JPH0593552A - Double stage compression type heat pump system - Google Patents

Double stage compression type heat pump system

Info

Publication number
JPH0593552A
JPH0593552A JP25354191A JP25354191A JPH0593552A JP H0593552 A JPH0593552 A JP H0593552A JP 25354191 A JP25354191 A JP 25354191A JP 25354191 A JP25354191 A JP 25354191A JP H0593552 A JPH0593552 A JP H0593552A
Authority
JP
Japan
Prior art keywords
stage
refrigerant
hot water
heat exchanger
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25354191A
Other languages
Japanese (ja)
Inventor
Shozo Funakura
正三 船倉
Koji Ebisu
晃司 戎
Kazuo Nakatani
和生 中谷
Minoru Tagashira
實 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25354191A priority Critical patent/JPH0593552A/en
Publication of JPH0593552A publication Critical patent/JPH0593552A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Abstract

PURPOSE:To realize a stable and high reliable operation by a method wherein a high temperature and a high capability at a load side heat exchanger are assured and an entire double stage compression heat pump system is operated in a high efficient manner. CONSTITUTION:A high pressure stage compressor mechanism 2 is controlled by a high stage pressure, a low pressure stage compressor mechanism 1 is controlled by an intermediate pressure, a main adjusting device 4 is controlled by a low pressure stage suction over-heating degree, a sub-adjusting device 7 is controlled by a high pressure stage suction over-heating degree, a hot water storing pump mechanism 12 is controlled by a hot water supplying water temperature, an auxiliary adjusting device 8b at an outlet side of a hot water supplying heat exchanger 3b is controlled by an amount of stored hot water and an auxiliary adjusting device 8a at an outlet port of an air conditioning heat exchanger 3a is controlled by a room temperature of a room where the indoor device is installed. With such an arrangement, it is possible to provide a double stage compression heat pump system capable of assuring a high temperature and a high capability at a load side heat exchanger and realizing an entire high efficient, stable and high reliable operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、給湯、暖房などに利用
する二段圧縮ヒートポンプシステムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-stage compression heat pump system used for hot water supply, heating, etc.

【0002】[0002]

【従来の技術】従来、低温冷凍装置のように冷凍サイク
ルの蒸発圧力と凝縮圧力との比が大きい場合には、吐出
温度上昇の防止、および圧縮機の効率を向上させるため
に一段の圧縮機を二台直列に接続した二段圧縮冷凍サイ
クル装置が使われている。
2. Description of the Related Art Conventionally, when a ratio of evaporation pressure to condensation pressure in a refrigerating cycle is large as in a low temperature refrigerating apparatus, a one-stage compressor is provided to prevent discharge temperature rise and improve efficiency of the compressor. A two-stage compression refrigeration cycle device in which two units are connected in series is used.

【0003】この場合、低段側圧縮機の吐出ガスは高圧
の液冷媒や中間圧の二相冷媒と直接、あるいは間接的に
熱交換して冷却された後、高段側圧縮機に吸入され、そ
こで高圧まで圧縮、吐出されサイクル内を循環する。こ
うすることによって高段側圧縮機の吸入ガス温度を低下
させてその吐出温度上昇を防止するものである。
In this case, the gas discharged from the low-stage compressor is directly or indirectly exchanged with a high-pressure liquid refrigerant or an intermediate-pressure two-phase refrigerant to be cooled, and then sucked into the high-stage compressor. Then, it is compressed to a high pressure and discharged, and circulates in the cycle. By so doing, the intake gas temperature of the high-stage compressor is lowered and its discharge temperature is prevented from rising.

【0004】また、低段側、高段側圧縮機での各吸入圧
力と各吐出圧力との比(圧縮比)を適当に設定すること
によって各段の圧縮機の効率のよい条件で運転でき、総
合的にみて冷凍サイクル効率が向上するものである。
Further, by appropriately setting the ratio (compression ratio) between each suction pressure and each discharge pressure in the low-stage and high-stage compressors, the compressors in each stage can be operated under efficient conditions. As a whole, the refrigeration cycle efficiency is improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来例では、低温冷凍装置のような単機能の用途
にのみもっぱら用いられており、冷暖房給湯装置のよう
に多用途に用いられた例はほとんどなく、そのためのシ
ステム全体の運転方法を含めた具体的な構成について提
案されたものはない。
However, in the above-mentioned conventional example, the conventional example is used only for a single function such as a low-temperature refrigerating apparatus, and is used for various purposes such as an air conditioner and hot water supply apparatus. There is almost no such proposal, and there is no proposal for a specific configuration including the operation method of the entire system for that purpose.

