JPH0563703B2 - - Google Patents

Info

Publication number
JPH0563703B2
JPH0563703B2 JP60002623A JP262385A JPH0563703B2 JP H0563703 B2 JPH0563703 B2 JP H0563703B2 JP 60002623 A JP60002623 A JP 60002623A JP 262385 A JP262385 A JP 262385A JP H0563703 B2 JPH0563703 B2 JP H0563703B2
Authority
JP
Japan
Prior art keywords
stage
stage compressor
compression refrigeration
refrigeration system
compressor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60002623A
Other languages
Japanese (ja)
Other versions
JPS60159561A (en
Inventor
Nooton Shau Dabido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland Corp LLC
Original Assignee
Copeland Corp LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copeland Corp LLC filed Critical Copeland Corp LLC
Publication of JPS60159561A publication Critical patent/JPS60159561A/en
Publication of JPH0563703B2 publication Critical patent/JPH0563703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は二段圧縮冷凍装置、特に2個のみの
センサを利用する制御装置を備え、該2個のセン
サのうち1個のセンサは第1段圧縮機装置の作動
を同圧縮機装置の吸入側の状態に応じて制御し、
他のセンサは第2段圧縮機装置の作動を第1段圧
縮機装置と第2段圧縮機装置との中間点の状態に
応じて制御するように利用される二段圧縮冷凍装
置、に関するものである。この発明に係る二段圧
縮冷凍装置中にはエコノマイザを、凝縮せしめら
れた冷媒を蒸発器中で気化させるのに先立ち副次
的に冷却するために利用可能である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a two-stage compression refrigeration system, in particular a control system that utilizes only two sensors, one of which is located in the first stage. Controlling the operation of the compressor device according to the state of the suction side of the compressor device,
Other sensors relate to a two-stage compression refrigeration system that is utilized to control the operation of the second-stage compressor system in response to conditions at an intermediate point between the first-stage compressor system and the second-stage compressor system. It is. An economizer may be utilized in the two-stage compression refrigeration system of the present invention to provide secondary cooling of the condensed refrigerant prior to vaporization in the evaporator.

従来の技術 直列接続された第1段及び第2段圧縮機を備え
る二段圧縮冷凍装置は、本技術分野において周知
である。そして従来の典型的な二段圧縮冷凍装置
は米国特許No.2434221の第2,3図及び米国特許
No.2677844の第1図に示されているように冷媒を、
第1段圧縮機(ブースタ)を選択的に迂回させて
第2段圧縮機へと直接に供給するように働くバイ
パス機構を備えたものに、構成されて来ている。
したがつて本従来装置ではブースタが、蒸発温度
が比較的低い範囲内でのみ稼働されることにな
る。
BACKGROUND OF THE INVENTION Two-stage compression refrigeration systems comprising first and second stage compressors connected in series are well known in the art. The conventional typical two-stage compression refrigeration equipment is shown in Figures 2 and 3 of U.S. Patent No. 2434221 and U.S. Patent No.
As shown in Figure 1 of No.2677844,
They have been constructed with a bypass mechanism that selectively bypasses the first stage compressor (booster) to directly feed the second stage compressor.
Therefore, in this conventional device, the booster is operated only within a range where the evaporation temperature is relatively low.

本従来技術は装置の制御を容易とはするが、冷
凍装置の効率上で不利である。すなわち第1段及
び第2段圧縮機の両者の各容量を、最大の装置効
率を達成するように制御することが、高蒸発温度
範囲においては行なわれないからである。
Although this conventional technique facilitates control of the apparatus, it is disadvantageous in terms of efficiency of the refrigeration apparatus. That is, the capacities of both the first and second stage compressors cannot be controlled in a high evaporation temperature range to achieve maximum system efficiency.

米国特許No.3759052には次のような二段圧縮冷
凍装置、すなわち第1段圧縮機の吸入側の状態に
応じて、また第1段圧縮機の吸入側の状態と第1
段及び第2段圧縮機間の中間点の状態と第2段圧
縮機の吐出側の状態との組合せに応じて、それぞ
れ作動する制御装置を用いた制御下で第1段及び
第2段圧縮機の両者を常時稼働させることとして
ある二段圧縮冷凍装置が、開示されている。した
がつて本従来装置では第1段圧縮機の容量と第2
段圧縮機の容量との比が、冷凍装置の最大の効率
を維持するように制御される。
U.S. Patent No. 3759052 describes the following two-stage compression refrigeration system:
The first and second stage compression is performed under control using a controller that operates respectively depending on the combination of the conditions at the intermediate point between the stage and second stage compressors and the conditions at the discharge side of the second stage compressor. A two-stage compression refrigeration system is disclosed in which both parts of the machine are operated at all times. Therefore, in this conventional device, the capacity of the first stage compressor and the capacity of the second stage compressor are
The stage compressor capacity ratio is controlled to maintain maximum efficiency of the refrigeration system.

しかし本米国特許No.3759052に開示された装置
は、複雑であり高価につく。すなわち本装置は装
置中の3箇所に配置される複数センサと第2段圧
縮機を制御するための演算処理機とを必要とす
る。また本従来装置は装置効率をさらに向上させ
るためのエコノマイザを備えていないと共に、閉
冷凍回路を備えた冷凍装置中にエコノマイザを、
第1段及び第2段圧縮機の容量制御上の支障を招
くことなく該エコノマイザが常時作用するように
設けるようなことについては、何も教示していな
い。
However, the device disclosed in US Pat. No. 3,759,052 is complex and expensive. That is, this device requires a plurality of sensors placed at three locations in the device and a processor for controlling the second stage compressor. Furthermore, this conventional device is not equipped with an economizer to further improve device efficiency, and an economizer is not installed in the refrigeration device equipped with a closed refrigeration circuit.
There is no teaching as to how the economizer can be provided to operate at all times without causing problems in controlling the capacity of the first and second stage compressors.

発明課題 したがつてこの発明の主たる目的とするところ
は上述の米国特許No.3759052に開示の基本構造を
備えた二段圧縮冷凍装置、つまり第1段圧縮機装
置、第2段圧縮機装置、凝縮器、蒸発器、これら
の第1段圧縮機装置と第2段圧縮機装置と凝縮器
と蒸発器とをこの順で閉回路を形成するように直
列接続して圧縮性の冷媒を導通させる導管手段、
上記した圧縮機装置を駆動するための複数個のモ
ータ、及び上記した圧縮機装置の作動を制御する
制御装置を備えた二段圧縮冷凍装置であつて、完
全な装置制御を得るのに2個のみのセンサを利用
する制御装置を備えていて構造簡単で低コストで
済むものを、提供するにある。
Invention Problem Therefore, the main object of the present invention is to provide a two-stage compression refrigeration system having the basic structure disclosed in the above-mentioned US Patent No. 3759052, that is, a first stage compressor system, a second stage compressor system, A condenser, an evaporator, a first-stage compressor device, a second-stage compressor device, a condenser, and an evaporator are connected in series to form a closed circuit in this order to conduct the compressible refrigerant. conduit means,
A two-stage compression refrigeration system comprising a plurality of motors for driving the compressor system described above and a control system for controlling the operation of the compressor system described above, wherein two motors are required to obtain complete system control. To provide a device that is equipped with a control device that utilizes only one sensor, has a simple structure, and is low in cost.

