JPH09243213A - Air conditioning equipment - Google Patents

Air conditioning equipment

Info

Publication number
JPH09243213A
JPH09243213A JP5578896A JP5578896A JPH09243213A JP H09243213 A JPH09243213 A JP H09243213A JP 5578896 A JP5578896 A JP 5578896A JP 5578896 A JP5578896 A JP 5578896A JP H09243213 A JPH09243213 A JP H09243213A
Authority
JP
Japan
Prior art keywords
compressors
oil
compressor
pipings
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5578896A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatta
博史 八田
Mitsugi Aoyama
貢 青山
Yukio Tsuda
幸雄 津田
Masakazu Kamikura
正教 上倉
Koji Ito
浩二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5578896A priority Critical patent/JPH09243213A/en
Publication of JPH09243213A publication Critical patent/JPH09243213A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Abstract

PROBLEM TO BE SOLVED: To prevent a deviation of a refrigerating machine oil in air conditioning equipment in which a plurality of compressors are arranged in parallel by arranging oil separators on delivery pipings of the compressors to connect oil return tubes respectively to suction pipings of adjacent compressors sequentially. SOLUTION: Compressors 1a-1c are arranged in parallel and oil separators 1a-2c are connected respectively to delivery pipings thereof. Oil return tubes 6a-6c of the oil separators are connected to suction pipings of the adjacent compressors 1. For example, the oil return piping 6a is connected to the suction piping of the compressor 1b. Outlet pipings of the oil separators 2 are grouped into one and connected to a condenser 3. The temperature of a fluid to be cooled as cooled by an evaporator 5 is detected by a sensor 7 to control the number of operating units of the compressors 1. The individual oil return pipes 2 are connected to suction pipings of the adjacent compressors 1 sequentially to prevent the deviation of a refrigerating machine oil. The compressors 1 to be started or stopped during the control of the operating units thereof are set at random by utilizing random number, thereby achieving a leveling of the operation time of the compressors 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被冷却流体の温度
を設定温度に近づける制御を行う空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner that controls the temperature of a fluid to be cooled so as to approach a set temperature.

【0002】[0002]

【従来の技術】この種の複数台圧縮機をもつ空機調和機
の従来の技術は、まず第一に、各々の圧縮機が独立した
冷凍サイクルを形成し、すなわち、各々のサイクルが、
圧縮機,凝縮器,減圧機構,蒸発器を順次接続した冷凍
サイクルをもち、その各々の蒸発器の被冷却流体の配管
を共通とすることにより、一つの空気調和機を形成する
ものである。また、第二に、圧縮機を並列に設置し、そ
の各々の吐出配管及び吸入配管を共通として、凝縮器,
減圧機構,蒸発器と順次接続する一つの冷凍サイクルに
より空気調和機を形成する。この第二の空気調和機に
は、冷凍機油の偏りを防止するため、各々の圧縮機の油
のバランスを取るための均油管が設置されることにな
る。
2. Description of the Related Art In the prior art of an air conditioner having a plurality of compressors of this type, first of all, each compressor forms an independent refrigeration cycle, that is, each cycle is
It has a refrigeration cycle in which a compressor, a condenser, a decompression mechanism, and an evaporator are sequentially connected, and a common pipe for the fluid to be cooled of each of the evaporators is used to form one air conditioner. Secondly, the compressors are installed in parallel, the discharge pipe and the suction pipe of each compressor are common, and the condenser,
An air conditioner is formed by one refrigeration cycle that is sequentially connected to the decompression mechanism and the evaporator. In this second air conditioner, an oil equalizing pipe for balancing the oil of each compressor is installed in order to prevent the bias of the refrigerating machine oil.

【0003】尚、この従来技術に関する公知例として、
第一のものには、特願平5−99354号公報,第二のものと
して、National Technical Report Vol.41 No.5,
Oct.1995(添付)が挙げられる。
As a known example of this prior art,
The first is Japanese Patent Application No. 5-99354, and the second is National Technical Report Vol.41 No.5.
Oct. 1995 (attached).

【0004】[0004]

【発明が解決しようとする課題】上記従来の技術のう
ち、第一のものは、凝縮器,減圧機構,蒸発器が各々の
冷凍サイクルに用いられているため、コストupにつな
がるとともに、被冷却流体の配管が複雑になることや、
圧縮機台数制御時に、蒸発器の凍結を起こす可能性があ
った。
Among the above-mentioned conventional techniques, the first one uses a condenser, a pressure reducing mechanism, and an evaporator for each refrigeration cycle, which leads to a cost up and a cooling target. The fluid piping becomes complicated,
When controlling the number of compressors, the evaporator could freeze.