【0006】本発明は、冷暖房給湯装置のように多用途
の装置にも適用でき、さらにシステム全体の制御方法を
含めた具体的な二段圧縮ヒートポンプシステムを提供す
ることを目的とするものである。
An object of the present invention is to provide a specific two-stage compression heat pump system that can be applied to a multipurpose device such as a cooling and heating hot water supply device and further includes a control method for the entire system. ..

【0007】[0007]

【課題を解決するための手段】本発明は、周波数可変の
低段側圧縮機構と周波数可変の高段側圧縮機構を直列に
接続し、これに負荷側熱交換器、主絞り装置、熱源側熱
交換器を接続して主冷凍サイクルを構成し、低段用冷媒
と高段用冷媒とを熱交換させる冷媒対冷媒熱交換器の低
段用冷媒入口と、副絞り装置を介した冷媒対冷媒熱交換
器の高段用冷媒入口が、負荷側熱交換器の出口と接続さ
れ、冷媒対冷媒熱交換器の低段用冷媒出口が主絞り装置
を介して熱源側熱交換器の入口と接続され、冷媒対冷媒
熱交換器の高段用冷媒出口を低段側圧縮機構と高段側圧
縮機構の中間に接続し、負荷側熱交換器での冷媒圧力を
高段圧力として検出して高段圧力設定値と一致するよう
に高段側圧縮機構の周波数を制御する高段側圧縮機構制
御器と、主絞り装置で減圧されて低段圧縮機構に吸入さ
れる冷媒圧力を低段圧力として、副絞り装置で減圧され
た冷媒と低段圧縮機構で圧縮された冷媒の圧力を中間圧
力として検出して中間圧力が高段圧力と低段圧力の相乗
平均値と一致するように低段側圧縮機構の周波数を制御
する低段側圧縮機構制御器を備えたものである。
According to the present invention, a variable-frequency low-stage compression mechanism and a variable-frequency high-stage compression mechanism are connected in series, and a load side heat exchanger, a main expansion device, and a heat source side are connected to this. Refrigerant pair for connecting a heat exchanger to form a main refrigeration cycle and for exchanging heat between the low-stage refrigerant and the high-stage refrigerant, and the low-stage refrigerant inlet of the refrigerant heat exchanger, and the refrigerant pair via the auxiliary expansion device. The high-stage refrigerant inlet of the refrigerant heat exchanger is connected to the outlet of the load side heat exchanger, and the low-stage refrigerant outlet of the refrigerant-to-refrigerant heat exchanger is connected to the inlet of the heat source side heat exchanger via the main expansion device. Connected, the high-stage refrigerant outlet of the refrigerant-refrigerant heat exchanger is connected to the middle of the low-stage compression mechanism and the high-stage compression mechanism, and the refrigerant pressure in the load side heat exchanger is detected as the high stage pressure. The high-stage compression mechanism controller that controls the frequency of the high-stage compression mechanism so that it matches the high-stage pressure setting value, and the main throttle device The pressure of the refrigerant that has been decompressed by the low-stage compression mechanism is detected as the low-stage pressure, and the pressure of the refrigerant that has been decompressed by the sub-throttle device and the pressure of the refrigerant that has been compressed by the low-stage compression mechanism are detected as the intermediate pressure. This is provided with a low-stage side compression mechanism controller that controls the frequency of the low-stage side compression mechanism so as to match the geometric mean value of the high-stage pressure and the low-stage pressure.