課題を解決するための手段 そのためにこの発明は前記第1段圧縮機装置の
容量を変更可能とすると共に、前記第2段圧縮機
装置の容量を変更可能とする一方、前記制御装置
を次のようなものに構成した。すなわちこの発明
は同制御装置を、前記第1段圧縮機装置の吸入側
の状態に応じて該第1段圧縮機装置の作動を制御
すると共に、前記第1段圧縮機装置と前記第2段
圧縮機装置との中間点の状態に応じ第2段圧縮機
装置の容量を、該中間点の状態を予定した範囲内
に維持するように制御するものに、構成した。
Means for Solving the Problems To this end, the present invention makes it possible to change the capacity of the first stage compressor device, and also makes it possible to change the capacity of the second stage compressor device, while controlling the control device to It was configured like this. That is, the present invention uses the control device to control the operation of the first stage compressor device according to the state of the suction side of the first stage compressor device, and to control the operation of the first stage compressor device and the second stage compressor device. The capacity of the second stage compressor device is controlled according to the state of the intermediate point with respect to the compressor device so as to maintain the state of the intermediate point within a predetermined range.

この発明に係る二段圧縮冷凍装置はさらに、前
記した凝縮器と蒸発器との間に挿入され凝縮器か
ら流出する凝縮冷媒のうちの一部分を膨張させて
蒸発器に流入する冷媒を副次的に冷却するエコノ
マイザ、及び膨張せしめられた上記一部分の冷媒
を前記中間点で前記導管手段中に供給する供給手
段を備えたものに、構成できる。
The two-stage compression refrigeration system according to the present invention is further provided between the above-described condenser and evaporator, and expands a portion of the condensed refrigerant flowing out from the condenser to convert the refrigerant flowing into the evaporator into secondary and supply means for supplying the expanded portion of the refrigerant into the conduit means at the intermediate point.

本発明装置に設ける第2段圧縮機装置は後述す
る実施例におけるように2個またはそれより多い
個数の互に並列接続された固定容量形の圧縮機を
備え、そのうちの少なくとも1個が、第2段圧縮
機装置の運転を中断することなく該第2段圧縮機
装置の容量を段階的に変更するように閉回路から
選択的に切離されるものとされている圧縮機装置
に、構成することができる。また上述の複数個の
固定容量形圧縮機に代えて、前述の米国特許No.
3759052に開示の冷凍装置におけるように可変容
量形の単一の圧縮機を、それによつて第2段圧縮
機装置の容量を連続的に変更できるように設けて
ある圧縮機装置に構成することもできる。特別な
場合には第2段圧縮機装置を、1個または複数個
の固定容量形圧縮機と1個の可変容量形圧縮機と
を備えたものとすることもできる。
The second-stage compressor device provided in the apparatus of the present invention includes two or more fixed-capacity compressors connected in parallel, as in the embodiments described later, at least one of which is connected to the second-stage compressor. A compressor system configured to be selectively disconnected from a closed circuit so as to change the capacity of the second stage compressor system in stages without interrupting the operation of the second stage compressor system. be able to. Also, instead of the plurality of fixed displacement compressors mentioned above, the above-mentioned U.S. Patent No.
3759052, the compressor system may be configured with a single compressor of variable capacity type, whereby the capacity of the second stage compressor system can be changed continuously. can. In special cases, the second stage compressor arrangement can also include one or more fixed displacement compressors and one variable displacement compressor.

この発明に係る二段圧縮冷凍装置中においてR
−502のような圧縮性の冷媒は閉回路を通して常
時、該冷媒が先ず第1段ないし低圧段圧縮機装置
により中間圧力にまで圧縮され、次に第2段ない
し高圧段圧縮機により最終圧力にまで圧縮される
ように、循環せしめられる。圧縮された冷媒は凝
縮器により液相へと凝縮され、次に蒸発器中で所
要の冷却機能を発揮するように蒸発せしめられ
る。蒸発冷媒が蒸発器から第1段圧縮機装置ない
しブースタの吸入側へと戻されて、閉回路中での
循環が完了する。この稼働中に第1段及び第2段
圧縮機装置の各容量は2個のみのセンサ(トラン
スデユーサ)を利用する制御装置による制御下
で、冷凍装置の最大効率を維持するように変更制
御される。
In the two-stage compression refrigeration apparatus according to this invention, R
Compressible refrigerants such as -502 are always passed through a closed circuit where the refrigerant is first compressed to an intermediate pressure by a first stage or low pressure stage compressor arrangement and then brought to a final pressure by a second stage or high pressure stage compressor. It is circulated so that it is compressed to the maximum. The compressed refrigerant is condensed to a liquid phase in a condenser and then evaporated in an evaporator to provide the required cooling function. The evaporated refrigerant is returned from the evaporator to the suction side of the first stage compressor unit or booster, completing the circulation in the closed circuit. During this operation, the capacity of each of the first and second stage compressor units is controlled to maintain maximum efficiency of the refrigeration unit under the control of a controller that utilizes only two sensors (transducers). be done.

前述のようにエコノマイザを設ける構造では同
エコノマイザが凝縮後の冷媒の一部分を、蒸発器
に対し流入することとなる凝縮冷媒の残りの部分
を副次的に冷却するように膨張させる。したがつ
て次に蒸発器中で冷却機能を発揮するように蒸発
せしめられることとなる凝縮冷媒が常に、蒸発器
中で高い冷却機能を発揮するように追加の冷却を
受けることになり、これによって第1段及び第2
段圧縮機装置の負担が軽減せしめられる。第1段
圧縮機装置の負担はさらに、冷媒の一部分が該第
1段圧縮機装置を経ることなく第2段圧縮機装置
へと供給されることになることからして一層軽減
される。したがつてエコノマイザは冷凍装置の効
率を向上させることとする。
In the structure in which an economizer is provided as described above, the economizer expands a portion of the refrigerant after condensation so as to secondarily cool the remaining portion of the condensed refrigerant that will flow into the evaporator. Therefore, the condensed refrigerant that is then evaporated to provide a cooling function in the evaporator always receives additional cooling in order to provide a high cooling function in the evaporator. 1st stage and 2nd stage
The load on the stage compressor device is reduced. The load on the first stage compressor arrangement is further reduced since a portion of the refrigerant will be supplied to the second stage compressor arrangement without passing through the first stage compressor arrangement. Economizers therefore improve the efficiency of refrigeration equipment.

凝縮冷媒の他部分ないし主要部分を副次的に冷
却するためにエコノマイザ中で膨張せしめられた
一部分の冷媒は比較的高い圧力の蒸気状態にあ
り、そのため第1段圧縮機装置で圧縮され同圧縮
装置から流出する気体状冷媒と一緒に圧縮するこ
とができる。これからして本発明は上記した一部
分の冷媒を、第1段圧縮機装置と第2段圧縮機装
置との間の中間点に戻すこととしている。制御装
置が同中間点の状態に応じて第2段圧縮機装置の
作動を制御するものであることからして、エコノ
マイザから蒸気を閉回路中に第2段圧縮機装置の
吸入側で戻すにも拘らず複数圧縮機の制御に対す
る妨害は起きない。
The portion of the refrigerant expanded in the economizer for secondary cooling of the other or main portion of the condensed refrigerant is in a relatively high pressure vapor state and is therefore compressed in the first stage compressor arrangement. It can be compressed together with the gaseous refrigerant exiting the device. From now on, the present invention provides for returning the above-mentioned portion of the refrigerant to an intermediate point between the first stage compressor system and the second stage compressor system. Since the control device controls the operation of the second stage compressor device according to the state at the intermediate point, it is necessary to return the steam from the economizer to the suction side of the second stage compressor device in a closed circuit. Nevertheless, no interference with the control of multiple compressors occurs.

