃.

上述においては温度センサ11,12の位置か
ら外界への放熱抵抗を異ならせるために、断熱体
13の厚さを異ならせたが、厚さを同一厚さとし
比較導電率を異ならせてもよい。
In the above description, the thickness of the heat insulating body 13 is varied in order to vary the heat radiation resistance from the positions of the temperature sensors 11 and 12 to the outside world, but the thickness may be the same and the comparative conductivity may be varied.

「発明の効果」 以上述べたこの発明の体温計測装置によれば次
のような効果が期待できる。
"Effects of the Invention" According to the body temperature measuring device of the present invention described above, the following effects can be expected.

(a) 簡便な携帯用体温連続記録計が実現できる。(a) A simple portable continuous body temperature recorder can be realized.

従来の体温プローブのような不快感がなく、
また熱流補償法によるプローブのように大きな
電力消費がないため、頭部あるいは体幹部にプ
ローブを装着し、小型電池で働く装置を携帯す
ることにより、身体活動をほとんど束縛せずに
数時間あるいは数日間の体温の連続計測を行な
うことができる。
No discomfort like traditional body temperature probes
In addition, since it does not consume large amounts of power like a probe using the heat flow compensation method, by attaching the probe to the head or trunk and carrying a device that operates on a small battery, it can be used for several hours or several hours without restricting physical activity. It is possible to continuously measure body temperature throughout the day.

(b) 検温の容易な体温計が実現できる。(b) A thermometer that can easily measure temperature can be realized.

えき下や舌下の検温は、検温中の活動が束縛
され、小児、高齢者、重症患者などでは介助が
必要である。しかしこの発明の体温計測装置に
よれば、プローブをバンドあるいは粘着テープ
などで固定しておくだけで、活動を束縛せずま
た介助も必要とせずに検温ができる。
Temperature measurement under the armpit or under the tongue restricts activity during the temperature measurement, and assistance is required for children, the elderly, and critically ill patients. However, according to the body temperature measuring device of the present invention, by simply fixing the probe with a band or adhesive tape, temperature can be measured without restricting activities or requiring assistance.

(c) 安全性の高い体温モニターが実現できる。(c) A highly safe body temperature monitor can be realized.

熱流補償法によるプローブを用いた体温モニ
ターは、プローブに発熱体を用いているため、
誤動作によつて過熱する恐れがあるが、この発
明の体温計測装置のプローブには発熱体はなく
過熱の恐れがない。また熱流補償法によるプロ
ーブを用いた体温モニターは、電力消費が大き
いので商用電源を使う必要があり、絶縁不良に
よる感電の危険があるが、この発明の体温計測
装置のプローブは消費電力が小さく、小型電池
で使用できるため商用電源を必要とせず感電の
危険がない。
Body temperature monitors using probes based on the heat flow compensation method use a heating element in the probe, so
Although there is a risk of overheating due to malfunction, the probe of the body temperature measuring device of the present invention does not have a heating element, so there is no risk of overheating. In addition, body temperature monitors using probes based on the heat flow compensation method consume a lot of power, so it is necessary to use a commercial power supply, and there is a risk of electric shock due to poor insulation.However, the probe of the body temperature measurement device of this invention has low power consumption. Since it can be used with a small battery, it does not require commercial power and there is no risk of electric shock.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の体温計測装置のプローブの
一例を示す縦断面図、第2図は第1図の底面図、
第3図は断熱を施したプローブの縦断面図、第4
図はプローブの体表に接する面の周辺に複数の温
度センサを配置した場合の実施例を示す底面図、
第5図は深部組織およびプローブ内部の熱流の電
気的等価回路を示す図、第6図はこの発明の一実
施例を示すブロツク図、第7図は有限要素法によ
る熱平衡温度分布解析結果を用い第5図の等価回
路図から求めた場合の体温計測誤差と皮膚伝熱層
の厚さの関係を示す図、第8図は第7図と同様の
関係を簡便な算定式から求めた結果を示す図であ
る。
FIG. 1 is a longitudinal sectional view showing an example of the probe of the body temperature measuring device of the present invention, FIG. 2 is a bottom view of FIG. 1,
Figure 3 is a longitudinal cross-sectional view of the probe with insulation;
The figure is a bottom view showing an example in which multiple temperature sensors are arranged around the surface of the probe in contact with the body surface.
Fig. 5 is a diagram showing an electrical equivalent circuit of heat flow in deep tissue and inside the probe, Fig. 6 is a block diagram showing an embodiment of the present invention, and Fig. 7 is a diagram using thermal equilibrium temperature distribution analysis results using the finite element method. Figure 5 shows the relationship between body temperature measurement error and the thickness of the skin heat transfer layer when calculated from the equivalent circuit diagram in Figure 5. Figure 8 shows the same relationship as Figure 7 obtained from a simple calculation formula. FIG.

