JP2007212407A - Non-heating type deep part medical thermometer and deep part temperature measuring device using it - Google Patents

Non-heating type deep part medical thermometer and deep part temperature measuring device using it Download PDF

Info

Publication number
JP2007212407A
JP2007212407A JP2006035452A JP2006035452A JP2007212407A JP 2007212407 A JP2007212407 A JP 2007212407A JP 2006035452 A JP2006035452 A JP 2006035452A JP 2006035452 A JP2006035452 A JP 2006035452A JP 2007212407 A JP2007212407 A JP 2007212407A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
temperature sensor
temperature
insulating material
non
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006035452A
Other languages
Japanese (ja)
Inventor
Keiichiro Kitamura
Tetsu Nemoto
敬一郎 北村
鉄 根本
Original Assignee
Kanazawa Univ
国立大学法人金沢大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deep part temperature measurement of a body with a high accuracy without using a heater non-invasively. <P>SOLUTION: A non-heating type deep part medical thermometer comprises a first temperature sensor and a second temperature sensor sequentially from a measuring plane 1a contacting with the body surface plane, a thermal insulator 4 between the first temperature sensor and the second temperature sensor. The non-heating type deep part medical thermometer includes at least two sets of the temperature sensors comprising a set of the first temperature sensor 2-1 and the second temperature sensor 3-1 and a set of the first temperature sensor 2-2 and the second temperature sensor 3-2, and it is characterized that each set comprising the first temperature sensor and the second temperature sensor is installed with the thermal insulator 4 having different thermal resistance value K between the first temperature sensor and the second temperature sensor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、熱流を補償するヒータを用いずに体の深部の体温を測定する非加熱型深部体温計およびそれを用いた深部体温測定装置に関するものである。 The present invention relates to core body temperature measurement device using a non-heating type deep thermometer and it measures the temperature of the deep body without using the heater to compensate for heat flow.

体の深部の体温を測定する従来の装置としては、1971年にFoxとSolmanが開発した深部体温測定装置が知られている。 The conventional apparatus for measuring the body temperature of the body of the deep, Fox and Solman is known core temperature measuring device was developed in 1971. この深部体温測定装置は、熱流補償法を応用して、体表面からの熱の放散を見かけ上0にすることで、体深部から体表面への熱流をなくして体表面と体深部とを熱平衡状態とし、その状態で体表面温度を測ることで体深部と同じ温度を計測して、体表面から間接的に体深部体温を測定する。 The core body temperature measurement device, by applying the heat flow compensation method, by on 0 apparently the dissipation of heat from the body surface, thermal equilibrium with the body surface and the body deep eliminating the heat flow from the body deep into the body surface a state, by measuring the same temperature as the body deep by measuring body surface temperature in that state, to measure indirectly the body core temperature from the body surface.

具体的には、上記従来の深部体温測定装置は、体表面に接触する測定面側から順に第1の温度センサと第2の温度センサとヒータとを具えるとともに、それら第1の温度センサと第2の温度センサとの間に断熱材を具える加熱型の深部体温計を用い、測定面を体表面に密着させて第1の温度センサで体表面温度を計測するとともに、第2の温度センサでヒータ温度を計測し、それら第1,第2の温度センサの温度差が0に近づくようにヒータの温度を制御することで熱流を補償して、体温計内での熱流が0になるようにする。 Specifically, the conventional core body temperature measurement device, together with the measurement surface side in contact with the body surface comprises a first temperature sensor and the second temperature sensor and the heater of the order, and they first temperature sensor with a heating-type deep thermometer comprising a heat insulating material, to measure the body surface temperature at the first temperature sensor is brought into close contact with the measuring surface on the body surface between the second temperature sensor, a second temperature sensor in measuring the heater temperature, they first, the temperature difference between the second temperature sensor is to compensate for the heat flow by controlling the temperature of the heater to be close to 0, so that the heat flow in the thermometer becomes 0 to. この深部体温測定装置は、外気温の影響が少なく、しかも刺針を用いたりせず非侵襲的に体深部体温を測定することができる(例えば特許文献1参照)。 The core body temperature measurement device is less affected by the outside air temperature, moreover puncture needle can be measured noninvasively body core temperature without or with (for example, see Patent Document 1).

上記従来の深部体温測定装置を用いた深部体温管理の技術は、戸川および根本等のグループと、テルモ社とによって改良され、特に前額部からの深部体温の管理は、現在日本では広く心臓外科領域で利用されている。 The conventional core body temperature measurement device core temperature management technique used is the group of Togawa and underlying the like, are improved by the Terumo Corporation, in particular management of core body temperature from the forehead is wider cardiac surgery is currently in Japan It has been used in the area. また深部体温の管理は、集中治療室や循環不全の管理などにも利用されている。 The management of the core body temperature is also used to and management of intensive care and circulatory failure.

一方、体の深部の体温を測定する従来の装置としては、非加熱型の簡易型深部体温計を用いるものも知られている。 On the other hand, the conventional apparatus for measuring the body temperature of the deep body, has also been known to use a simplified deep thermometer unheated type. 体表面に皮下組織と同程度の熱伝導率を持つ断熱材を密着させると、血流で運ばれてきた体熱は皮下組織と断熱材中をその熱抵抗値と温度差とにより伝導して外気中に放熱されるので、熱抵抗値が既知の断熱材を用いて、この断熱材の体表面接触面と外気接触面との温度を測れば、皮下組織の熱の特性がほぼ一定であるため、非侵襲的に体深部体温を測定することができる。 If the body surface is brought into close contact with a heat insulating material having a subcutaneous tissue of the same degree of thermal conductivity, body heat that has been carried in the blood stream is conducted through the subcutaneous tissue and the heat insulating material in the and the heat resistance and the temperature difference since heat is radiated to the outside air, the heat resistance by using a known heat insulating material, if Hakare the temperature of the body surface contacting face and the outside air contact surface of the heat insulating material, is substantially constant thermal properties of the subcutaneous tissue Therefore, it is possible to measure non-invasively the body core temperature. この従来の装置は、かかる原理を用いたものである。 This conventional device is obtained using such principles.

体深部の温度をTb、外気に接触している断熱材表面の温度をTa、体表面に接触している断熱材表面の温度をTt、皮下組織の熱抵抗値をRt、断熱材の熱抵抗値をRaとすると、電気回路相似法によれば、以下の関係式(1)が成り立つ。 The temperature of the body deep Tb, the temperature of the heat-insulating material surface in contact with the outside air Ta, Tt the temperature of the heat-insulating material surface in contact with the body surface, the thermal resistance of the subcutaneous tissue Rt, the thermal resistance of the heat insulating material a value of the Ra, according to the electric circuit similar method, the following equation (1) holds.

ここで、皮下組織の熱抵抗値Rtは、温度を測定する深部までの深さLtと熱伝導率ktとで定まり、深さLt=2cm、熱伝導率kt=1×10 −3 cal/cm・sec・℃(皮下組織を筋肉組織と仮定)とすると、熱抵抗値Rtは2×10 cm・sec・℃/calとなる。 The thermal resistance value Rt of the subcutaneous tissue, Sadamari in depth Lt and thermal conductivity kt of deep measuring temperature, depth Lt = 2 cm, a thermal conductivity kt = 1 × 10 -3 cal / cm · sec · ° C. When (assuming subcutaneous tissue muscle tissue), thermal resistance Rt becomes 2 × 10 3 cm · sec · ℃ / cal.

従って、具体的には、上記の深部体温測定装置は、体表面に接触する測定面側から順に第1の温度センサと第2の温度センサとを具えるとともに、それら第1の温度センサと第2の温度センサとの間にあらかじめ厚さLaと熱伝導率Kaとにより熱抵抗値Raを決定した断熱材を具える非加熱型の深部体温計を用いて、外気に接触している断熱材表面の温度Taと、体表面に接触している断熱材表面の温度Ttとを測定し、それらを上記式(1)に代入することで、体深部の温度Tbを求める(例えば特許文献2参照)。 Therefore, specifically, the above core temperature measuring device, as well as comprises a first temperature sensor and the second temperature sensor from the measurement surface side in contact with the body surface in order, and they first temperature sensor of the using a non-heating type deep thermometer comprising a heat insulating material having determined the thermal resistance Ra by the advance thickness La and the heat conductivity Ka between the second temperature sensor, a heat insulating material surface in contact with the outside air temperature Ta, the temperature Tt of the heat insulating material surface in contact with the body surface were measured, and they by substituting the above equation (1), determine the temperature Tb of the body deep (for example, see Patent Document 2) .

非加熱型の簡易型深部体温計を用いる従来の深部体温測定装置としてはまた、先の加熱型と同様に熱平衡を用いるものも知られている。 As a conventional core body temperature measuring device using a simplified deep thermometer unheated type are also known which use the same thermal equilibrium in the previous heating type. 熱抵抗値が既知の断熱材で体表面を覆って生体深部から体表面に至る熱流をほぼ0とし、体表面の温度分布をほぼ体深部の体温と同一にして、断熱材の体表面接触面と外気接触面との温度を測れば、非侵襲的に体深部体温を測定することができる。 Thermal resistance over the body surface with a known heat insulating material from the biological deep almost zero heat flow reaching the body surface, in the same body temperature of approximately body deep the temperature distribution of the body surface, body surface contacting face of the heat insulating member and if Hakare the temperature of the ambient air contacting surface, can be measured non-invasively body core temperature. この従来の装置は、かかる原理を用いたものである。 This conventional device is obtained using such principles.