上述した圧縮機のうちの任意のもの或は全ては
往復式圧縮機、スクリユウ式回転圧縮機、ベーン
式回転圧縮機、或は渦まき型(スクロール型)圧
縮機であつてよい。第1段の低圧圧縮機を駆動す
るためのモータは、20−100ヘルツ(Hz)の間で
周波数を変更される、インバータ変速機構を利用
した誘導モータにて構成することができる。
Any or all of the compressors described above may be a reciprocating compressor, a screw rotary compressor, a vane rotary compressor, or a scroll compressor. The motor for driving the first-stage low-pressure compressor can be configured with an induction motor using an inverter transmission mechanism whose frequency is changed between 20 and 100 hertz (Hz).

実施例 第1図にはこの発明の一実施例に係る多段冷凍
装置を、その閉回路の全体を符号10で指して図
示してある。本装置は低圧第1段圧縮機(ブース
タ)12,1対の高圧第2段圧縮機14,16,
空冷式凝縮機18、受液器20、エコノマイザ2
2及び1個または複数個の蒸発器24を含んでお
り、これらは閉回路10の基本的な要素である。
導管装置はこれらの要素を、2個の高圧段圧縮機
14,16については直列接続の閉回路内で並列
に接続して1つの群とした上で、互に直列に接続
する。R−502のような適当した冷媒を運ぶ導管
26は点27で並列する2本の導管28,30へ
と分かれ、低圧第1段圧縮機12の中間圧力の吐
出流を第2段圧縮機14,16の吸入側ないし入
口へと供給する。第2段圧縮機14,16の吐出
流は導管32,34を経て接続点33で合流し、
そこから高圧の圧縮冷媒ガスが導管36により空
冷式凝縮器18の入口へと供給される。空冷式凝
縮器18の出口からは導管38により、凝縮され
た冷媒が受液器20へと流される。受液器20内
で図示のように液体の形をとつている冷媒Rは、
導管40を経てエコノマイザ22へと流れる。点
41におき分岐管ないし逃がし管42により液状
冷媒Rの一部分が主閉回路から抜出され、膨張弁
44を通ることで膨張してエコノマイザ22内に
おき、導管46を介し蒸発器24へと導かれるこ
ととなる液状冷媒の主要部分を副次的に冷却する
ように作用する。この冷却を受けた液状冷媒は膨
張弁48を通ることで膨張し、蒸発器24内で冷
凍装置の冷却機構を発揮する。蒸発器24からの
戻り冷媒ガスは導管50を経てブースタないし第
1段圧縮機12の吸入側、つまり低圧側へと流
れ、閉回路内での循環を完了する。
Embodiment FIG. 1 shows a multi-stage refrigeration system according to an embodiment of the present invention, with its entire closed circuit indicated by reference numeral 10. This device includes a low-pressure first-stage compressor (booster) 12, a pair of high-pressure second-stage compressors 14, 16,
Air-cooled condenser 18, liquid receiver 20, economizer 2
2 and one or more evaporators 24, which are the basic elements of the closed circuit 10.
The conduit arrangement connects these elements in parallel in a series-connected closed circuit for the two high-pressure stage compressors 14, 16, forming a group, and then in series with each other. A conduit 26 carrying a suitable refrigerant, such as R-502, splits at point 27 into two parallel conduits 28 and 30 to transfer the intermediate pressure discharge stream of the low pressure first stage compressor 12 to the second stage compressor 14. , 16 to the suction side or inlet. The discharge flows of the second stage compressors 14 and 16 pass through conduits 32 and 34 and join at a connection point 33;
From there, high pressure compressed refrigerant gas is supplied by conduit 36 to the inlet of air-cooled condenser 18. From the outlet of the air-cooled condenser 18, condensed refrigerant flows through a conduit 38 to the liquid receiver 20. The refrigerant R in liquid form as shown in the liquid receiver 20 is
It flows via conduit 40 to economizer 22 . At point 41, a portion of the liquid refrigerant R is withdrawn from the main closed circuit by a branch pipe or relief pipe 42, expands through an expansion valve 44, is deposited in the economizer 22, and is passed through a conduit 46 to the evaporator 24. It acts to secondarily cool the main part of the liquid refrigerant to be introduced. The cooled liquid refrigerant expands by passing through the expansion valve 48 and performs the cooling mechanism of the refrigeration system within the evaporator 24. Return refrigerant gas from the evaporator 24 flows via conduit 50 to the suction or low pressure side of the booster or first stage compressor 12, completing the circulation within the closed circuit.

気化によりエコノマイザ22内におき前述の副
次冷却作用を行なうところの導管42による取出
し冷媒は導管52により閉回路の中間圧力点5
4、つまり第1段圧縮機12の出口を2個の第2
段圧縮機14,16のうちの一者または両者の入
口へと接続する前記導管26への連通点54へ
と、導かれる。2個のみの高圧第2段圧縮機1
4,16を図示したが、互に並列に接続され便宜
に制御される3個またはそれより多い高圧段圧縮
機を設けてもよい点に留意すべきである。図示の
装置では高圧段圧縮機を意企的に2個14,16
に制限している。
The refrigerant taken out through the conduit 42 which is vaporized into the economizer 22 and performs the above-mentioned secondary cooling effect is transferred through the conduit 52 to the intermediate pressure point 5 of the closed circuit.
4, that is, the outlet of the first stage compressor 12 is
It is directed to a point of communication 54 to said conduit 26 which connects to the inlet of one or both of the stage compressors 14, 16. Only 2 high pressure 2nd stage compressors 1
Although 4 and 16 are shown, it should be noted that three or more high pressure stage compressors may be provided, connected in parallel and conveniently controlled. In the illustrated device, two high-pressure stage compressors are intentionally installed.
is limited to.

図示の冷凍装置はエコノマイザ経路を常に使用
することにより、つまり低圧第1段圧縮機12は
常に稼働するがエコノマイザ22も常に作用させ
ることで、全負荷条件下におき1個或は複数個の
蒸発器24を利用して高い効率の冷凍を可能とす
る。2個の高圧段圧縮機14,16を使用するの
が、中間圧力の変動を制御不能としないようにす
る上で目的に適なつている。また低容量形の往復
式圧縮機であつてよい高圧段圧縮機14,16を
備えた第2段圧縮機装置は運転解除せず、このた
め常にその最大効率でもつて稼働する。低圧第1
段圧縮機12は可変速スクリユウ圧縮機とか可変
速スライドベーン型圧縮機等であつてもよいが、
図示の場合には可変速往復式圧縮機とされてい
る。可変速ターボ圧縮機(遠心圧縮機)を使用す
ることも可能である。
The illustrated refrigeration system uses the economizer path constantly, i.e., the low pressure first stage compressor 12 is always running, but the economizer 22 is also always active, so that one or more evaporators can be removed under full load conditions. High efficiency refrigeration is made possible by utilizing the container 24. The use of two high pressure stage compressors 14, 16 is expedient to avoid uncontrollable intermediate pressure fluctuations. Also, the second stage compressor system, including the high pressure stage compressors 14, 16, which may be reciprocating compressors of the low capacity type, is not deactivated and therefore always operates at its maximum efficiency. Low pressure 1st
The stage compressor 12 may be a variable speed screw compressor, a variable speed slide vane type compressor, etc.
In the illustrated case, it is a variable speed reciprocating compressor. It is also possible to use variable speed turbo compressors (centrifugal compressors).