【0005】また、第二のものには、圧縮機に均油管を
設けねばならず、特殊な圧縮機が必要となる。
In the second type, a compressor must be provided with an oil equalizing pipe, and a special compressor is required.

【0006】また、圧縮機の台数制御を行う際に、圧縮
機の始動・停止の順序予め定めておくと、各々の圧縮機
の運転時間に偏りが生じ、圧縮機の運転時間の長いもの
の寿命が短いことになる。
Further, when controlling the number of compressors, if the order of starting and stopping the compressors is determined in advance, the operating time of each compressor is biased and the operating life of the compressor is long. Will be short.

【0007】[0007]

【課題を解決するための手段】上記課題のうち、複数台
圧縮機の、独立複数台冷凍サイクルを複数台圧縮機の単
独冷凍サイクルとするために、請求項1,2のとおり各
々の圧縮機の吐出配管に油分離器を設け、その各々の油
戻し配管を順次隣の圧縮機の吸入配管と接続することに
より、油の偏りを防止する冷凍サイクルを形成する。こ
のサイクルにより油の偏りが防止されるため、圧縮機の
台数制御が可能となる。
In order to make the independent multiple refrigeration cycle of the plural compressors an independent refrigeration cycle of the plural compressors among the above-mentioned problems, each of the compressors according to claims 1 and 2. An oil separator is provided in each of the discharge pipes, and each oil return pipe is sequentially connected to the suction pipe of the adjacent compressor, thereby forming a refrigeration cycle that prevents uneven distribution of oil. This cycle prevents the oil from being biased, so that the number of compressors can be controlled.

【0008】また、圧縮機の台数制御における、圧縮機
の運転時間の偏りを防止するため、請求項の3,4のと
おり、乱数を利用し、圧縮機の台数制御時の始動及び停
止の圧縮機をランダムに設定することにより、圧縮機の
運転時間の平準化を図り、空気調和機の寿命を延ばす。
Further, in order to prevent a bias in the operating time of the compressor in controlling the number of compressors, random numbers are used as in claims 3 and 4, and compression for starting and stopping when controlling the number of compressors is performed. By randomly setting the compressors, the operating hours of the compressor are leveled and the life of the air conditioner is extended.

【0009】[0009]

【発明の実施の形態】本発明の実施例を図1を用いて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.

【0010】複数台の圧縮機1a,1b,1c(図1で
は3台)を並列に設置し、その各々の圧縮機の吐出配管
に油分離器2a,2b,2cを接続する。油分離器の油
戻し管6a,6b,6cはそれぞれ隣の圧縮機の吸入配
管に接続する。すなわち、油戻し配管6aは圧縮機1b
の吸入配管に接続、油戻し管6bは圧縮機1cの吸入配
管に接続、油戻し管6cは圧縮機1aの吸入配管に接続
する。
A plurality of compressors 1a, 1b, 1c (three in FIG. 1) are installed in parallel, and oil separators 2a, 2b, 2c are connected to the discharge pipes of the respective compressors. The oil return pipes 6a, 6b, 6c of the oil separator are connected to the suction pipes of the adjacent compressors, respectively. That is, the oil return pipe 6a is connected to the compressor 1b.
The oil return pipe 6b is connected to the suction pipe of the compressor 1c, and the oil return pipe 6c is connected to the suction pipe of the compressor 1a.

【0011】また、油分離器2a,2b,2cの出口配
管は一つに統合され、凝縮器3に接続される。その後、
減圧機構,蒸発器と順次接続され、その後配管は分岐
し、圧縮機1a,1b,1cの吸入側へ接続される。
The outlet pipes of the oil separators 2a, 2b and 2c are integrated into one and connected to the condenser 3. afterwards,
The pressure reducing mechanism and the evaporator are sequentially connected, and then the pipe is branched and connected to the suction side of the compressors 1a, 1b, 1c.

【0012】蒸発器5により冷却される被冷却流体の温
度はセンサ7で検知され、圧縮機の台数制御が行われ
る。
The temperature of the fluid to be cooled, which is cooled by the evaporator 5, is detected by the sensor 7, and the number of compressors is controlled.