体深部の温度をTb、大気に接触している断熱材表面の温度をTa、体表面に接触している断熱材表面の温度をTt、皮下組織の熱抵抗値をRt、断熱材の熱抵抗値をRaとすると、電気回路相似法によれば、以下の関係式(2)が成り立つ。 The temperature of the body deep Tb, Tt the temperature of the heat-insulating material surface in contact with the temperature of the heat insulating material surface in contact with air Ta, a body surface, the thermal resistance of the subcutaneous tissue Rt, the thermal resistance of the heat insulating material a value of the Ra, according to the electric circuit similar method, the relational expression (2) below is established.

ここで、断熱材の熱抵抗値Ra を皮下組織の熱抵抗値Rtより充分大きくしておく(Ra≫Rt)と、Ra/(Rt + Ra)≒1となり、Tt≒Ta となるので、深部体温を体表面温度として測定することができる。 Here, a thermal resistance Ra of the heat insulating material is sufficiently greater than the thermal resistance value Rt of the subcutaneous tissue and (Ra»Rt), Ra / (Rt + Ra) ≒ 1, and the since the Tt ≒ Ta, deep it can be measured body temperature as the body surface temperature.

従って、具体的には、上記従来の深部体温測定装置は、内部に体表面から近い順に第1の温度センサと断熱材と第2の温度センサとを具えるとともにあらかじめ断熱材の厚さLaと熱伝導率Kaとにより断熱材の熱抵抗値Raを適宜に決定した非加熱型の深部体温計を用いて、大気に接触している断熱材表面の温度Taと、皮膚に接触している断熱材表面の温度Ttとを測定し、それらを上記式(2)に代入することで、体深部の温度Tbを求める(例えば特許文献3参照)。 Therefore, specifically, the conventional core body temperature measurement device, the thickness La of previously heat-insulating material with comprises a first temperature sensor and the heat insulator second temperature sensor of the order of proximity to the interior to the body surface by heat conductivity Ka using deep thermometer unheated type which appropriately determine the thermal resistance value Ra of the heat insulating material, and the temperature Ta of the heat-insulating material surface in contact with the atmosphere, the heat insulating material in contact with the skin the temperature Tt of the surface was measured, they by substituting the above equation (2), determine the temperature Tb of the body deep (for example, see Patent Document 3).
特開2002-202205号公報 JP 2002-202205 JP 特開昭61-120026号公報 JP-A-61-120026 JP 特開昭61-120027号公報 JP-A-61-120027 JP

しかしながら、前者の加熱型の深部体温計では、ヒータで加熱するために電源が必要となるとともにそのヒータを制御するために高精度の制御回路が必要となって、それを用いる測定装置が大型且つ高価なものとなるという問題がある。 However, in the former heating type deep thermometer, precision of the control circuit for controlling the heater with power is required to heat a heater becomes necessary, the measuring device is large and expensive to use it there is a problem that becomes a thing. さらに、ヒータの電力を必要とするため、電池駆動での長時間計測ができず、携帯型の深部体温計には応用できないという問題がある。 Furthermore, due to the need of power of the heater can not long measurement at the battery drive, a portable deep thermometer has a problem that can not be applied.

一方、後者の非加熱型の深部体温計のうち第1のものでは、皮膚および皮下組織の熱抵抗値Rtを一定値と仮定しているが、かかる熱抵抗値Rtは実際上は個人差があるとともに頭部、腹部、四肢部等の部位によっても異なるため、深部体温の測定誤差が大きいという問題がある。 On the other hand, those first of the latter of non-heating type deep thermometer, but the thermal resistance value Rt of the skin and subcutaneous tissue are assumed to be constant values, such thermal resistance Rt practice there are individual differences together with the head, abdomen, because it varies depending on the site of limb portion or the like, there is a problem that a measurement error of core temperature is large.

そして、後者の非加熱型の深部体温計のうち第2のものでは、体表面に至る熱流をほぼ0と仮定しているが、断熱材で覆うだけでは熱流を0とするのは困難であるため、深部体温の測定誤差が大きいという問題がある。 Since those of the second latter unheated type deep thermometer, it is assumed substantially 0 and a heat flow reaching the body surface, only covered with a heat insulating material are difficult to zero the heat flow , there is a problem that the measurement error of the core body temperature is large.

この発明は、上記課題を有利に解決することを目的とするものであり、この発明の非加熱型深部体温計は、本願発明者の以下の知見に基づいている。 This invention is intended to be advantageously solve the above problems, a non-heating type deep thermometer of the present invention is based on the following findings of the present inventors.

体表面のある領域を断熱材で覆うと、その部分では体表面からの熱放散が少なくなるので、外気に露出している部分よりも体表面の温度が高くなる。 Covering an area of ​​the body surface with a heat insulating material, the heat dissipation is reduced from the body surface at that portion, the temperature of the body surface than the portion which is exposed to the outside air is high. 断熱材および直下の皮下組織において、熱流が一定で、体表面に対して垂直上向きであるとすると、熱流は断熱材の熱抵抗値と温度差から求められる。 In the subcutaneous tissue just below the heat insulating material and, in the heat flow is constant, when is upward normal to the body surface, the heat flow is determined from the thermal resistance value and the temperature difference between the heat insulating material. 同様に、断熱材に覆われた部分の皮下組織内の深部温と体表面の温度差と皮下組織の熱抵抗値とからも熱流は求められるため、深部温度は、皮下組織の熱抵抗値と未知数としての断熱材の温度と熱抵抗値とから求められる。 Similarly, since the heat flow is determined from the thermal resistance value of the temperature difference and the subcutaneous tissue of the core temperature and the body surface in the subcutaneous tissue of the portion covered with the heat insulating material, the deep temperature, and the thermal resistance of the subcutaneous tissue determined from the temperature and the thermal resistance of the insulation as unknowns.

それゆえ、皮下組織の熱抵抗値が一定であるとして、少なくとも二種の熱抵抗値の断熱材で体表面を覆った時、それぞれの断熱材について皮下組織の熱抵抗値を未知数として深部温度を断熱材の温度差と熱抵抗値とから求め、それらの深部温度の式を連立させて皮下組織の熱抵抗値を消去すれば、深部体温を求めることができる。 Therefore, as is the thermal resistance of the subcutaneous tissue is constant, when covering the body surface with a heat insulating material of at least two of the thermal resistance, the core temperature of the thermal resistance of the subcutaneous tissue as unknown for each of the heat insulating material calculated from the temperature difference and the thermal resistance of the heat insulating material, if allowed to simultaneous equations of those core temperature erase the thermal resistance value of the subcutaneous tissue, it is possible to determine the core body temperature.
図1(a)は、体表面を熱抵抗R 1の断熱材で覆った場合について考える。 1 (a) is, consider the case of covering the body surface with a heat insulating material of the thermal resistance R 1. 断熱材およびその直下の組織における熱流が上向き一定であり、組織内の熱抵抗をRとおくと、電気回路相似法によれば、温度差、熱流量、熱伝導率にそれぞれ電位差、電流、抵抗を対応させた等価回路を図1(b)として考えことができる。 Heat insulating material and a heat flow upward constant in the tissue immediately below, when placing the thermal resistance in the tissues and R, according to the electric circuit similar method, the temperature difference, heat flow, respectively the thermal conductivities potential difference, current, resistance can considered as Fig 1 (b) is an equivalent circuit showing the correspondence of the.

等価回路について考えると、熱流Iは次式(3)で求められる。 Given equivalent circuit, heat flow I is determined by the following equation (3).

変形して深部温度TBを求めると When the deformation to determine the core temperature TB

ここで、TC,TAは断熱材の体表面に接触する測定面側および外気側の温度、R,R1は皮下組織および断熱材の熱抵抗値である。 Here, TC, TA is the temperature of the measurement surface side and the outside air in contact with the body surface of the insulation material, R, R1 is the thermal resistance of the subcutaneous tissue and insulation. 但し、皮下組織の熱抵抗値は個人差があり、また頭部、腹部などの部位によっても異なるため、一定値に定めるにことは困難である。 However, the thermal resistance of the subcutaneous tissue there are individual differences, also head because it varies depending sites such as the abdomen, it is difficult that the prescribed constant value. そこで、皮下組織の熱抵抗値を用いず算出するため、図2(a)に示すように二種の断熱材で皮膚表面を覆った場合について考えると、等価回路は図2(b)に示す回路となる。 Therefore, in order to calculate without using the thermal resistance of the subcutaneous tissue, considering the case of covering the skin surface with two kinds of heat insulating material, as shown in FIG. 2 (a), the equivalent circuit shown in FIG. 2 (b) a circuit. なお、熱流は上向き一定で、二種の断熱材の間での伝熱はないものとする。 Incidentally, the heat flow in an upward constant, it is assumed that there is no heat transfer between the two types of insulation. この等価回路では、二種の熱抵抗値をR1,R2とし、外気の温度T3,T4は等温であるとする。 This equivalent circuit, two kinds of heat resistance and R1, R2, and temperature T3, T4 of the outside air is isothermal.