Claims (1)

【特許請求の範囲】 1 体表に装着されたときにその体表と熱的接触
を保つ複数の温度センサと、 これら温度センサを覆う断熱体とを備えるプロ
ーブと、 上記複数の温度センサよりの各検出温度が入力
され、これら検出温度により上記体表深部の温度
を演算する演算部とを備え、 上記プローブを体表に装着したときに上記温度
センサの少なくとも二つの位置から外界への放熱
抵抗が、異なるように上記断熱体が構成されてい
る体温計測装置。
[Scope of Claims] 1. A probe comprising a plurality of temperature sensors that maintain thermal contact with the body surface when attached to the body surface, and a heat insulator that covers these temperature sensors; and a calculation unit into which each detected temperature is input and calculates the temperature of the deep part of the body surface based on these detected temperatures, and when the probe is attached to the body surface, heat dissipation resistance from at least two positions of the temperature sensor to the outside world is provided. A body temperature measuring device in which the heat insulating body is configured differently.
JP61203180A 1986-08-29 1986-08-29 Clinical thermometer device Granted JPS6358223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203180A JPS6358223A (en) 1986-08-29 1986-08-29 Clinical thermometer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203180A JPS6358223A (en) 1986-08-29 1986-08-29 Clinical thermometer device

Publications (2)

Publication Number Publication Date
JPS6358223A JPS6358223A (en) 1988-03-14
JPH0565090B2 true JPH0565090B2 (en) 1993-09-17

Family

ID=16469784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203180A Granted JPS6358223A (en) 1986-08-29 1986-08-29 Clinical thermometer device

Country Status (1)

Country Link
JP (1) JPS6358223A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212407A (en) * 2006-02-13 2007-08-23 Kanazawa Univ Non-heating type deep part medical thermometer and deep part temperature measuring device using it
JP2008502903A (en) * 2004-06-18 2008-01-31 アドヴァンスト・モニターズ・コーポレーション Medical body core thermometer
JP2012500987A (en) * 2008-08-28 2012-01-12 ケンブリッジ・テンパラチャー・コンセプツ・リミテッド Temperature sensor structure