本装置の目標は可及的に高い効率を得ることに
あり、本装置は基本的に変速を受けつつ稼働する
低圧圧縮機12を、2個或はそれより多い固定容
量の高圧段圧縮機と組合せて、中間圧力を適当し
た値に維持するように用いる。
The goal of this system is to obtain as high efficiency as possible, and the system basically combines a low pressure compressor 12 operating under variable speed with two or more fixed capacity high pressure stage compressors. The combination is used to maintain the intermediate pressure at a suitable value.

図示の装置では第1のモータ56を破線58で
示すように低圧第1段圧縮機12に対し、この圧
縮機12を変速しつつ駆動して該圧縮機12内を
通過する冷媒Rについて5から1の範囲或はより
広い範囲の流量制御を行なえるように、接続して
いる。他方、第2段圧縮機16は第2のモータ7
2により直接に駆動され、また他の第2段圧縮機
14は第3のモータ74により直接に駆動され
る。
In the illustrated device, the first motor 56 is driven to the low-pressure first stage compressor 12 while changing the speed of the compressor 12 as shown by a broken line 58, and the refrigerant R passing through the compressor 12 is controlled from 5 to 5. 1 or a wider range. On the other hand, the second stage compressor 16 is operated by the second motor 7
2, and the other second stage compressor 14 is directly driven by a third motor 74.

制御装置は本質的に単純且つ安定である。図示
の制御装置は、リード線76により電源Sへと接
続された制御盤62を利用している。電力はした
がつて制御盤62から、電力供給ライン60を経
てモータ56へと供給される。本装置は2個のト
ランスデユーサを利用している。第1のトランス
デユーサ64は図示のように圧力トランスデユー
サであり、低圧第1段圧縮機12の吸入圧力を感
知するものとされ、蒸発器24から第1段圧縮機
12の入口ないし吸入側へと冷媒を供給する前記
導管50中に配置されている。かかる第1のトラ
ンスデユーサ64は第1段圧縮機12の吸入圧力
を感知するものに代えて、蒸発器24での蒸発圧
力または蒸発温度を感知するものともできる。第
1のトランスデユーサ64からの信号はライン6
6を介して制御盤62に送られる。第2のトラン
スデユーサ73は中間圧力を感知し、図示の場合
には第1段圧縮機12から吐出流を第2段圧縮機
14,16の入口側へと供給する前記導管26中
に配置されている。この圧力トランスデユーサ7
3はライン75により、制御盤62に信号を供給
する。制御盤62から導出され低圧圧縮機12を
直接的に駆動するモータ56の回転数を変更する
ように機能する前記ライン60の他に、数多くの
他のラインが制御盤62から導き出されて装置の
種々の構成要素へと接続されている。これらのラ
インのうち制御ライン70は制御盤62を次のよ
うな電磁弁68、つまり第2段圧縮機14の入口
へと連らねてある前記導管28中に設けられてい
て後述する特定条件下で第2段圧縮機14を閉回
路10から切離すように機能する電磁弁68、へ
と接続している。制御ライン76は制御盤62か
ら導き出されて、第2段圧縮機16を直接的に駆
動する前記モータ72に対し電流を供給する。制
御ライン78は制御盤62から導き出されて、第
2段圧縮機14を直接的に駆動する前記モータ7
4へと接続されている。
The control device is essentially simple and stable. The illustrated control device utilizes a control panel 62 connected to a power source S by leads 76. Power is then supplied from the control panel 62 to the motor 56 via the power supply line 60. This device utilizes two transducers. The first transducer 64 is a pressure transducer as shown in the figure, and is designed to sense the suction pressure of the low-pressure first stage compressor 12. It is arranged in said conduit 50 which supplies refrigerant to the side. Instead of sensing the suction pressure of the first-stage compressor 12, the first transducer 64 can also sense the evaporation pressure or evaporation temperature in the evaporator 24. The signal from the first transducer 64 is on line 6
6 to the control panel 62. A second transducer 73 senses the intermediate pressure and is located in said conduit 26 for supplying the discharge flow from the first stage compressor 12 to the inlet side of the second stage compressors 14, 16 in the case shown. has been done. This pressure transducer 7
3 supplies a signal to the control panel 62 through a line 75. In addition to the aforementioned line 60, which is derived from the control panel 62 and serves to vary the speed of the motor 56 which directly drives the low pressure compressor 12, a number of other lines are derived from the control panel 62 and which operate the system. Connected to various components. Among these lines, a control line 70 is provided in the conduit 28 that connects the control panel 62 to the following solenoid valve 68, that is, the inlet of the second stage compressor 14, and is provided under specific conditions described below. It is connected below to a solenoid valve 68 , which functions to isolate the second stage compressor 14 from the closed circuit 10 . A control line 76 is led from the control board 62 and supplies current to the motor 72 which directly drives the second stage compressor 16. A control line 78 is led from the control panel 62 to the motor 7 which directly drives the second stage compressor 14.
Connected to 4.

運転中、蒸発器24に対する冷媒の要求量が低
下すると低圧圧縮機12の入口側の吸入圧力が下
がり、トランスデユーサ64がライン66を介し
制御盤62へと制御信号を供給して、吸入圧力の
下降を知らせる。これに対し制御盤62はモータ
56へ流れる電流を、低圧圧縮機12の駆動回転
数を低めるように変更し、これによつて第1段圧
縮機12を通つて流れる冷媒の流量が減らされ
る。モータ56は変速用インバータ機構を利用し
た誘導モータであつてもよく、そのときは制御盤
62は、ライン60を介しモータ56へと供給さ
れる電流の周波数を変更するものとされる。低圧
圧縮機12に対する5から1までの可変流量範囲
に対し誘導モータへ与える制御信号の周波数の変
更は、20−100ヘルツ(Hz)の範囲で行なうこと
ができる。
During operation, as the refrigerant demand for the evaporator 24 decreases, the suction pressure on the inlet side of the low pressure compressor 12 decreases, and the transducer 64 provides a control signal to the control panel 62 via line 66 to increase the suction pressure. signal the decline of In response, the control panel 62 changes the current flowing to the motor 56 to reduce the driving rotation speed of the low pressure compressor 12, thereby reducing the flow rate of refrigerant flowing through the first stage compressor 12. Motor 56 may be an induction motor using a variable speed inverter mechanism, in which case control panel 62 would change the frequency of the current supplied to motor 56 via line 60. For a variable flow range of 5 to 1 for the low pressure compressor 12, the frequency of the control signal applied to the induction motor can be varied in the range of 20-100 Hertz (Hz).