図2(b)のa−b間およびc−d間において、それぞれTBを求めると、 Between a-b and between c-d of FIG. 2 (b), respectively when seeking TB,

ここで、R1=KR2とし、上記の式(5),(6)からRを除去すると、深部体温TBは、 Here, the R1 = KR2, the above equation (5), upon removal of the R (6), the deep body temperature TB is

よって、上記式(7)より、二種の熱抵抗値R1,R2の比Kは、次式(8)で与えられる。 Therefore, the ratio K of the equation (7) from, two of the thermal resistance R1, R2 is given by the following equation (8).

なお、熱抵抗値比Kの値は、本願発明者の実験の結果、外気温の影響を受けることが判明しているが、あらかじめ外気温の変化に応じて求めておくか、後述のように体温計をさらに断熱材で覆うことで、外気温の影響を排除することができる。 The value of the thermal resistance ratio K as a result of the present inventor's experiment, to be affected by the outside air temperature has been found, either previously obtained in response to a change in advance outside air temperature, as described below by covering the thermometer further with a heat insulating material, it is possible to eliminate the influence of outside air temperature.

この発明は上述した測定原理に基づいており、この発明の非加熱型深部体温計は、体表面に接触する測定面側から順に第1の温度センサと第2の温度センサとを具えるとともに、それら第1の温度センサと第2の温度センサとの間に断熱材を具える非加熱型の深部体温計において、前記第1の温度センサと前記第2の温度センサとの組を少なくとも二組具え、前記第1の温度センサと前記第2の温度センサとの組毎に、それら第1の温度センサと第2の温度センサとの間の前記断熱材の熱抵抗値が異なることを特徴とするものである。 The present invention is based on the measurement principle described above, with the non-heating deep thermometers invention comprises a first temperature sensor and the second temperature sensor from the measurement surface side in contact with the body surface in order, they in a non-heating type deep thermometer comprising a heat insulating material between the first temperature sensor and the second temperature sensor, and a set of the first and the second temperature sensor and the temperature sensor comprises at least two sets, the Kumigoto between the second temperature sensor and said first temperature sensor, which the thermal resistance of the insulation between their first temperature sensor and the second temperature sensor in are different from each other it is.

また、上記発明の非加熱型深部体温計を用いるこの発明の深部体温測定装置は、前記第1の温度センサと前記第2の温度センサとがそれぞれ測定した温度の差および、前記第1の温度センサと第2の温度センサとの少なくとも二組のそれぞれの間の熱抵抗値の比とから深部体温を求めることを特徴とするものである。 The non-heating type deep using thermometer core body temperature measuring device according to the present invention, the difference between the first temperature and the temperature sensor and the second temperature sensor is measured respectively and the first temperature sensor of the invention When it is characterized in that to determine the core temperature of at least two sets of the ratio of the thermal resistance between each of the second temperature sensor.

この発明の非加熱型深部体温計によれば、第1の温度センサと第2の温度センサとの組を少なくとも二組具え、その第1の温度センサと第2の温度センサとの組毎にそれら第1の温度センサと第2の温度センサとの間の断熱材の熱抵抗値が異なることから、上述の如くして、第1の温度センサが測定した温度(例えば上記T1,T2)と第2の温度センサが測定した温度(例えば上記T3,T4)および、第1の温度センサと第2の温度センサとの少なくとも二組のそれぞれの間の熱抵抗値の比(例えば上記K)とから深部体温を求めることができるので、非侵襲的に且つヒータを用いずして体の深部の体温を高精度に測定することができる。 According to a non-heating type deep thermometer of the present invention, a set of the first temperature sensor and the second temperature sensor of comprising at least two sets, those in Kumigoto with its first temperature sensor and the second temperature sensor of since the thermal resistance of the insulation between the first temperature sensor and the second temperature sensor is different, and as described above, the temperature of the first temperature sensor is measured (e.g. the T1, T2) the temperature of the temperature sensor 2 has measured (e.g. the T3, T4) and, from the ratio of at least two sets of thermal resistance between each of the first temperature sensor and the second temperature sensor (e.g. the K) it is possible to determine the core body temperature, it is possible to not use the non-invasively and heater for measuring the body temperature of the deep body with high precision.

また、この発明の非加熱型深部体温測定装置によれば、この発明の非加熱型深部体温計の第1の温度センサが測定した温度(例えば上記T1,T2)と第2の温度センサが測定した温度(例えば上記T3,T4)および、第1の温度センサと第2の温度センサとの少なくとも二組のそれぞれの間の熱抵抗値の比(例えば上記K)とから、上述の如くして深部体温を求めることができるので、小型且つ安価な装置で体の深部の体温を高精度に測定することができる。 Further, according to a non-heating type deep body temperature measuring device according to the present invention, the non-heating first temperature sensor deep thermometer was measured temperature (e.g. above T1, T2) the second temperature sensor of the present invention was measured temperature (e.g. the T3, T4) and, from the ratio of at least two sets of thermal resistance between each of the first temperature sensor and the second temperature sensor (e.g. the K), and as described above deep it is possible to determine the body temperature can be measured body temperature of the deep body with high accuracy with a small and inexpensive device.

なお、この発明の非加熱型深部体温計においては、前記断熱材は、一種類の断熱材の前記測定面側に位置する測定面側表面とそれと対抗する外気側表面との間の厚さが中心からの距離に応じて同心円状に変化することで、それら測定面側表面と外気側表面との間の熱抵抗値が中心からの距離に応じて異なるものであり、前記第1の温度センサと前記第2の温度センサとは、それらの温度センサの組毎に前記断熱材の中心からの距離が異なって位置するように、前記断熱材の前記測定面側表面と前記外気側表面とに配置されていても良い。 In the non-heating type deep thermometer of the present invention, the heat insulating material has a thickness in the center between the outside air-side surface against the measurement surface side surface located on the measurement surface side of the one kind of heat insulating material therewith by changing concentrically with the distance from the thermal resistance between those measurement surface side surface and the outside air-side surface is different from depending on the distance from the center, and the first temperature sensor wherein the second temperature sensor so as to be positioned a distance is different from the center of the heat insulating material for each set of these temperature sensors, placed between the said measurement surface side surface of the thermal insulation and the outside air-side surface it may be. このようにすれば、一種類の断熱材で容易且つ安価に非加熱型深部体温計を構成することができる。 In this way, it is possible to constitute easily and cheaply unheated type deep thermometer in one type of insulation.

また、この発明の非加熱型深部体温計においては、前記断熱材は、独立気泡型の発泡性スポンジゴムとしても良い。 In the non-heating type deep thermometer of the present invention, the insulation material may be a foamed sponge rubber closed cell type. このようにすれば、気泡が独立しているため、汗等の水が断熱材の内部に滲みこまず、しかも断熱材の内部の空気の出入りがないため、熱抵抗値を一定に維持することができる。 In this way, since the bubbles are independent, water is not crowded bleeding inside the heat insulating material, such as sweat, and since there is no out of the air inside the heat insulating material, to maintain the thermal resistance value constant can.

さらに、この発明の非加熱型深部体温計においては、前記断熱材は、前記測定面側表面と前記外気側表面との間の厚さが中心からの距離の増加に応じて同心円状に段階的に減少することで、それら測定面側表面と外気側表面との間の熱抵抗値が中心からの距離の増加に応じて段階的に減少するものであっても良い。 Further, in the non-heating type deep thermometer of the present invention, the insulation is stepwise the thickness between the measurement surface side surface and said outside air-side surface in response to an increase in the distance from the center concentrically by decreasing, or may be thermal resistance between their measurement surface side surface and the outside air-side surface decreases stepwise in accordance with an increase in distance from the center. このようにすれば、外周部分の厚さを薄くして非加熱型深部体温計をコンパクトに構成することができる。 In this way, it is possible to construct a thinner to a non-heating type deep thermometer the thickness of the outer peripheral portion compact.

さらに、この発明の非加熱型深部体温計においては、前記断熱材の前記測定面側表面には、前記第1の温度センサと前記第2の温度センサとの少なくとも二組のうち同一の組に属する複数の前記第1の温度センサ同士を繋ぐ測定面側伝熱部材が設けられており、前記断熱材の前記外気側表面には、前記第1の温度センサと前記第2の温度センサとの全ての組の前記第2の温度センサ同士を繋ぐ外気側伝熱部材が設けられていても良い。 Further, in the non-heating type deep thermometer of the present invention, the measurement surface side surface of the insulation, belong to at least two sets same set of the first temperature sensor and said second temperature sensor a plurality of the first measuring surface heat transfer member which connects the temperature sensor each other is provided, wherein the outside air-side surface of the heat insulating material, all of the first temperature sensor and said second temperature sensor outdoor air side heat transfer member which connects the second temperature sensor between the pair of may be provided. このようにすれば、何れかの温度センサの組が前記第1の温度センサを複数有する場合にそれら第1の温度センサの温度同士を測定面側伝熱部材の熱伝導によって均一化し得るとともに、温度センサの全ての組の第2の温度センサの温度同士を外気側伝熱部材の熱伝導によって均一化し得るので、体表面の部分的な温度のバラつきを平均化して、より精度良く深部体温を測定することができる。 In this way, with any of the temperature sensor assembly may be equalized by thermal conduction of the measurement surface side heat transfer member temperature between their first temperature sensor when a plurality of the first temperature sensor, since the temperature between the second temperature sensor for all pairs of temperature sensors may be equalized by thermal conduction of the outside air-side heat transfer member, a partial temperature variation of the body surface by averaging, the more accurately the core body temperature it can be measured.