【0013】今、センサ7がサーモスタットで被冷却流
体の入口温度にて圧縮機の台数制御を行う場合、圧縮機
1a,1b,1cが全て運転し被冷却流体の温度が降下
し、図2の(B)点に達したとき、圧縮機1cはオン状
態からオフ状態となり、冷却能力は66%となる。さら
に負荷が小さい場合には温度降下が進み、(C)点まで
達すると圧縮機1bがオン状態からオフ状態へ変化し、
冷却能力は33%まで低下する。同様に(D)点に達し
たとき圧縮機1aが停止し、全ての圧縮機が停止するこ
とになる。
Now, when the sensor 7 is a thermostat and controls the number of compressors at the inlet temperature of the fluid to be cooled, the compressors 1a, 1b, 1c are all operated and the temperature of the fluid to be cooled drops, and When the point (B) is reached, the compressor 1c changes from the on state to the off state, and the cooling capacity becomes 66%. When the load is smaller, the temperature drops further, and when the temperature reaches point (C), the compressor 1b changes from the on state to the off state,
Cooling capacity drops to 33%. Similarly, when the point (D) is reached, the compressor 1a is stopped and all the compressors are stopped.

【0014】逆に温度上昇の場合はそれぞれ(C)点,
(B)点,(A)点で圧縮機が順次オンして、冷却能力
も0から33%,66%,100%と順次大きくなる。
On the contrary, when the temperature rises, point (C),
The compressors are sequentially turned on at points (B) and (A), and the cooling capacity also increases from 0 to 33%, 66%, 100%.

【0015】上記のとおり、負荷に応じて、冷却力を変
化させることが可能であるため、被冷却流体の温度変化
を小さくすることができる。
As described above, since the cooling power can be changed according to the load, the temperature change of the fluid to be cooled can be reduced.

【0016】次に請求項3,4の実施例を図1,図2,
数1を用いて説明する。
Next, the embodiments of claims 3 and 4 will be described with reference to FIGS.
A description will be given using Equation 1.

【0017】図1のサイクルを図2の圧縮機の台数制御
で運転した場合、圧縮機1aは、3台の圧縮機のうち
で、温度降下時は最後に停止し温度上昇時は最初に始動
することになる。つまり、圧縮機1aは他の2台圧縮機
と比べて、運転時間が長くなり、寿命がくるのが、早く
なってしまう。圧縮機の運転時間を平準化することによ
り、圧縮機の寿命の偏りを防ぎ、ひいては、空気調和機
の寿命を延ばすことが可能である。今、図2において、
温度降下時に(B)点に到達したと仮定する。このと
き、数1の演算を行い乱数による停止圧縮機号機No.の
決定を行う。
When the cycle of FIG. 1 is operated by controlling the number of compressors shown in FIG. 2, the compressor 1a among the three compressors is stopped last when the temperature drops and first started when the temperature rises. Will be done. That is, the compressor 1a has a longer operating time and a shorter life than the other two compressors. By leveling the operation time of the compressor, it is possible to prevent the life of the compressor from being unbalanced and to extend the life of the air conditioner. Now in FIG.
It is assumed that point (B) is reached when the temperature drops. At this time, the operation of Equation 1 is performed to determine the stop compressor No. No. by a random number.

【0018】[0018]

【数1】 N=R−INT(R/Nmax)*Nmax …(数1) 但し、N:始動(停止)する圧縮機の号機No. 1…圧縮機1a,2…圧縮機1b,3…圧縮機1c R:乱数 Nmax:圧縮機の総台数 INT( ):( )内の数を整数化する関数 同様に(C)点についても残り2台の圧縮機のうちどち
らを停止するか数1の演算により決定する。
[Equation 1] N = R-INT (R / Nmax) * Nmax (Equation 1) where N: No. 1 of compressor to be started (stopped) ... Compressors 1a, 2 ... Compressors 1b, 3 ... Compressor 1c R: Random number Nmax: Total number of compressors INT (): Function for converting the number in () to an integer Similarly, for the point (C), which one of the remaining two compressors is to be stopped is calculated. It is determined by the calculation of.

【0019】逆に温度上昇時についても、停止している
圧縮機のうちどの圧縮機を始動させるかを決定するの
に、数1の演算を行うこととする。
On the contrary, even when the temperature rises, the arithmetic operation of the equation 1 is performed to determine which of the stopped compressors should be started.