中間圧力が予定した最小値に達したとき、2個
の第2段圧縮機14,16のうちの1個の圧縮機
が閉鎖され、中間圧力が自動的に上昇して残りの
高圧段ないし第2段圧縮機に対する負荷を増大す
る。図示の装置では中間圧力を感知する第2のト
ランスデユーサ73が中間段での圧力降下を知ら
せる信号を、ライン75を介し制御盤62へと供
給する。制御盤62はこれによりライン78を介
してのモータ74の駆動を停めて圧縮機14を停
止させる。同時に必要であればライン70を介し
電磁弁68の位置を、導管28を通して第2段圧
縮機14へと導かれる冷媒流が遮断されるように
変更する。
When the intermediate pressure reaches the predetermined minimum value, one of the two second stage compressors 14, 16 is closed and the intermediate pressure is automatically increased to the remaining high pressure stage or Increase the load on the two-stage compressor. In the illustrated system, a second intermediate pressure transducer 73 provides a signal via line 75 to control board 62 indicating the pressure drop in the intermediate stage. Control board 62 then stops driving motor 74 via line 78 to stop compressor 14. At the same time, if necessary, the position of solenoid valve 68 is changed via line 70 so that refrigerant flow directed through conduit 28 to second stage compressor 14 is interrupted.

第2図には装置の動作態様が、装置負荷/容量
と中間圧力(psig)との関係をグラフ化すること
で図示してある。2つの実線で示す関係線Pと
P′は高圧段圧縮機14,16のうちの1個が稼働
せしめられるか2個が稼働せしめられるかに依存
しての中間圧力の変動を示す。関係線Pは高圧第
2段圧縮機が1個のみ稼働せしめられるときの中
間圧力の変動を示し、関係線P′は装置負荷/容量
が40−100%といつたより高い範囲における中間
圧力の変動を示している。例えば装置が1個のみ
の第2段圧縮機、つまり第2段圧縮機16を稼働
させて低負荷運転されているとすれば、そして低
圧第1段圧縮機12が常時稼働し、またしたがつ
てエコノマイザ22が常に作用していることを考
慮すると、中間圧力が関係線P上で高い点、例え
ば関係線P上に点Bで示す予設定した60psigとい
つた点に到達したとき、もう1個の高圧第2段圧
縮機14が稼働せしめられ、中間圧力は2個の高
圧第2段圧縮機14,16による場合の関係線
P′上のB′点、つまり約26psigといつた低い値に下
降する。理解されるように、負荷が上昇しつつあ
ることから高圧段圧縮機14が再始動することと
なる中間圧力は、該圧縮機14が遮断されること
となる関係線P′上の点Aでの中間圧力(再平衡中
間圧力)、つまり図示の場合には約20psigといつ
た中間圧力よりも高く調整される。
FIG. 2 illustrates the operation of the system by graphing system load/capacity versus intermediate pressure (psig). The relationship line P shown by two solid lines and
P' represents the variation of the intermediate pressure depending on whether one or both of the high-pressure stage compressors 14, 16 are activated. The relationship line P shows the variation in intermediate pressure when only one high-pressure second stage compressor is operated, and the relationship line P' shows the variation in intermediate pressure in the higher range of equipment load/capacity of 40-100%. It shows. For example, if the device is operating at a low load with only one second stage compressor, that is, the second stage compressor 16, and if the low pressure first stage compressor 12 is running all the time, then Considering that the economizer 22 is always active, when the intermediate pressure reaches a high point on the relationship line P, for example, the preset point B of 60 psig on the relationship line P, another Relationship line when two high pressure second stage compressors 14 are operated, and the intermediate pressure is generated by two high pressure second stage compressors 14 and 16.
It drops to a lower value, point B' on P', about 26 psig. As will be appreciated, the intermediate pressure at which the high-pressure stage compressor 14 will restart due to the increasing load will be at point A on the relationship line P' at which the compressor 14 will be shut off. (re-equilibration intermediate pressure), which in the case shown is approximately 20 psig.

図示の関係線は1個或は複数個の蒸発器24を
備えている、能率良く信頼性あるスーパーマーケ
ツト用冷凍装置についてのものであり、また冷媒
がR−502であり装置が−20〓(−29℃)といつ
た蒸発温度を有する場合についての抱括的な制御
論理ダイヤグラムのための基準をなすものである
点に、留意すべきである。図示装置によれば高圧
段圧縮機14,16の過剰稼働が避けられ、エコ
ノマイザ22が常時作用しつつ装置効率が大きく
落ちることがない。中間圧力が関係線P′に沿つて
20psigまで低下し点Aに達すると、高圧段圧縮機
16の稼働は引続き行なわせつつ他の高圧段圧縮
機14が遮断され、中間圧力は同一負荷の下で直
ちに約46psigへと上昇する。基本負荷が引続き減
少して行くとき単一の高圧段圧縮機16が装置の
運転を継続させ、低圧段圧縮機12はライン60
を介しての制御盤62によるモータ56の制御に
よつて運転速度を低められる。装置が単一の高圧
段圧縮機16のみが稼働せしめられる運転状態へ
と移行した後に負荷が増したとすれば、前述のよ
うに対応してモータ56の速度が増され低圧第1
段圧縮機12を通して流動する冷媒の流量が、中
間圧力が60psigのレベル(関係線P上でのB点)
に到達するに至るまで増され、その点で他1個の
高圧段圧縮機14が閉回路中に、高圧段圧縮機1
6を通して流動する冷媒と並行して冷媒を流動さ
せるように組み入れられる。
The relationship lines shown are for an efficient and reliable supermarket refrigeration system with one or more evaporators 24, and the refrigerant is R-502 and the system is -20〓( It should be noted that this forms the basis for a comprehensive control logic diagram for the case with an evaporation temperature of -29°C). According to the illustrated device, excessive operation of the high-pressure stage compressors 14 and 16 can be avoided, and the economizer 22 can operate at all times without significantly reducing device efficiency. If the intermediate pressure is along the relation line P′
When the pressure drops to 20 psig and reaches point A, the other high pressure stage compressors 14 are shut off while the high pressure stage compressor 16 continues to operate, and the intermediate pressure immediately rises to about 46 psig under the same load. As the base load continues to decrease, a single high-pressure stage compressor 16 continues operation of the system and a low-pressure stage compressor 12 continues to operate in line 60.
The operating speed is reduced by control of the motor 56 by the control panel 62 via the control panel 62. If the load increases after the system has transitioned to an operating condition in which only a single high pressure stage compressor 16 is operated, the speed of the motor 56 is correspondingly increased as previously described.
The flow rate of the refrigerant flowing through the stage compressor 12 is at a level where the intermediate pressure is 60 psig (point B on the relationship line P)
, at which point one other high-pressure stage compressor 14 is in the closed circuit,
6 is incorporated to flow the refrigerant in parallel with the refrigerant flowing through the refrigerant.