そして、この発明の非加熱型深部体温計においては、前記断熱材の前記外気側表面には、少なくともその断熱材の外気側表面および、前記第1の温度センサと前記第2の温度センサとの全ての組の前記第2の温度センサを覆う断熱材製のカバーを具えていても良い。 Then, in the non-heating type deep thermometer of the present invention, wherein the outside air-side surface of the insulation material, the external air-side surface of at least the heat insulating material and, all of the first temperature sensor and said second temperature sensor of the may comprise a set of said second heat insulating material made cover which covers the temperature sensor. かかるカバーを具えていれば、上述のように外気温による断熱材の熱抵抗値比の変化を抑制することができるので、外気温にかかわらず一定の熱抵抗値比を用い得て深部体温の計算を容易なものとすることができる。 If equipped with such a cover, it is possible to suppress the change in thermal resistance ratio of the heat insulating material according to the outside air temperature as described above, the core temperature obtained using a constant thermal resistance ratio regardless ambient temperature It get can be made easy.

また、この発明の深部体温測定装置は、例えばパーソナルコンピュータやマイクロコンピュータ等のコンピュータあるいはアナログ式演算回路等を用いることで構成することができる。 Also, core body temperature measurement device of the invention can be configured by using, for example, a personal computer or a microcomputer such as a computer or analog arithmetic circuit or the like.

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。 Hereinafter, an embodiment in accordance with an embodiment of the present invention, will be described with reference to the drawings in detail. ここに、図3は、この発明の非加熱型深部体温計の一実施例を示す断面図、図4(a),(b)は、その実施例の非加熱型深部体温計を示す平面図および底面図であり、この実施例の非加熱型深部体温計1は、図では下向きの面である、体表面に接触する測定面1a側から順に、第1の温度センサ2−1,2−2と、第2の温度センサ3−1,3−2とを具えるとともに、それら第1の温度センサ2−1,2−2と第2の温度センサ3−1,3−2との間に断熱材4を具えており、ここで、第1の温度センサ2−1と第2の温度センサ3−1とは一つの組(第1の組)をなし、また第1の温度センサ2−2と第2の温度センサ3−2とはもう一つの組(第2の組)をなしている。 Here, FIG. 3 is a sectional view showing an embodiment of a non-heating type deep thermometer of the present invention, FIG. 4 (a), (b) are a plan view and a bottom showing a non-heating type deep thermometer of the embodiment a diagram, non-heating type deep thermometer 1 of this embodiment is the downward surface in the figure, in order from the measurement surface 1a side in contact with the body surface, the first temperature sensor 21 and 22, together comprise a second temperature sensor 31 and 32, insulation between them first temperature sensor 21 and 22 and the second temperature sensor 31 and 32 4 and comprises a, wherein a first temperature sensor 2-1 without the one set (the first set) and the second temperature sensor 3-1 and the first temperature sensor 2-2 and the second temperature sensor 3-2 and forms another pair (second pair). なお、これらの温度センサ2−1,2−2,3−1,3−2としては、例えばアナログデバイセズ社製のIC温度センサAD590を使用することができる。 As these temperatures sensors 2-1,2-2,3-1,3-2, can employ, for example, Analog Devices, Inc. of IC temperature sensor AD590.

またここで、断熱材4は、独立気泡型の発泡性スポンジゴムにより、図では下側の測定面側表面4aと図では上側の外気側表面4bとの間の厚さが中心からの距離の増加に応じて同心円状に段階的に減少するように、図示例では厚さが13mmの中央部4cと厚さが7mmの周辺部4dとからなる円盤状に形成されており、これにより断熱材4のそれら測定面側表面4aと外気側表面4bとの間の熱抵抗値は、中央部4cに対し周辺部4dで段階的に減少している。 In this case, the heat insulating material 4, the foamed sponge rubber closed cell type, the measurement surface side surface 4a and the lower diagram in FIG thickness between the upper outside air-side surface 4b of the distance from the center so as to decrease stepwise concentrically with the increase, and the central portion 4c and the thickness of 13mm thickness is formed in a disk shape comprising a peripheral portion 4d of 7mm in the illustrated example, this heat insulating material thermal resistance between their measurement surface side surface 4a and the outside air-side surface 4b of 4 is stepwise reduced in the peripheral portion 4d with respect to the central portion 4c.

さらに、この実施例の非加熱型深部体温計1は、断熱材4の中央部4cの測定面側表面4aの中心部に貼着された、図示例では外径が8mmで厚さが1mmの銅製の円盤5と、断熱材4の周辺部4dの測定面側表面4aにその断熱材4と同心に貼着された、図示例では外径が36mm且つ幅が3mmで厚さが1mmの銅製のリング6と、断熱材4の外気側表面4bにその断熱材4の中央部4cと周辺部4dとを覆うように貼着された、図示例では周辺部外径が44mm且つ中央部外径が26mmで高さが8mm且つ厚さが2mmのハット型断面の銅製のキャップ7とを具えている。 Furthermore, unheated type deep thermometer 1 of this example was adhered to the center portion of the measurement surface side surface 4a of the central portion 4c of the heat insulating material 4, copper thickness outside diameter at 8mm is 1mm of the illustrated embodiment the disk 5, is adhered to the heat insulating material 4 concentrically to the measurement surface side surface 4a of the periphery 4d of the heat insulating material 4, the thickness at 36mm and width of the outer diameter 3mm of copper 1mm in the illustrated example a ring 6, is adhered to cover a central portion 4c and the peripheral portion 4d of the heat insulating material 4 to the outside air side surface 4b of the heat insulating material 4, near the outer diameter in the illustrated example 44mm and a central outer diameter height 8mm and the thickness at 26mm is comprises a copper cap 7 hat-shaped cross-section of 2 mm.

そしてこの実施例の非加熱型深部体温計1では、上記第1の温度センサの一方である第1の温度センサ2−1は、上記断熱材4の中央部4cの測定面側表面4aの中心部と上記銅製の円盤5との間に一個介装され、第1の温度センサの他方である第1の温度センサ2−2は、その断熱材4の周辺部4dの測定面側表面4aと上記銅製のリング6との間に互いに周方向に等間隔に離間して四個(図では二個のみ示す)介装されており、また第2の温度センサの一方である第2の温度センサ3−1は、その断熱材4の中央部4cの外気側表面4bの中心部と上記銅製のキャップ7との間に一個介装され、第2の温度センサの他方である第2の温度センサ3−2は、その断熱材4の周辺部4dの外気側表面4aと上記銅製のキャップ7との間に四個 Then, in unheated type deep thermometer 1 of this embodiment, the first temperature sensor 2-1 is one of the first temperature sensor in the center of the measurement surface side surface 4a of the central portion 4c of the heat insulating material 4 and the one interposed between the disk 5 of the copper, the first temperature sensor 2-2 which is the other of the first temperature sensor, the measurement surface side surface 4a and the peripheral portion 4d of the heat insulating material 4 four spaced at equal intervals in the circumferential direction between the copper ring 6 (only two in the drawing) is interposed, and the second temperature sensor 3 is one of the second temperature sensor -1 is one interposed between the central portion and the copper cap 7 of the outside air-side surface 4b of the central portion 4c of the heat insulating material 4, the second temperature sensor 3 which is the other of the second temperature sensor -2, four between the outside air-side surface 4a and the copper cap 7 of the periphery 4d of the heat insulating material 4 第1の温度センサ2−2とそれぞれ断熱材4の厚さ方向に整列するように四個(図では二個のみ示す)介装されている。 Four so that each first temperature sensor 2-2 aligned in the thickness direction of the heat insulating material 4 (shown only two in the figure) is interposed.

かかる実施例の非加熱型深部体温計1によれば、第1および第2の温度センサ2−1,2−2,3−1,3−2で測定した断熱材4の内部を流れる熱流および、断熱材4の中央部4cと周辺部4dとの熱抵抗値の比Kから、前記式(7)により、深部体温TBが算出される。 According to a non-heating type deep thermometer 1 of such an embodiment, the heat flow through the interior of the heat insulating material 4 measured in the first and second temperature sensors 2-1,2-2,3-1,3-2 and, from the ratio K of the thermal resistance of the central portion 4c and the peripheral portion 4d of the heat insulating material 4, by the equation (7), the deep body temperature TB is calculated.