【0008】また、本発明は、低段側圧縮機構吸入部で
の冷媒の過熱度を低段側吸入過熱度として検出して低段
側吸入過熱度が低段側吸入過熱度設定値と一致するよう
に主絞り装置を制御する主絞り装置制御器を備え、さら
に高段側圧縮機構吸入部での冷媒の過熱度を高段側吸入
過熱度として検出して高段側吸入過熱度が高段側吸入過
熱度設定値と一致するように副絞り装置を制御する副絞
り装置制御器を備えたものである。
Further, according to the present invention, the superheat degree of the refrigerant in the suction portion of the low-stage compression mechanism is detected as the low-stage suction superheat degree, and the low-stage suction superheat degree matches the low-stage suction superheat degree set value. The main throttle device controller for controlling the main throttle device is installed to detect the superheat degree of the refrigerant in the intake part of the high-stage compression mechanism as the high-stage intake superheat degree, and the high-stage intake superheat degree is high. It is provided with a sub-throttle device controller that controls the sub-throttle device so that the sub-throttle superheat degree setting value is matched.

【0009】また、本発明は、並列に接続された複数台
の負荷側熱交換器の冷媒入口を高段側圧縮機構の吐出側
と接続し、並列に接続された複数台の負荷側熱交換器の
冷媒出口をそれぞれ複数台の補助絞り装置を介して冷媒
対冷媒熱交換器の高段用冷媒入口と副絞り装置に接続
し、複数台の負荷側熱交換器のうち少なくとも1台を給
湯用熱交換器として利用して貯湯槽、流量可変の貯湯ポ
ンプ機構等を接続して給湯ユニットを構成し、給湯用熱
交換器で加熱された給湯水の温度を給湯水温度として検
出して給湯水温度を給湯水温度設定値と一致するように
貯湯ポンプ機構を制御する貯湯ポンプ機構制御器を備
え、また貯湯槽に蓄えられた湯量を貯湯量として検出し
て貯湯量を貯湯量設定値と一致するように複数台の補助
絞り装置のうち給湯用熱交換器出口側に接続された補助
絞り装置を制御する給湯用補助絞り装置制御器を備え、
さらに複数台の負荷側熱交換器のうち少なくとも1台を
空調用熱交換器として利用して室内ファン等とともに室
内ユニットを構成し、室内ユニットが設置された部屋の
室温を検出して室温を室温設定値と一致するように複数
台の補助絞り装置のうち空調用熱交換器出口側に接続さ
れた補助絞り装置を制御する空調用補助絞り装置制御器
を備えたものである。
Further, according to the present invention, the refrigerant inlets of a plurality of load side heat exchangers connected in parallel are connected to the discharge side of the high-stage compression mechanism, and a plurality of load side heat exchangers connected in parallel are connected. The refrigerant outlet of the heat exchanger is connected to the high-stage refrigerant inlet of the refrigerant-to-refrigerant heat exchanger and the auxiliary throttling device via a plurality of auxiliary throttling devices, respectively, and at least one of the plurality of load-side heat exchangers is supplied with hot water. A hot water supply unit is constructed by connecting a hot water storage tank, a hot water storage pump mechanism with variable flow rate, etc. as a heat exchanger for water, and detecting the temperature of the hot water supplied by the heat exchanger for hot water supply as the hot water temperature to supply hot water. It is equipped with a hot water pump mechanism controller that controls the hot water storage pump mechanism so that the water temperature matches the hot water supply water temperature set value. For hot water supply of multiple auxiliary expansion devices to match Equipped with exchangers auxiliary throttle device controller for hot water supply for controlling the connected auxiliary throttle device on the outlet side,
Furthermore, at least one of the multiple load side heat exchangers is used as an air conditioning heat exchanger to form an indoor unit with an indoor fan, etc., and the room temperature of the room in which the indoor unit is installed is detected to determine the room temperature. The auxiliary throttle device controller for air conditioning is provided to control the auxiliary throttle device connected to the outlet side of the heat exchanger for air conditioning among the plurality of auxiliary throttle devices so as to match the set value.