図示の装置の運転中、装置負荷が減少すれば吸
入圧力トランスデユーサ64が低圧圧縮機12の
運転速度を下げる。中間圧力点A(関係線P′上)
に達すると1個の第2段圧縮機14が遮断され中
間圧力が再平衡する(関係線P上のA′点)。負荷
が上昇すると低圧圧縮機12の速度が増され、次
いで第2段圧縮機14も稼働せしめられる(関係
線P上のB点)。
During operation of the illustrated system, the suction pressure transducer 64 reduces the operating speed of the low pressure compressor 12 as the system load decreases. Intermediate pressure point A (on relationship line P')
When this is reached, one second stage compressor 14 is shut off and the intermediate pressure is rebalanced (point A' on the relationship line P). When the load increases, the speed of the low pressure compressor 12 is increased, and then the second stage compressor 14 is also activated (point B on the relationship line P).

今や理解されるように、所期の運転制御を達成
するのに2個の基本的なトランスデユーサのみが
必要とされる。すなわち1個のトランスデユーサ
は吸入圧力またはそれと均等する被測定因子を測
定するために、他1個のトランスデユーサは閉回
路を循環する冷媒の中間圧力を測定するために、
それぞれ必要とされる。制御論理は単純明快であ
り、制御盤は上述の因子に基づき装置の運転制御
を行なうように容易に組込みできる。本冷凍装置
は商業上の冷凍目的のためにも商業用その他の建
物内の空調(暖房及び冷房)目的のためにも理想
的であると、信じられる。図示の装置は3個のみ
の圧縮機、つまり1個の低圧圧縮機(ブースタ)
と2個の高圧段圧縮機、を利用している。本装置
は適当した重復能力、つまり第2図のグラフから
理解されるように低圧圧縮機なしで高圧段圧縮機
のみにより最大装置負荷の約50%を処理させるこ
ともできれば1個の低圧圧縮機と1個の高圧段圧
縮器とによつても最大装置負荷の約50%を処理さ
せることができるといつた能力を、有している。
低圧圧縮機(ブースタ)が消費する馬力は、装置
の運転制御のために必要な変速を行なうのにイン
バータ或はブラシ無しDCモータと組合せて十分
に低い値とできる。
As can now be seen, only two basic transducers are required to achieve the desired operational control. That is, one transducer is used to measure the suction pressure or a measured factor equivalent to it, and the other transducer is used to measure the intermediate pressure of the refrigerant circulating in the closed circuit.
each is required. The control logic is straightforward and the control panel can be easily installed to control the operation of the device based on the factors mentioned above. It is believed that the refrigeration system is ideal for both commercial refrigeration purposes as well as air conditioning (heating and cooling) purposes in commercial and other buildings. The device shown has only three compressors, namely one low pressure compressor (booster).
and two high-pressure stage compressors. This equipment has a suitable duplication capacity, that is, as can be understood from the graph in Figure 2, it is possible to handle approximately 50% of the maximum equipment load only with the high-pressure stage compressor without a low-pressure compressor, or with one low-pressure compressor. It has the ability to handle approximately 50% of the maximum equipment load even with one high-pressure stage compressor.
The horsepower consumed by the low pressure compressor (booster) can be made low enough in combination with an inverter or brushless DC motor to provide the necessary speed changes to control the operation of the device.

発明の効果 この発明は第1段及び第2段圧縮機装置の各作
動を制御するのに、第1段圧縮機装置の吸入側の
状態及び第1段及び第2段の圧縮機装置間の中間
点の状態に応じて各圧縮機装置の作動を制御する
制御装置を用い、且つ、冷凍装置の高効率稼働を
得させるように上記中間点の状態を予定した範囲
内に維持するための制御を、同中間点の状態に応
じての第2段圧縮機装置の容量制御で得ることと
したから、センサ(トランスデユーサ)の個数が
2個で足りることとすると共に複雑な演算処理機
を用いる必要をなくして、二段圧縮冷凍装置の構
造を簡単化しコストを低減させることとする。
Effects of the Invention This invention controls the operation of the first and second stage compressor systems by determining the state of the suction side of the first stage compressor system and between the first and second stage compressor systems. Using a control device that controls the operation of each compressor device according to the state of the intermediate point, and controlling to maintain the state of the intermediate point within a predetermined range so as to achieve high efficiency operation of the refrigeration equipment. Since we decided to obtain this by controlling the capacity of the second stage compressor device according to the state of the intermediate point, we decided that two sensors (transducers) would be sufficient and we did not need a complicated arithmetic processor. By eliminating the need to use the two-stage compression refrigeration system, the structure of the two-stage compression refrigeration system is simplified and the cost is reduced.

またこの発明によれば、第1段及び第2段圧縮
機装置間の中間点の状態に応じて第2段圧縮機装
置の作動を制御することからして蒸発器に供給さ
れる凝縮冷媒を副次的に冷却して冷凍装置の効率
を一層向上させることとするエコノマイザを、該
エコノマイザ中で膨張せしめられた一部分の冷媒
を冷凍閉回路中に上記中間点で圧縮機制御上の妨
害なく戻すようにして、冷凍装置に設けることが
可能とされる。
Further, according to the present invention, since the operation of the second stage compressor device is controlled according to the state at an intermediate point between the first stage and second stage compressor devices, the condensed refrigerant supplied to the evaporator is controlled. The economizer is used for secondary cooling to further improve the efficiency of the refrigeration system, and a portion of the refrigerant expanded in the economizer is returned to the closed refrigeration circuit at the intermediate point without interference with compressor control. In this way, it can be installed in a refrigeration system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の好ましい実施例を、冷凍装
置はその閉回路の回路図でもつて画いて図示した
模式図、第2図は第1図に図示の装置における装
置負荷/容量と中間圧力との関係を示すグラフ
で、冷凍装置の単純化された制御と融通性とを説
明するためのものである。 10……閉回路、12……第1段圧縮機、1
4,16……第2段圧縮機、18……凝縮器、2
0……受液器、22……エコノマイザ、24……
蒸発器、26……導管、28,30……導管、3
2,34……導管、36……導管、38……導
管、40……導管、42……逃がし管、44……
膨張弁、46……導管、48……膨張弁、50…
…導管、52……導管、54……中間(圧力)
点、56……モータ、62……制御盤、64……
第1のトランスデユーサ、68……電磁弁、72
……モータ、73……第2のトランスデユーサ、
74……モータ。
FIG. 1 is a schematic diagram illustrating a preferred embodiment of the present invention, showing a refrigeration system with a circuit diagram of its closed circuit, and FIG. FIG. 1 is a graph showing the relationship between . 10...Closed circuit, 12...First stage compressor, 1
4, 16...Second stage compressor, 18...Condenser, 2
0...Liquid receiver, 22...Economizer, 24...
Evaporator, 26... Conduit, 28, 30... Conduit, 3
2, 34... conduit, 36... conduit, 38... conduit, 40... conduit, 42... escape pipe, 44...
Expansion valve, 46... Conduit, 48... Expansion valve, 50...
... Conduit, 52 ... Conduit, 54 ... Intermediate (pressure)
Point, 56... Motor, 62... Control panel, 64...
First transducer, 68... Solenoid valve, 72
... motor, 73 ... second transducer,
74...Motor.