図5は、上記第1および第2の温度センサ2−1,2−2,3−1,3−2の出力電圧をそれぞれ増幅して基準電圧と対比し、それら第1および第2の温度センサ2−1,2−2,3−1,3−2が測定した温度を1℃=1Vの電圧で出力するアナログ回路を例示しており、かかるアナログ回路の出力電圧を図示しない通常のA/Dコンバータでデジタル信号に変換して、あらかじめ求めた断熱材4の中央部4cと周辺部4dとの熱抵抗値の比Kを入力しておいた図示しない通常のパーソナルコンピュータに入力し、それら第1の温度センサ2−1,2−2の測定した温度T1,T2および上記第2の温度センサ3−1,3−2の測定した温度T3,T4と熱抵抗値の比Kとから、そのパーソナルコンピュータに前記式(7)の計算をさせることで、深 Figure 5 is compared with a reference voltage and amplifies the output voltage of the first and second temperature sensors 2-1,2-2,3-1,3-2 respectively, which first and second temperature the temperature sensor 2-1,2-2,3-1,3-2 was measured exemplifies an analog circuit which outputs at 1 ° C. = 1V voltage, normal a not shown the output voltage of such analog circuits / D converter to convert into a digital signal, and input to the pre-obtained conventional personal computer (not shown) the ratio K of the thermal resistance of the central portion 4c and the peripheral portion 4d of the heat insulating material 4 had been entered, they and a ratio K of the measured temperature T3, T4 and the thermal resistance of the temperatures T1, T2 and the second temperature sensor 31 and 32 measured by the first temperature sensor 21 and 22, It is to the calculation of the formula (7) to the personal computer, the depth 体温TBを算出することができる。 It is possible to calculate the temperature TB. 従って、この実施例の非加熱型深部体温計1、上記図5のアナログ回路、上記A/Dコンバータおよび上記パーソナルコンピュータは、この発明の深部体温測定装置の一実施例を構成する。 Therefore, the non-heating type deep thermometer 1 of this embodiment, the analog circuit of FIG. 5, the above-mentioned A / D converter and the personal computer, which constitutes one embodiment of a core body temperature measurement device according to the present invention.

図6(a),(b)は、上記実施例の非加熱型深部体温計1に用いる断熱材製のカバー8をカバー単独および非加熱型深部体温計1を覆った状態のそれぞれについて斜め下方から見た状態で示す斜視図である。 FIG 6 (a), (b) is viewed obliquely from below for each state insulation made cover 8 used in the non-heating deep thermometer 1 covers the cover alone and non-heating type deep thermometer 1 of Example and is a perspective view illustrating a state. この図示例のカバー8はスポンジ製で、外径が50mm且つ厚さが40mmである。 Cover 8 of the illustrated embodiment is made sponge, 50 mm and thickness of an outer diameter of 40 mm.

図7は、深部体温測定のシミュレーション実験の方法を示す説明図である。 Figure 7 is an explanatory diagram showing a method of simulation experiments of core body temperature measurement. この実験では、恒温水槽内で37℃の一定にした水面に銅製の箱を浮かべ、その箱の底に、熱伝導率が1.7×10 −2 J/cm℃で厚さ1〜10mmのゴム板を厚さ1mm違い毎に10枚揃えて固定した。 In this experiment, floated copper box on the water was at a constant 37 ° C. in a constant temperature water bath, the bottom of the box, the thermal conductivity in the thickness 1~10mm at 1.7 × 10 -2 J / cm ℃ and fixed aligned 10 sheets for each thickness 1mm difference between the rubber plate. 環境(外気)温度は20℃,25℃,30℃の各室温で一定にした。 Environment (outside air) temperature is 20 ° C., 25 ° C., it was constant at each room of 30 ° C.. そして、この実施例の非加熱型深部体温計1と、上記アナログ回路およびA/Dコンバータと通常のパーソナルコンピュータとで上記実施例の深部体温測定装置を構成し、この実施例の非加熱型深部体温計1の各温度センサの測定温度T1,T2,T3,T4を上記アナログ回路およびA/Dコンバータを介して30秒毎の間隔でパーソナルコンピュータに記録した。 Then, the non-heating type deep thermometer 1 of this embodiment, in the above-described analog circuits and A / D converter and ordinary personal computers constitute a core body temperature measurement device with the above embodiment, the non-heating type deep thermometer of this embodiment 1 of the measured temperature T1, T2, T3, T4 of the temperature sensors were recorded on a personal computer at intervals of 30 seconds via the analog circuitry and a / D converter.

上記シミュレーション実験の結果より、この実施例の非加熱型深部体温計1の各温度センサの測定温度T1,T2,T3,T4と水温37℃との関係から、断熱材4の熱抵抗比の値Kの算出を行った。 The results of the simulation experiment, measurement temperature of the temperature sensors of the non-heating type deep thermometer 1 of this embodiment T1, T2, T3, T4 and from the relationship between water temperature 37 ° C., the value K of the thermal resistance ratio of the heat insulating material 4 It was carried out of the calculation. ゴム板厚さが1〜10mmまでの検出温度と水温との誤差が最小となるように熱抵抗比の値Kを求めた。 Rubber plate thickness was determined value K of thermal resistance ratio so that an error between the detected temperature and the water temperature up to 1~10mm is minimized.

図8(a),(b),(c)は、室温20℃,25℃,30℃におけるシミュレーション実験時の、最適な熱抵抗比を求めた場合の誤差をそれぞれ示す関係線図である。 Figure 8 (a), (b), (c), the room temperature 20 ° C., 25 ° C., during simulation experiments at 30 ° C., a relational diagram showing the respective error when the determined optimal thermal resistance ratio. 室温20℃の時、Kは2.5で、±0.1℃以内で検出できた。 When room temperature 20 ° C., K is 2.5, it could be detected within ± 0.1 ° C.. 室温25℃の時、Kは2.8で、±0.1℃以内で検出できた。 When room temperature 25 ° C., K is 2.8, it could be detected within ± 0.1 ° C.. 室温30℃の時、Kは3.0で、±0.1℃以内で検出できた。 When room temperature 30 ° C., K is 3.0, it could be detected within ± 0.1 ° C.. 以上の結果より、この実施例の非加熱型深部体温計1の熱抵抗比の値Kは室温の影響を受け、Kは2.5〜3.0の範囲で温度特性を有することを示した。 From the above results, the value K of the thermal resistance ratio of the non-heating type deep thermometer 1 embodiment under the influence of ambient temperature, K is shown to have a temperature characteristic in the range of 2.5 to 3.0.

図9は、この実施例の非加熱型深部体温計1をカバー8で覆った場合の、室温25℃におけるシミュレーション実験時の熱抵抗比の値Kとゴム板厚さ1〜10mmまでの検出誤差との関係を示す関係線図であり、この実験での、室温25℃における熱抵抗比の値Kは4.0が最適値であった。 9, in the case of covering the non-heating type deep thermometer 1 of this embodiment with a cover 8, a detection error of up to the value K and the rubber plate thickness 1~10mm thermal resistance ratio during simulation experiments at room temperature 25 ° C. a relational diagram showing the relationship, in this experiment, a value K is 4.0 the optimum value of the thermal resistance ratio at room temperature 25 ° C.. また、その最適値を用いて、シミュレーション実験でのゴム板1〜10mmでの水温37℃を検出した時の誤差は±0.1℃以内であった。 Further, by using the optimum value, the error when the detected water temperature 37 ° C. in a rubber plate 1~10mm in the simulation experiment was within ± 0.1 ° C..

図10(a),(b),(c)は、室温20℃における、人の身体各部である側頭部、胸部および腹部のそれぞれの、熱流補償型深部体温計と、カバー8で覆ったこの実施例の非加熱型深部体温計1とによる検出温度の比較結果を示す関係線図であり、図10(d)は、室温30℃における、人の胸部の、熱流補償型深部体温計と、カバー8で覆ったこの実施例の非加熱型深部体温計1とによる検出温度の比較結果を示す関係線図である。 Figure 10 (a), (b), (c), this covered at room temperature 20 ° C., the temporal a Body of human, of each of the chest and abdomen, the heat flow compensated deep thermometer, a cover 8 a relational diagram showing the comparison results of the temperature detected by the non-heating deep thermometer 1 embodiment, FIG. 10 (d) at room temperature 30 ° C., the human breast, and heat flow compensated deep thermometer, a cover 8 it is a relational diagram showing the comparison results of the temperature detected by the covering has a non-heating type deep thermometer 1 of this embodiment with.

図10(a),(b),(c)の関係線図は、各室温で両体温計を用いた測定装置での検出温度の値が±0.1℃以内であったということを示している。 Figure 10 (a), (b), show that the relationship diagram, the value of the detected temperature of the measuring apparatus using the two thermometers at the room temperature was within ± 0.1 ℃ (c) there. また温度平衡時間は、側頭部の場合に約25分、胸部の場合に約30分、腹部の場合に約40分程度であった。 The temperature equilibration time of about 25 minutes in the case of the temporal, about 30 minutes in the case of breast was about 40 minutes when the abdomen. 図10(d)の関係線図は、室温が30℃になると、温度平衡時間が短くなり、また両体温計を用いた深部体温測定装置の検出結果がほぼ一致することを示している。 Relational diagram of FIG. 10 (d) shows that the room temperature becomes a 30 ° C., a temperature equilibration time is reduced, and the detection result of the core body temperature measurement device using both thermometer coincide substantially.