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751386B2 (en) * 2004-05-20 2011-08-17 メディシム リミテッド Temperature measuring device
JP4563728B2 (en) * 2004-05-24 2010-10-13 株式会社小松製作所 Heat flux measurement board
US9139895B2 (en) 2004-09-08 2015-09-22 Global Nuclear Fuel—Americas, LLC Zirconium alloy fuel cladding for operation in aggressive water chemistry
JP4798280B2 (en) * 2004-09-15 2011-10-19 セイコーエプソン株式会社 Thermometer, electronic device having thermometer, and body temperature measuring method
JP4600170B2 (en) * 2004-09-15 2010-12-15 セイコーエプソン株式会社 Thermometer and electronic device having thermometer
JP4805773B2 (en) * 2006-09-20 2011-11-02 シチズンホールディングス株式会社 Electronic thermometer
US7981046B2 (en) 2007-09-10 2011-07-19 Medisim Ltd Temperature measurement device
JP5648283B2 (en) * 2009-12-24 2015-01-07 セイコーエプソン株式会社 Electronic thermometer and body temperature measuring method
WO2012042759A1 (en) * 2010-09-29 2012-04-05 テルモ株式会社 Clinical thermometer
JP2012073127A (en) * 2010-09-29 2012-04-12 Terumo Corp Clinical thermometer
WO2013024568A1 (en) * 2011-08-18 2013-02-21 テルモ株式会社 Clinical thermometer
JP6081983B2 (en) * 2012-02-14 2017-02-15 テルモ株式会社 Thermometer and body temperature measurement system
JP2014166079A (en) * 2013-02-26 2014-09-08 Techno-Commons Inc Heat conduction sheet, heat insulation sheet, temperature sensor device, and thermoelectric power generation system
JP5846282B2 (en) * 2014-11-11 2016-01-20 セイコーエプソン株式会社 Electronic thermometer and body temperature measuring method
JP6428397B2 (en) * 2015-03-12 2018-11-28 オムロン株式会社 Internal temperature measuring device and temperature difference measuring module
EP3296708B1 (en) * 2015-05-15 2021-12-22 Murata Manufacturing Co., Ltd. Deep body thermometer
JP6666446B2 (en) * 2015-12-21 2020-03-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Heat flow sensor
US10750951B1 (en) 2016-02-25 2020-08-25 Verily Life Sciences Llc Core temperature measurement using asymmetric sensors
JP6999301B2 (en) * 2017-06-30 2022-01-18 株式会社テクノ・コモンズ Biometric data measuring device
JP6999385B2 (en) 2017-11-30 2022-01-18 株式会社テクノ・コモンズ Object data measuring device
KR20200099542A (en) 2017-12-28 2020-08-24 가부시키가이샤 테크노 코먼즈 Biometric data measuring device
JP6969665B2 (en) * 2018-03-02 2021-11-24 株式会社村田製作所 Deep thermometer
JP7151607B2 (en) * 2019-04-19 2022-10-12 日本電信電話株式会社 Temperature measuring device and temperature measuring method
JP7325060B2 (en) * 2020-03-27 2023-08-14 パナソニックIpマネジメント株式会社 Clothing amount estimation device, air conditioning control device and skin temperature estimation device
US11747213B2 (en) * 2020-08-27 2023-09-05 Unison Industries, Llc Temperature sensor
WO2023112251A1 (en) * 2021-12-16 2023-06-22 日本電信電話株式会社 Temperature measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502903A (en) * 2004-06-18 2008-01-31 アドヴァンスト・モニターズ・コーポレーション Medical body core thermometer
JP4824020B2 (en) * 2004-06-18 2011-11-24 アドヴァンスト・モニターズ・コーポレーション Medical body core thermometer
JP2007212407A (en) * 2006-02-13 2007-08-23 Kanazawa Univ Non-heating type deep part medical thermometer and deep part temperature measuring device using it
JP2012500987A (en) * 2008-08-28 2012-01-12 ケンブリッジ・テンパラチャー・コンセプツ・リミテッド Temperature sensor structure

Also Published As

Publication number Publication date
JPS6358223A (en) 1988-03-14

Similar Documents

Publication Publication Date Title
JPH0565090B2 (en)
JP6999385B2 (en) Object data measuring device
US7625117B2 (en) Bandage with sensors
CA2583034C (en) Bandage with sensors
Tamura et al. Current developments in wearable thermometers
JP2007212407A (en) Non-heating type deep part medical thermometer and deep part temperature measuring device using it
EP1593946B1 (en) Skin patch including a temperature sensor
JP4805773B2 (en) Electronic thermometer
US10827931B2 (en) Patch for temperature determination
EP1857795B1 (en) Tympanic thermometer
EP2459976B1 (en) Sensor and method for determining a core body temperature
US20220000370A1 (en) Core body temperature sensor system based on flux measurement
JP5864884B2 (en) Measuring apparatus and measuring method
CN109632144B (en) Measuring probe for determining temperature of biological core
AU2018223205A1 (en) Temperature sensor
JP6395176B2 (en) Deep thermometer
US20220128413A1 (en) Core body temperature sensor and method for the manufacturing thereof
CN109008989A (en) The measurement method and equipment of abdomen core temperature
Saurabh et al. Continuous core body temperature estimation via SURFACE temperature measurements using wearable sensors-is it feasible?
Matsunaga et al. Non-invasive and wearable thermometer for continuous monitoring of core body temperature under various convective conditions
JP2007037631A (en) Clinical thermometer and heat-insulating material for clinical thermometer
KR20140121183A (en) Single layer thermometer for noninvasive and nonintrusive deep body temperature monitoring
Tamura et al. Body temperature, heat flow, and evaporation
WO2023067753A1 (en) Temperature measuring device
Finvers et al. Wireless temporal artery bandage thermometer