【0020】[0020]

【発明の効果】本発明の請求項1により、複数台圧縮機
を単独の冷凍サイクルとして使用した場合の冷凍機油の
偏りを防止することが可能となり、請求項2の圧縮機の
台数制御を行うことが可能となった。また、この複数台
制御は単独の冷凍サイクルで行われるため、圧縮機の台
数制御時の蒸発器の部分凍結の恐れがなくなった。第三
には、台数制御を実施するため、被冷却流体の温度変化
が小さくなった。
According to claim 1 of the present invention, it is possible to prevent the bias of the refrigerating machine oil when a plurality of compressors are used as a single refrigeration cycle, and the number of compressors according to claim 2 is controlled. It has become possible. Further, since the control of a plurality of units is performed in a single refrigeration cycle, there is no fear of partial freezing of the evaporator when controlling the number of compressors. Thirdly, since the number of units is controlled, the temperature change of the cooled fluid becomes small.

【0021】請求項3,4の効果としては、圧縮機の運
転時間の平準化が図れることにより、搭載された各々の
圧縮機がほぼ同時期に寿命を迎えることになり、空気調
和機としての寿命を延ばすことが可能になった。具体的
な例では、2台圧縮機搭載の空気調和機で冷却負荷が0
〜50%のとき、圧縮機のローテーション制御がない場
合、圧縮機の寿命を二万時間とすると、この冷却負荷で
は常に一方の圧縮機だけが運転することになる。すなわ
ち、一方の圧縮機の運転時間が二万時間で寿命を迎えた
とき、他方の圧縮機はほとんど運転されていない可能性
がある。この場合、空気調和機としての寿命は二万時間
となる。
As the effects of the third and fourth aspects, since the operating time of the compressor can be leveled, the respective installed compressors will reach the end of their lives at substantially the same time, and the compressor will be used as an air conditioner. It has become possible to extend the life. In a specific example, an air conditioner equipped with two compressors has zero cooling load.
In the case of ˜50%, if the compressor rotation is not controlled and the life of the compressor is set to 20,000 hours, only one of the compressors always operates at this cooling load. That is, when the operating time of one compressor reaches the end of its life of 20,000 hours, the other compressor may be hardly operated. In this case, the life of the air conditioner is 20,000 hours.

【0022】逆に、本請求項3,4のローテーション制
御がある場合には、双方の圧縮機の運転時間が平準化さ
れるため、各々の圧縮機の運転時間がほぼ同時に二万時
間の寿命を迎える。すなわち、空気調和機としての寿命
は、四万時間となる。以上のとおり、この具体例ではロ
ーテーション制御の有無で、空気調和機の寿命は約2倍
となる。
On the contrary, when the rotation control according to claims 3 and 4 is employed, the operating time of both compressors is leveled, so that the operating time of each compressor is 20,000 hours at almost the same time. Welcome. That is, the life of the air conditioner is 40,000 hours. As described above, in this specific example, the life of the air conditioner is approximately doubled with and without rotation control.

【0023】また、この乱数による始動圧縮機の決定方
法は、圧縮機の台数制御のときだけではなく、空気調和
機の始動時の圧縮機の始動制御時にも応用することがで
きる。
The method of determining the starting compressor based on this random number can be applied not only when controlling the number of compressors, but also when starting the compressor when the air conditioner is started.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す冷凍サイクルの系統
図。
FIG. 1 is a system diagram of a refrigeration cycle showing an embodiment of the present invention.

【図2】本発明の圧縮機の台数制御の一実施例を示す圧
縮機のオン−オフ状態図。
FIG. 2 is an on-off state diagram of a compressor showing an embodiment of control of the number of compressors of the present invention.

【符号の説明】[Explanation of symbols]

1a,1b,1c…圧縮機、2a,2b,2c…油分離
器、3…凝縮器、4…減圧機構、5…蒸発器、6a,6
b,6c…油戻し管、7…センサ。
1a, 1b, 1c ... Compressor, 2a, 2b, 2c ... Oil separator, 3 ... Condenser, 4 ... Decompression mechanism, 5 ... Evaporator, 6a, 6
b, 6c ... Oil return pipe, 7 ... Sensor.