図11は、被験者10人の側頭部に、熱流補償型深部体温計と、カバー8で覆ったこの実施例の非加熱型深部体温計1とを左右に固定し、同時に測定した時の両者の検出温度の比較を行った結果を示す関係線図である。 11, the side of the head of the 10 subjects, a heat flow compensated deep thermometer, and fixing the non-heated deep thermometer 1 of this embodiment covered with a cover 8 to the left and right, both the detection as measured simultaneously it is a relational diagram showing the results of TEMPERATURE COMPARISON. 熱流補償型深部体温計の平均検出温度は36.87℃であったのに対し、この実施例の非加熱型深部体温計1の平均検出温度は36.85℃を示しており、ほぼ両体温計は同じ値を示した。 The average detected temperature of the heat flow compensated deep thermometer whereas was 36.87 ° C., an average detection temperature of the non-heating type deep thermometer 1 of this embodiment shows a 36.85 ° C., approximately two thermometers same It showed the value.

上記の結果を纏めると、この実施例の非加熱型深部体温計1およびそれを用いたこの実施例の深部体温測定装置では、ゴム板を用いたシミュレーション実験より室温20℃,25℃,30℃において各室温でのゴム板厚さ1〜10mmでの検出誤差が最も小さい断熱材4の熱抵抗比の値Kは、2.5,2.8,3.0であった。 Summarizing the above results, the non-heating type deep thermometer 1 and the core body temperature measurement device of this embodiment using the same of this embodiment, room temperature 20 ° C. The simulation experiments using rubber plate, 25 ° C., at 30 ° C. the value K of detection error is smallest thermal resistance ratio of the heat insulating material 4 in the rubber plate thickness 1~10mm in each room temperature was 2.5,2.8,3.0. また熱抵抗比の値Kに温度の影響が認められた。 The effect of temperature was observed in the value K of the thermal resistance ratio.

この実施例の非加熱型深部体温計1をカバー8(50mmφ×40mm)で覆うことで、検出誤差が最小となる熱抵抗比Kは4.0を示した。 By covering the non-heating type deep thermometer 1 of this embodiment with a cover 8 (50mmφ × 40mm), the thermal resistance ratio K detection error is minimized showed 4.0. カバー8を取り付けることで室温の影響を殆ど無視でき、ゴム板1〜10mmの厚さにおいて水温37℃を±0.1℃以内で検出することができた。 Most negligible the influence of the room temperature by installing a cover 8 could be detected within ± 0.1 ° C. The water temperature 37 ° C. in the thickness of the rubber plate 1 to 10 mm.

カバー8で覆ったこの実施例の非加熱型深部体温計1と熱流補償型深部体温計とを比較した結果、ヒト身体各部の皮下深部体温の検出精度において、±0.1℃以内の差であった。 Results of the comparison between the non-heating-type deep thermometer 1 and heat flow compensated deep thermometer of this embodiment covered with a cover 8, the detection accuracy of the subcutaneous core temperature of the human Body were differences within ± 0.1 ° C. . また応答時間においてもほぼ同様な値を示した。 Also it showed almost the same values ​​even in the response time. そして被験者10人を用いた実験では、側頭部深部体温検出結果の比較から、カバー8で覆ったこの実施例の非加熱型深部体温計1と熱流補償型深部体温計とはほぼ同じ温度を示した。 And in experiments with 10 subjects, from a comparison of the temporal core temperature detection result showed almost the same temperature as covered by the cover 8 unheated type deep thermometer 1 and heat flow compensated deep thermometer of this embodiment .

従って、この実施例の非加熱型深部体温計1によれば、非侵襲的に且つヒータを用いずして体の深部の体温を高精度に測定することができる。 Therefore, according to a non-heating type deep thermometer 1 of this embodiment, it is possible to not use the non-invasively and heater for measuring the body temperature of the deep body with high precision. そしてこの実施例の深部体温測定装置によれば、小型且つ安価な装置で体の深部の体温を高精度に測定することができる。 And according to the deep body temperature measuring device of this embodiment, it is possible to measure the body temperature of the deep body compact and inexpensive apparatus highly accurately.

以上、図示例に基づき説明したが、この発明は上記例に限定されるものでなく、特許請求の範囲の記載の範囲内で適宜変更することができ、例えば、第1の温度センサと第2の温度センサとの組を三組以上具えて、それらのうち二組ずつで測定した深部体温を平均化しても良く、また断熱材の上端面を裁頭円錐状や部分球面状として断熱材の熱抵抗値が半径方向に連続的に変化するようにしても良い。 Has been described above based on the illustrated embodiment, the present invention is not limited to the above examples, it can be appropriately modified within the scope of the appended claims, for example, a first temperature sensor and the second comprises three pairs or more pairs of temperature sensors, their core body temperature was measured at each two sets of may be averaged, and the heat insulating material the upper surface of the heat insulating material as a truncated conical or partially spherical shape heat resistance may be continuously changed in the radial direction. さらに、第1の温度センサと第2の温度センサとの第1の組と第2の組とで断熱材の材質を異ならせる等、断熱材を複数種類用いても良く、また断熱材の材質として、ウレタンフォームを用いても良い。 Further, etc. to vary the material of the heat insulating material in the first set and the second set of the first temperature sensor and the second temperature sensor, and may be used a plurality of types of heat-insulating material, also material of the heat insulating material as, it may be used urethane foam. さらに、伝熱部材の材質は上記実施例における銅に限られず、例えばシリコン等を用いても良い。 Further, the material of the heat transfer member is not limited to copper in the above examples may be used, for example, silicon or the like.

さらに、上記アナログアンプおよびA/Dコンバータさらにはマイクロコンピュータをこの発明の非加熱型深部体温計に組み込んで、非加熱型深部体温計を一体的に具える深部体温測定装置を構成しても良い。 Furthermore, the analog amplifier and A / D converter further incorporates a microcomputer to a non-heating type deep thermometer of the present invention may be a non-heating type deep thermometer constitute a core body temperature measurement device comprising integrally.

かくしてこの発明の非加熱型深部体温計によれば、非侵襲的に且つヒータを用いずして体の深部の体温を高精度に測定することができる。 Thus, according to a non-heating type deep thermometer of the present invention, it is possible to not use the non-invasively and heater for measuring the body temperature of the deep body with high precision. そしてこの発明の深部体温測定装置によれば、小型且つ安価な装置で体の深部の体温を高精度に測定することができる。 And according to the deep body temperature measuring device according to the present invention, it is possible to measure the body temperature of the deep body compact and inexpensive apparatus highly accurately.

(a)は、体表面を断熱材で覆った時の温度、熱流、熱伝導率の関係を示す説明図、(b)は、上記関係を電気的な電位差、電流、抵抗等を用いた等価回路で示す回路図である。 (A) the temperature at the time of covering the body surface with a heat insulating material, heat flow, diagram showing the relationship between thermal conductivity, (b), the equivalent of using electric potential difference of the above relationship, a current, a resistance, etc. is a circuit diagram showing the circuit. (a)は、体表面を二種類の異なった熱抵抗値を持つ断熱材で覆った時の温度、熱流、熱伝導率の関係を示す説明図、(b)は、上記関係を電気的な電位差、電流、抵抗等を用いた等価回路で示す回路図である。 (A), the temperature when covered with a heat insulating material having a thermal resistance value different body surfaces of two heat flow, diagram showing the relationship between thermal conductivity, (b), the electrical and the relationship potential is a circuit diagram showing an equivalent circuit using current, a resistor or the like. この発明の非加熱型深部体温計の一実施例を示す断面図である。 Is a sectional view showing an embodiment of a non-heating type deep thermometer of the present invention. (a),(b)は、上記実施例の非加熱型深部体温計を示す平面図および底面図である。 (A), (b) is a plan view and a bottom view showing a non-heating type deep thermometer of the embodiment. この発明の深部体温測定装置の一実施例を構成するアナログ回路を例示する回路図である。 It is a circuit diagram illustrating an analog circuit constituting an embodiment of the deep body temperature measuring device according to the present invention. (a),(b)は、上記実施例の非加熱型深部体温計に用いる断熱材製のカバーをカバー単独および非加熱型深部体温計を覆った状態のそれぞれについて斜め下方から見た状態で示す斜視図である。 (A), (b) is a perspective showing a state seen obliquely from below for each of the state of covering the non-heating type deep cover insulation cover made of use in thermometers alone and non-heating type deep thermometer of Example it is a diagram. 厚さ1〜10mmのゴム板の表面からそのゴム板の下の水温を検出する、深部体温測定のシミュレーション実験の方法を示す説明図である Detecting the water temperature below that rubber plate from the surface of the rubber plate having a thickness of 1 to 10 mm, it is a diagram illustrating a method of simulation experiments of the core body temperature measurement (a),(b),(c)は、室温20℃,25℃,30℃におけるシミュレーション実験時の最適な熱抵抗比を求めた場合の誤差をそれぞれ示す関係線図である。 (A), (b), (c), the room temperature 20 ° C., 25 ° C., a relational diagram showing the respective error when the determined optimal thermal resistance ratio of the simulation experiments in 30 ° C.. この実施例の非加熱型深部体温計をカバーで覆った場合の、室温25℃におけるシミュレーション実験時の熱抵抗比の値Kとゴム板厚さ1〜10mmまでの検出誤差との関係を示す関係線図である。 In the case of covering the non-heating type deep thermometer of this embodiment with a cover, association lines showing the relationship between the detection error of up to the value K and the rubber plate thickness 1~10mm thermal resistance ratio during simulation experiments at room temperature 25 ° C. it is a diagram. (a),(b),(c)は、室温20℃における、人の身体各部である側頭部、胸部および腹部のそれぞれの、熱流補償型深部体温計と非加熱型深部体温計とによる検出温度の比較結果を示す関係線図であり、(d)は、室温30℃における、人の胸部の、熱流補償型深部体温計と非加熱型深部体温計とによる検出温度の比較結果を示す関係線図である。 (A), (b), (c) is, at room temperature 20 ° C., the temporal a Body of human, of each of the chest and abdomen, the temperature detected by the heat flow compensated deep thermometer and a non-heating type deep thermometer a relational diagram showing the comparison result of, (d) is, at room temperature 30 ° C., the human chest, in relation diagram showing the comparison results of the temperature detected by the heat flow compensated deep thermometer and a non-heating type deep thermometer is there. 被験者10人の側頭部に、熱流補償型深部体温計と、カバーで覆ったこの実施例の非加熱型深部体温計とを左右に固定し、同時に測定した時の両者の検出温度の比較を行った結果を示す関係線図である。 The subject ten temporal, and heat flow compensated deep thermometer, and fixing the non-heated deep thermometer of this embodiment covered with a cover on the left and right, was detected temperature comparison of both when measured at the same time result is a relational diagram showing a.