Claims (1)

【特許請求の範囲】 1 第1段圧縮機装置と、 第2段圧縮機装置と、 凝縮器と、 蒸発器と、 上記した第1段圧縮機装置と第2段圧縮機装置
と凝縮器と蒸発器とをこの順で閉回路を形成する
ように直列に接続して圧縮性の冷媒を導通させる
導管手段と、 上記した圧縮機装置を駆動するための複数個の
モータと、 上記した圧縮機装置の作動を制御する制御装置
と、 を備えた二段圧縮冷凍装置において、 前記第1段圧縮機装置の容量を変更可能として
あり、 前記第2段圧縮機装置の容量を変更可能として
あり、 前記制御装置を、前記第1段圧縮機装置の吸入
側の状態に応じて該第1段圧縮機装置の作動を制
御すると共に、前記した第1段圧縮機装置と第2
段圧縮機装置との間の中間点の状態に応じ第2段
圧縮機装置の容量を、該中間点の状態を予定した
範囲内に維持するように制御するものに構成した
ことを特徴とする二段圧縮冷凍装置。 2 特許請求の範囲第1項に記載の二段圧縮冷凍
装置であつて、 前記した凝縮器と蒸発器との間に挿入され、凝
縮器から流出する凝縮冷媒のうちの一部分を膨張
させて蒸発器に流入する冷媒を副次的に冷却する
エコノマイザと、 膨張せしめられた上記一部分の冷媒を前記中間
点で前記導管手段中に供給する供給手段と、 を設けてある二段圧縮冷凍装置。 3 特許請求の範囲第1項または第2項に記載の
二段圧縮冷凍装置であつて、前記第1段圧縮機装
置の吸入側の状態を感知する第1のセンサと前記
中間点の状態を感知する第2のセンサとを備えて
いる二段圧縮冷凍装置。 4 特許請求の範囲第3項に記載の二段圧縮冷凍
装置であつて、前記第2のセンサを、冷媒の中間
圧力を感知するものに構成してある二段圧縮冷凍
装置。 5 特許請求の範囲第4項に記載の二段圧縮冷凍
装置であつて、前記制御装置を、先ず前記第1段
圧縮機装置の容量を変更し、次いで前記第2段圧
縮機装置の容量を、前記中間圧力を予定した範囲
内に維持するように変更するものに構成してある
二段圧縮冷凍装置。 6 特許請求の範囲第3項に記載の二段圧縮冷凍
装置であつて、前記制御装置を、前記第1段圧縮
機装置の吸入側の状態に応じ該第1段圧縮機装置
の容量を制御し、前記中間点の状態に応じ該第2
段圧縮機装置の容量を制御するものに構成してあ
る二段圧縮冷凍装置。 7 特許請求の範囲第1項から第6項までの何れ
か一項に記載の二段圧縮冷凍装置であつて、前記
第2段圧縮機装置が複数個の圧縮機を備えている
二段圧縮冷凍装置。 8 特許請求の範囲第1項から第6項までの何れ
か一項に記載の二段圧縮冷凍装置であつて、前記
第2段圧縮機装置が少なくとも2個の固定容量形
の圧縮機を備えている二段圧縮冷凍装置。 9 特許請求の範囲第8項に記載の二段圧縮冷凍
装置であつて、前記制御装置を、前記第1段圧縮
機装置から前記した固定容量形の圧縮機のうちの
少なくとも1個の圧縮機への冷媒流を選択的に遮
断するものに構成してある二段圧縮冷凍装置。 10 特許請求の範囲第8項に記載の二段圧縮冷
凍装置であつて、前記制御装置を、前記した固定
容量形の圧縮機のうちの少なくとも1個の圧縮機
を駆動するためのモータを選択的に停止させる手
段を備えたものに構成してある二段圧縮冷凍装
置。 11 特許請求の範囲第8項に記載の二段圧縮冷
凍装置であつて、前記した定容量形の圧縮機を互
に並列に接続してある二段圧縮冷凍装置。 12 特許請求の範囲第1項から第11項までの
何れか一項に記載の二段圧縮冷凍装置であつて、
前記第1段圧縮機装置用の前記モータが可変速モ
ータである二段圧縮冷凍装置。
[Claims] 1. A first-stage compressor device, a second-stage compressor device, a condenser, an evaporator, and the above-described first-stage compressor device, second-stage compressor device, and condenser. a conduit means for conducting compressible refrigerant by connecting the evaporator in series to form a closed circuit in this order; a plurality of motors for driving the compressor device described above; and the compressor described above. A two-stage compression refrigeration system comprising: a control device for controlling the operation of the system; and a capacity of the first-stage compressor device is changeable; a capacity of the second-stage compressor device is changeable; The control device controls the operation of the first stage compressor device according to the state of the suction side of the first stage compressor device, and controls the operation of the first stage compressor device and the second stage compressor device.
The second stage compressor device is characterized in that the capacity of the second stage compressor device is controlled according to the state of the intermediate point between the second stage compressor device and the second stage compressor device so as to maintain the state of the intermediate point within a predetermined range. Two-stage compression refrigeration equipment. 2. A two-stage compression refrigeration system according to claim 1, which is inserted between the aforementioned condenser and evaporator, and expands and evaporates a portion of the condensed refrigerant flowing out from the condenser. A two-stage compression refrigeration system, comprising: an economizer for secondary cooling of refrigerant flowing into the container; and supply means for supplying a portion of the expanded refrigerant into the conduit means at the intermediate point. 3. The two-stage compression refrigeration system according to claim 1 or 2, wherein the first sensor detects the state of the suction side of the first stage compressor system and the state of the intermediate point. and a second sensor for sensing. 4. The two-stage compression refrigeration system according to claim 3, wherein the second sensor is configured to sense an intermediate pressure of the refrigerant. 5. The two-stage compression refrigeration system according to claim 4, wherein the control device first changes the capacity of the first-stage compressor device, and then changes the capacity of the second-stage compressor device. , a two-stage compression refrigeration system configured to change the intermediate pressure to maintain it within a predetermined range. 6. The two-stage compression refrigeration system according to claim 3, wherein the control device controls the capacity of the first-stage compressor device according to the state on the suction side of the first-stage compressor device. and the second point depending on the state of the intermediate point.
A two-stage compression refrigeration system configured to control the capacity of a stage compressor system. 7. A two-stage compression refrigeration device according to any one of claims 1 to 6, wherein the second-stage compressor device includes a plurality of compressors. Refrigeration equipment. 8. A two-stage compression refrigeration system according to any one of claims 1 to 6, wherein the second stage compressor system includes at least two fixed capacity compressors. Two-stage compression refrigeration equipment. 9. The two-stage compression refrigeration system according to claim 8, wherein the control device is connected to at least one of the fixed capacity compressors from the first stage compressor device. A two-stage compression refrigeration system configured to selectively shut off refrigerant flow to. 10 The two-stage compression refrigeration system according to claim 8, wherein the control device selects a motor for driving at least one of the fixed capacity compressors described above. A two-stage compression refrigeration system equipped with means for stopping the system automatically. 11. A two-stage compression refrigeration system according to claim 8, in which the constant capacity compressors described above are connected in parallel. 12. A two-stage compression refrigeration apparatus according to any one of claims 1 to 11, comprising:
A two-stage compression refrigeration system, wherein the motor for the first stage compressor system is a variable speed motor.
JP60002623A 1984-01-11 1985-01-10 Two-step compression refrigerator Granted JPS60159561A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56988684A 1984-01-11 1984-01-11
US569,886 1984-01-11