フロントページの続き (72)発明者 上倉 正教 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 伊藤 浩二 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内Front page continued (72) Inventor Masanori Uekura 390 Muramatsu, Shimizu City, Shizuoka Hitachi Air Conditioning Systems Division (72) Inventor Koji Ito 390 Muramatsu Shimizu City Shizuoka Prefecture Hitachi Systems Air Conditioning Systems Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数台の圧縮機を並列に設置し、順次、凝
縮器,減圧機構,蒸発器により冷凍サイクルを構成する
空気調和機において、各々の前記圧縮機の吐出配管に油
分離器を設け、その油戻し管を順次隣の前記圧縮機の吸
入配管に接続し、冷凍機油の偏りを解消することを特徴
とする空気調和機。
1. In an air conditioner in which a plurality of compressors are installed in parallel and a refrigeration cycle is constituted sequentially by a condenser, a pressure reducing mechanism and an evaporator, an oil separator is provided in the discharge pipe of each compressor. An air conditioner that is provided, and that oil return pipes are sequentially connected to the suction pipes of the adjacent compressors to eliminate the bias of refrigerating machine oil.
JP5578896A 1996-03-13 1996-03-13 Air conditioning equipment Pending JPH09243213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5578896A JPH09243213A (en) 1996-03-13 1996-03-13 Air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5578896A JPH09243213A (en) 1996-03-13 1996-03-13 Air conditioning equipment

Publications (1)

Publication Number Publication Date
JPH09243213A true JPH09243213A (en) 1997-09-19

Family

ID=13008657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5578896A Pending JPH09243213A (en) 1996-03-13 1996-03-13 Air conditioning equipment

Country Status (1)

Country Link
JP (1) JPH09243213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108518A2 (en) 2007-03-02 2008-09-12 Lg Electronics Inc. Air conditioner and control method thereof
CN102650479A (en) * 2011-02-23 2012-08-29 珠海格力电器股份有限公司 Multiple connected air-conditioning unit and oil circuit system thereof
EP2518319A1 (en) * 2011-04-28 2012-10-31 Mitsubishi Heavy Industries Outdoor unit with at least three compressors for use with air conditioners
JP2013122361A (en) * 2011-12-12 2013-06-20 Daikin Industries Ltd Air conditioning device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108518A2 (en) 2007-03-02 2008-09-12 Lg Electronics Inc. Air conditioner and control method thereof
EP2132498A2 (en) * 2007-03-02 2009-12-16 LG Electronics Inc. Air conditioner and control method thereof
EP2132498A4 (en) * 2007-03-02 2012-01-25 Lg Electronics Inc Air conditioner and control method thereof
CN102650479A (en) * 2011-02-23 2012-08-29 珠海格力电器股份有限公司 Multiple connected air-conditioning unit and oil circuit system thereof
EP2518319A1 (en) * 2011-04-28 2012-10-31 Mitsubishi Heavy Industries Outdoor unit with at least three compressors for use with air conditioners
JP2013122361A (en) * 2011-12-12 2013-06-20 Daikin Industries Ltd Air conditioning device

Similar Documents

Publication Publication Date Title
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
KR100471442B1 (en) Control Method of air-conditioner using multi-compressors
US8683817B2 (en) Low ambient operating procedure for cooling systems with high efficiency condensers
EP2618078B1 (en) Air Conditioner and Starting Control Method Thereof
US4612776A (en) Method and apparatus for controlling capacity of a multiple-stage cooling system
CN102884382A (en) Method for controlling fan for heat source heat exchanger, and air conditioning device
US6807817B2 (en) Method for operating compressors of air conditioner
JP5471059B2 (en) Air conditioner
JPH0563703B2 (en)
JPH09243213A (en) Air conditioning equipment
KR20040045090A (en) Compressor control method for air-conditioner using multi compressors
JP2005042982A (en) Air conditioner
JPH04273949A (en) Refrigerating cycle device
JPH08200862A (en) Refrigerator
JPS61195255A (en) Heat pump type air conditioner
JPH0571832A (en) Air-conditioner
JPH01305267A (en) Refrigerator
JPH0351678A (en) Air conditioner
JP3285395B2 (en) Refrigeration cycle
KR20050075104A (en) Muti-type air conditioner having a current transducer and control method of it
JPH09303893A (en) Freezing apparatus
JP2794853B2 (en) Separate type air conditioner for multiple rooms
JPH09178275A (en) Refrigerator and method of controlling the number of compressors in refrigerator
JP2752176B2 (en) Refrigeration equipment
KR20050075098A (en) Control method of a multi-type air conditioner