符号の説明 DESCRIPTION OF SYMBOLS

1 非加熱型深部体温計 1a 測定面 2−1,2−2 第1の温度センサ 3−1,3−2 第2の温度センサ 4 断熱材 4a 測定面側表面 4b 外気側表面 4c 中央部 4d 周辺部 5 円盤 6 リング 7 キャップ 8 カバー 1 unheated type deep thermometer 1a measuring surface 2-1 and 2-2 the first temperature sensor 31 and 32 a second temperature sensor 4 heat insulator 4a measurement surface side surface 4b outside air-side surface 4c central portion 4d around part 5 disk 6 ring 7 cap 8 cover

Claims (7)

  1. 体表面に接触する測定面側から順に第1の温度センサと第2の温度センサとを具えるとともに、それら第1の温度センサと第2の温度センサとの間に断熱材を具える非加熱型の深部体温計において、 With the measurement surface in contact with the body surface comprises a first temperature sensor and the second temperature sensor of the order, unheated comprising a heat insulating material between those first temperature sensor and the second temperature sensor of in the type of deep thermometer,
    前記第1の温度センサと前記第2の温度センサとの組を少なくとも二組具え、 At least two sets comprising a set of the first and the second temperature sensor and the temperature sensor,
    前記第1の温度センサと前記第2の温度センサとの組毎に、それら第1の温度センサと第2の温度センサとの間の前記断熱材の熱抵抗値が異なることを特徴とする、非加熱型深部体温計。 The Kumigoto between the first temperature sensor and said second temperature sensor, the thermal resistance of the heat insulating material are different from each other between those first temperature sensor and the second temperature sensor of, non-heating type deep thermometer.
  2. 前記断熱材は、独立気泡型の発泡性スポンジゴムであることを特徴とする、請求項1記載の非加熱型深部体温計。 The heat insulating material is characterized by a foaming sponge rubber closed cell type, according to claim 1 unheated type deep thermometer according.
  3. 前記断熱材は、一種類の断熱材の前記測定面側に位置する測定面側表面とそれと対抗する外気側表面との間の厚さが中心からの距離に応じて同心円状に変化することで、それら測定面側表面と外気側表面との間の熱抵抗値が中心からの距離に応じて異なるものであり、 The heat insulating material, by varying concentrically with the distance from the thick center between the measurement surface side surface and the outside air-side surface to oppose it located at the measurement surface side of the one type of heat-insulating material , thermal resistance between their measurement surface side surface and the outside air-side surface is different from depending on the distance from the center,
    前記第1の温度センサと前記第2の温度センサとは、それらの温度センサの組毎に前記断熱材の中心からの距離が異なって位置するように、前記断熱材の前記測定面側表面と前記外気側表面とに配置されていることを特徴とする、請求項1または2記載の非加熱型深部体温計。 And said first temperature sensor and said second temperature sensor of, so as to be positioned a distance is different from the center of the heat insulating material each set of these temperature sensors, and the measurement surface side surface of the heat insulating material characterized in that it is arranged on the outside air side surface, according to claim 1 or 2 non-heating type deep thermometer according.
  4. 前記断熱材は、前記測定面側表面と前記外気側表面との間の厚さが中心からの距離の増加に応じて同心円状に段階的に減少することで、それら測定面側表面と外気側表面との間の熱抵抗値が中心からの距離の増加に応じて段階的に減少するものであることを特徴とする、請求項3記載の非加熱型深部体温計。 The insulation is that the thickness between the measurement surface side surface and said outside air-side surface is stepwise reduced in concentric circles with an increase in distance from the center, the outside air side and their measurement surface side surface wherein the thermal resistance between the surface is to decrease stepwise with an increase in distance from the center, according to claim 3 unheated type deep thermometer according.
  5. 前記断熱材の前記測定面側表面には、前記第1の温度センサと前記第2の温度センサとの少なくとも二組のうち同一の組に属する複数の前記第1の温度センサ同士を繋ぐ測定面側伝熱部材が設けられており、 Wherein the said measurement surface side surface of the insulation measurement surface connecting the plurality of the first temperature sensor belonging to at least two sets same set of the first and the second temperature sensor and a temperature sensor side heat transfer member is provided,
    前記断熱材の前記外気側表面には、前記第1の温度センサと前記第2の温度センサとの全ての組の前記第2の温度センサ同士を繋ぐ外気側伝熱部材が設けられていることを特徴とする、請求項1から4までの何れか記載の非加熱型深部体温計。 Said the outside air-side surface of the insulation material, the external air-side heat transfer member which connects the second temperature sensor between all pairs of the first temperature sensor and said second temperature sensor is provided wherein the non-heating type deep thermometer according any of claims 1 to 4.
  6. 前記断熱材の前記外気側表面には、少なくともその断熱材の外気側表面および、前記第1の温度センサと前記第2の温度センサとの全ての組の前記第2の温度センサを覆う断熱材製のカバーを具えることを特徴とする、請求項1から5までの何れか記載の非加熱型深部体温計。 Wherein the outside air-side surface of the heat insulating material, at least the outside air-side surface of the heat insulating material and heat insulating material covering the second temperature sensor for all pairs of the first and the second temperature sensor and a temperature sensor characterized in that it comprises the manufacturing of the cover, the non-heating type deep thermometer according any of claims 1 to 5.
  7. 請求項1から6までの何れか記載の非加熱型深部体温計を用い、 Using non-heating type deep thermometer according to any one of claims 1 to 6,
    前記第1の温度センサと前記第2の温度センサとがそれぞれ測定した温度および、前記第1の温度センサと第2の温度センサとの少なくとも二組のそれぞれの間の前期断熱材の熱抵抗値の比から深部体温を求めることを特徴とする、深部体温測定装置。 The first temperature and the temperature sensor and the second temperature sensor is measured each, the first temperature sensor and at least two sets of heat resistance of the previous term insulation between each of the second temperature sensor and obtaining the core body temperature from the ratio of, core body temperature measurement device.
JP2006035452A 2006-02-13 2006-02-13 Non-heating type deep part medical thermometer and deep part temperature measuring device using it Pending JP2007212407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035452A JP2007212407A (en) 2006-02-13 2006-02-13 Non-heating type deep part medical thermometer and deep part temperature measuring device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035452A JP2007212407A (en) 2006-02-13 2006-02-13 Non-heating type deep part medical thermometer and deep part temperature measuring device using it

Publications (1)

Publication Number Publication Date
JP2007212407A true true JP2007212407A (en) 2007-08-23

Family

ID=38490974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035452A Pending JP2007212407A (en) 2006-02-13 2006-02-13 Non-heating type deep part medical thermometer and deep part temperature measuring device using it

Country Status (1)