Publications (2)

Publication Number Publication Date
JPS60159561A JPS60159561A (en) 1985-08-21
JPH0563703B2 true JPH0563703B2 (en) 1993-09-13

Family

ID=24277298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002623A Granted JPS60159561A (en) 1984-01-11 1985-01-10 Two-step compression refrigerator

Country Status (13)

Country Link
JP (1) JPS60159561A (en)
AU (1) AU587173B2 (en)
BR (1) BR8500106A (en)
CA (1) CA1242086A (en)
DE (1) DE3500800A1 (en)
DK (1) DK9885A (en)
ES (1) ES8602237A1 (en)
FR (1) FR2557962B1 (en)
GB (1) GB2152649B (en)
IT (1) IT1212109B (en)
MX (1) MX161408A (en)
NZ (1) NZ210800A (en)
ZA (1) ZA8562B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748820A (en) * 1984-01-11 1988-06-07 Copeland Corporation Refrigeration system
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
US4938029A (en) * 1989-07-03 1990-07-03 Carrier Corporation Unloading system for two-stage compressors
ES2092424B1 (en) * 1992-09-16 1997-07-01 Ornaque Carlos Gutierrez MIXED BLOCK REFRIGERATION SECURITY SYSTEM.
DE19529763A1 (en) * 1995-08-12 1997-02-13 Ruediger Piepenhagen Refrigeration plant - has pressure sensor for evaporation pressure and control circuitry for induction motor-driven compressor to keep this pressure constant
JP2985882B1 (en) * 1998-08-21 1999-12-06 ダイキン工業株式会社 Double tube heat exchanger
JP2003207248A (en) * 2002-01-15 2003-07-25 Toshiba Corp Refrigerator
JP3953871B2 (en) * 2002-04-15 2007-08-08 サンデン株式会社 Refrigeration air conditioner
JP3951799B2 (en) * 2002-05-14 2007-08-01 株式会社デンソー Control device for variable capacity compressor
FR2864609B1 (en) * 2003-12-29 2006-12-22 Patrice Saillard THERMAL INSTALLATION WITH MULTIPLE CONFIGURATION, AND EXCHANGER SUITABLE FOR THIS INSTALLATION.
JP2008025905A (en) * 2006-07-20 2008-02-07 Daikin Ind Ltd Refrigerator
JP4245023B2 (en) * 2006-09-11 2009-03-25 ダイキン工業株式会社 Refrigeration equipment
JP5400796B2 (en) * 2007-12-28 2014-01-29 ジョンソン コントロールズ テクノロジー カンパニー Vapor compression system and method of operating the same
JP5040907B2 (en) * 2008-09-30 2012-10-03 ダイキン工業株式会社 Refrigeration equipment
JP5402164B2 (en) * 2009-03-31 2014-01-29 株式会社富士通ゼネラル Refrigeration cycle equipment
KR20110004152A (en) * 2009-07-07 2011-01-13 엘지전자 주식회사 Air conditioner
JP6643632B2 (en) * 2016-03-10 2020-02-12 パナソニックIpマネジメント株式会社 Air conditioner

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386198A (en) * 1944-02-08 1945-10-09 Gen Electric Multistage refrigerating system
US2677944A (en) * 1950-12-01 1954-05-11 Alonzo W Ruff Plural stage refrigeration apparatus
FR1056197A (en) * 1952-01-09 1954-02-24 Anciens Ets Brissonneau & Lotz Advanced refrigeration system with two compression stages
US3238738A (en) * 1964-02-12 1966-03-08 Robert C Webber Two-stage refrigeration system with by-pass means
US3759052A (en) * 1972-02-28 1973-09-18 Maekawa Seisakusho Kk Method of controlling high stage and low stage compressors
JPS5223402B2 (en) * 1973-10-12 1977-06-24
US4033738A (en) * 1976-03-12 1977-07-05 Westinghouse Electric Corporation Heat pump system with multi-stage centrifugal compressors
US4060997A (en) * 1976-03-31 1977-12-06 Application Engineering Corporation Water chiller control
US4245476A (en) * 1979-01-02 1981-01-20 Dunham-Bush, Inc. Solar augmented heat pump system with automatic staging reciprocating compressor
US4325223A (en) * 1981-03-16 1982-04-20 Cantley Robert J Energy management system for refrigeration systems
US4332144A (en) * 1981-03-26 1982-06-01 Shaw David N Bottoming cycle refrigerant scavenging for positive displacement compressor, refrigeration and heat pump systems
FR2513747A1 (en) * 1981-09-25 1983-04-01 Satam Brandt Froid MULTIMOTOCOMPRESSOR REFRIGERATION SYSTEM
NL188479C (en) * 1982-01-28 1992-07-01 Marinus Wilhelmus Matheus Avon COOLING DEVICE.

Also Published As

Publication number Publication date
AU3739985A (en) 1985-07-18
CA1242086A (en) 1988-09-20
FR2557962B1 (en) 1990-08-31
MX161408A (en) 1990-09-21
GB2152649B (en) 1987-02-18
GB2152649A (en) 1985-08-07
GB8500339D0 (en) 1985-02-13
ES539449A0 (en) 1985-11-01
DK9885A (en) 1985-07-12
ES8602237A1 (en) 1985-11-01
AU587173B2 (en) 1989-08-10
JPS60159561A (en) 1985-08-21
DE3500800A1 (en) 1985-07-18
FR2557962A1 (en) 1985-07-12
DK9885D0 (en) 1985-01-09
ZA8562B (en) 1985-09-25
IT1212109B (en) 1989-11-08
IT8519070A0 (en) 1985-01-10
NZ210800A (en) 1987-07-31
BR8500106A (en) 1985-08-20

Similar Documents

Publication Publication Date Title
US4594858A (en) Highly efficient flexible two-stage refrigeration system
JPH0563703B2 (en)
JP2614702B2 (en) Control device and control method for two-stage refrigeration system
US6817198B2 (en) Method and apparatus for variable frequency controlled compressor and fan
US4787211A (en) Refrigeration system
EP2232169B1 (en) Vapor compression system
KR0136075B1 (en) Method and apparatus for subcooling liquid refrigerant circuits
EP2313709B1 (en) Chiller with setpoint adjustment
US5749237A (en) Refrigerant system flash gas suppressor with variable speed drive
JP3574447B2 (en) Startup control system for air conditioner and control method thereof
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
JPH01277173A (en) Cooling system
WO2006013834A1 (en) Freezing apparatus
JPH0345861A (en) Cooling device and cooling method
JP3688268B2 (en) Outdoor fan control system and control method for air conditioner
JPH04356665A (en) Two-stage compressor type refrigerating apparatus
JPH062966A (en) Two-stage compression heat pump system
JPH0593552A (en) Double stage compression type heat pump system
JP2730398B2 (en) Multi-room air conditioning system
JPH06294551A (en) Airconditioning apparatus
JP2810422B2 (en) Refrigeration equipment
JP2000274840A (en) Refrigerator
JP2003042505A (en) Air conditioner and method of controlling its operation
KR20010110975A (en) Control system for starting of air conditioner and control method thereof
JPH09243213A (en) Air conditioning equipment