Country Link
JP (1) JP2007212407A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027619A (en) * 2009-07-28 2011-02-10 Toyama Sangyo Kk Temperature measurement system and temperature measuring method, temperature control system of elution tester using the same, and temperature control method
WO2012042759A1 (en) * 2010-09-29 2012-04-05 テルモ株式会社 Clinical thermometer
JP2012073127A (en) * 2010-09-29 2012-04-12 Terumo Corp Clinical thermometer
US8226294B2 (en) 2009-08-31 2012-07-24 Arizant Healthcare Inc. Flexible deep tissue temperature measurement devices
JP2012154859A (en) * 2011-01-27 2012-08-16 Terumo Corp Clinical thermometer
CN102706470A (en) * 2010-10-29 2012-10-03 精工爱普生株式会社 Temperature measurement device and temperature measuring method
US8292495B2 (en) 2010-04-07 2012-10-23 Arizant Healthcare Inc. Zero-heat-flux, deep tissue temperature measurement devices with thermal sensor calibration
US8292502B2 (en) 2010-04-07 2012-10-23 Arizant Healthcare Inc. Constructions for zero-heat-flux, deep tissue temperature measurement devices
WO2013024568A1 (en) * 2011-08-18 2013-02-21 テルモ株式会社 Clinical thermometer
GB2497790A (en) * 2011-12-21 2013-06-26 Sequoia Technology Ltd Temperature sensor
WO2013121762A1 (en) * 2012-02-14 2013-08-22 テルモ株式会社 Clinical thermometer and body temperature measurement system
JP2015064369A (en) * 2014-11-11 2015-04-09 セイコーエプソン株式会社 Electronic thermometer, and body temperature-measuring method
US9068895B2 (en) 2009-04-15 2015-06-30 3M Innovative Properties Company Deep tissue temperature probe constructions
US9310257B2 (en) 2009-04-15 2016-04-12 3M Innovative Properties Company Deep tissue temperature probe constructions
WO2016067952A1 (en) * 2014-10-27 2016-05-06 オムロン株式会社 Internal temperature measurement device
US9354122B2 (en) 2011-05-10 2016-05-31 3M Innovative Properties Company Zero-heat-flux, deep tissue temperature measurement system
CN106104233A (en) * 2014-03-13 2016-11-09 欧姆龙株式会社 Internal temperature measurement method and internal temperature measurement device
US9797780B2 (en) 2012-03-30 2017-10-24 Citizen Watch Co., Ltd. Contact type internal thermometer
US10060803B2 (en) 2013-12-13 2018-08-28 Omron Corporation MEMS internal temperature sensor having thin film thermopile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120026A (en) * 1984-11-16 1986-06-07 Hitachi Ltd Simple deep-part clinical thermometer
JPS61120027A (en) * 1984-11-16 1986-06-07 Hitachi Ltd Simple type clinical thermometer for deep part
JPH0565090B2 (en) * 1986-08-29 1993-09-17 Tatsuo Togawa
JP2006308538A (en) * 2004-09-15 2006-11-09 Seiko Epson Corp Thermometer, electronic device having thermometer, and method for measuring body temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120026A (en) * 1984-11-16 1986-06-07 Hitachi Ltd Simple deep-part clinical thermometer
JPS61120027A (en) * 1984-11-16 1986-06-07 Hitachi Ltd Simple type clinical thermometer for deep part
JPH0565090B2 (en) * 1986-08-29 1993-09-17 Tatsuo Togawa
JP2006308538A (en) * 2004-09-15 2006-11-09 Seiko Epson Corp Thermometer, electronic device having thermometer, and method for measuring body temperature

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068895B2 (en) 2009-04-15 2015-06-30 3M Innovative Properties Company Deep tissue temperature probe constructions
US9310257B2 (en) 2009-04-15 2016-04-12 3M Innovative Properties Company Deep tissue temperature probe constructions
JP2011027619A (en) * 2009-07-28 2011-02-10 Toyama Sangyo Kk Temperature measurement system and temperature measuring method, temperature control system of elution tester using the same, and temperature control method
US8226294B2 (en) 2009-08-31 2012-07-24 Arizant Healthcare Inc. Flexible deep tissue temperature measurement devices
US8801282B2 (en) 2010-04-07 2014-08-12 3M Innovative Properties Company Constructions for zero-heat-flux, deep tissue temperature measurement devices
US8292502B2 (en) 2010-04-07 2012-10-23 Arizant Healthcare Inc. Constructions for zero-heat-flux, deep tissue temperature measurement devices
US8292495B2 (en) 2010-04-07 2012-10-23 Arizant Healthcare Inc. Zero-heat-flux, deep tissue temperature measurement devices with thermal sensor calibration
US8801272B2 (en) 2010-04-07 2014-08-12 3M Innovative Properties Company Zero-heat-flux, deep tissue temperature measurement devices with thermal sensor calibration
JP2012073127A (en) * 2010-09-29 2012-04-12 Terumo Corp Clinical thermometer
WO2012042759A1 (en) * 2010-09-29 2012-04-05 テルモ株式会社 Clinical thermometer
CN102706470A (en) * 2010-10-29 2012-10-03 精工爱普生株式会社 Temperature measurement device and temperature measuring method
CN102706470B (en) * 2010-10-29 2015-07-15 精工爱普生株式会社 Temperature measurement device and temperature measuring method
JP2012154859A (en) * 2011-01-27 2012-08-16 Terumo Corp Clinical thermometer
US9354122B2 (en) 2011-05-10 2016-05-31 3M Innovative Properties Company Zero-heat-flux, deep tissue temperature measurement system
JPWO2013024568A1 (en) * 2011-08-18 2015-03-05 テルモ株式会社 Thermometer
WO2013024568A1 (en) * 2011-08-18 2013-02-21 テルモ株式会社 Clinical thermometer
GB2497790B (en) * 2011-12-21 2015-01-28 Olancha Group Ltd Temperature sensing apparatus and method
GB2497790A (en) * 2011-12-21 2013-06-26 Sequoia Technology Ltd Temperature sensor
JPWO2013121762A1 (en) * 2012-02-14 2015-05-11 テルモ株式会社 Thermometer and body temperature measurement system
WO2013121762A1 (en) * 2012-02-14 2013-08-22 テルモ株式会社 Clinical thermometer and body temperature measurement system
US9797780B2 (en) 2012-03-30 2017-10-24 Citizen Watch Co., Ltd. Contact type internal thermometer
DE112014005627B4 (en) 2013-12-13 2018-09-06 Omron Corporation Internal temperature sensor
US10060803B2 (en) 2013-12-13 2018-08-28 Omron Corporation MEMS internal temperature sensor having thin film thermopile
DE112015001224B4 (en) * 2014-03-13 2018-10-11 Omron Corporation A method for internal temperature measurement and apparatus for measuring internal temperature
CN106104233A (en) * 2014-03-13 2016-11-09 欧姆龙株式会社 Internal temperature measurement method and internal temperature measurement device
CN106104233B (en) * 2014-03-13 2018-10-02 欧姆龙株式会社 The method of measuring the internal temperature and the internal temperature measuring device
CN106605132A (en) * 2014-10-27 2017-04-26 欧姆龙株式会社 Internal temperature measurement device
JP2016085136A (en) * 2014-10-27 2016-05-19 オムロン株式会社 Internal temperature measurement device
WO2016067952A1 (en) * 2014-10-27 2016-05-06 オムロン株式会社 Internal temperature measurement device
JP2015064369A (en) * 2014-11-11 2015-04-09 セイコーエプソン株式会社 Electronic thermometer, and body temperature-measuring method

Similar Documents

Publication Publication Date Title
Webb et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin
US4381009A (en) Hand-held device for the local heat-treatment of the skin
US4859078A (en) Apparatus for the non-invasive measurement of thermal properties and perfusion rates of biomaterials
US20060122473A1 (en) Wireless patch temperature sensor system
US5924996A (en) Process and device for detecting the exchange of heat between the human body and the invented device and its correlation to the glucose concentration in human blood
US7255475B2 (en) Thermometry probe calibration method
US5909004A (en) Thermocouple array and method of fabrication
Hayward et al. Thermoregulatory heat production in man: prediction equation based on skin and core temperatures
US20050043631A1 (en) Medical body core thermometer
US20090306536A1 (en) Method and Device For Monitoring Thermal Stress
Lautenbacher et al. Sex differences in pain and thermal sensitivity: the role of body size
US20100319436A1 (en) System and Apparatus for Determining Temperatures in a Fluid Analyte System
Patel et al. A self-heated thermistor technique to measure effective thermal properties from the tissue surface
Insler et al. Perioperative thermoregulation and temperature monitoring
Nuutinen et al. A closed unventilated chamber for the measurement of transepidermal water loss
Togwa et al. A modified internal temperature measurement device
US5078137A (en) Apparatus for measuring oxygen partial pressure and temperature, in living tissue
US3877463A (en) Thermal method and device for the differential diagnosis of human tumors and circulatory disorders
US20090076366A1 (en) Composite Electrode
US6488623B1 (en) Skin perfusion evaluation apparatus
US20070055171A1 (en) Medical thermometer for determining body core temperature
US20070282218A1 (en) Non-invasive temperature measurement
US6221025B1 (en) Skin blood flow measurement
Edwards et al. A comparison of the suitabilities of rectal, gut, and insulated axilla temperatures for measurement of the circadian rhythm of core temperature in field studies
US20040065098A1 (en) Air conditioning system and method operating suitably to user&#39;s characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090410

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220