【0010】また、複数台の負荷側熱交換器の冷媒入口
を高段側圧縮機構の吐出側と接続し、並列に接続された
複数台の負荷側熱交換器の冷媒出口をそれぞれ複数台の
補助絞り装置を介して冷媒対冷媒熱交換器の高段用冷媒
入口と副絞り装置に接続し、複数台の負荷側熱交換器の
うちで優先順位を設定して優先順位に応じて複数台の補
助絞り装置を制御する補助絞り装置制御器を備えたもの
である。
The refrigerant inlets of the plurality of load side heat exchangers are connected to the discharge side of the high-stage compression mechanism, and the refrigerant outlets of the plurality of load side heat exchangers connected in parallel are respectively connected to the plurality of refrigerant outlets. Connected to the high-stage refrigerant inlet of the refrigerant-to-refrigerant heat exchanger and the auxiliary expansion device via the auxiliary expansion device, and set the priority order among multiple load side heat exchangers and set multiple units according to the priority order. The auxiliary throttling device controller is provided for controlling the auxiliary throttling device.

【0011】[0011]

【作用】本発明では、例えば、高段側圧縮機構を高段圧
力で、低段側圧縮機構を中間圧力で、主絞り装置を低段
側吸入過熱度で、副絞り装置を高段側吸入過熱度で、貯
湯ポンプ機構を給湯水温度で、給湯用熱交換器出口側の
補助絞り装置を貯湯量で、空調用熱交換器出口の補助絞
り装置をその室内ユニットが設置された部屋の室温で制
御することにより、負荷側熱交換器での高温と高能力を
確保し、かつ二段圧縮ヒートポンプシステム全体を高効
率で安定した信頼性の高い運転が実現できる。
In the present invention, for example, the high-stage side compression mechanism is at a high-stage pressure, the low-stage side compression mechanism is at an intermediate pressure, the main throttle device is at a low-stage intake superheat degree, and the sub-throttle device is at a high-stage side intake pressure. The superheat degree, the hot water storage pump mechanism at the hot water temperature, the auxiliary expansion device at the outlet of the hot water supply heat exchanger at the hot water storage amount, and the auxiliary expansion device at the outlet of the air conditioning heat exchanger at room temperature in the room where the indoor unit is installed. By controlling with, the high temperature and high capacity of the load side heat exchanger can be secured, and highly efficient, stable, and reliable operation of the entire two-stage compression heat pump system can be realized.

【0012】また、必要に応じて並列に接続された複数
台の負荷側熱交換器のうちのいずれかに冷媒を優先的に
循環させる補助絞り装置制御器により、たとえば給湯あ
るいは空調を優先させて湯切れ、空調の立上り時間など
を改善できる。
[0012] In addition, if necessary, for example, hot water supply or air conditioning is prioritized by an auxiliary expansion device controller that preferentially circulates the refrigerant through one of a plurality of load side heat exchangers connected in parallel. It is possible to improve running time of hot water and air conditioning.

【0013】[0013]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は本発明の二段圧縮ヒートポンプシス
テムを空調給湯システムとして用いた一実施例であり、
図2は本発明の二段圧縮ヒートポンプシステムを空調給
湯システムとして用いた一実施例における制御装置を示
す。1は周波数可変の低段側圧縮機構、2は周波数可変
の高段側圧縮機構、3aは空調に用いる負荷側熱交換器
(以下、空調用熱交換器と記す)、3bは給湯に用いる
負荷側熱交換器(以下、給湯用熱交換器と記す)、4は
主絞り装置、5は熱源側熱交換器であり、これらを直列
に接続した低段側圧縮機構1および高段側圧縮機構2と
連結することにより主冷凍サイクルを構成している。6
は低段用冷媒と高段用冷媒との熱交換を図る冷媒対冷媒
熱交換器であり、冷媒対冷媒熱交換器6の低段用冷媒入
口6aと副絞り装置7を介した高段用冷媒入口6bは、
負荷側熱交換器3a、3bの出口側にある補助絞り装置
8a、8bと接続される。また冷媒対冷媒熱交換器6の
低段用冷媒出口6cは主絞り装置4と接続され、高段用
冷媒出口6dは低段側圧縮機構1と高段側圧縮機構2の
中間合流点6eに接続される。
FIG. 1 shows an embodiment in which the two-stage compression heat pump system of the present invention is used as an air conditioning hot water supply system.
FIG. 2 shows a control device in one embodiment in which the two-stage compression heat pump system of the present invention is used as an air conditioning hot water supply system. 1 is a variable frequency low-stage compression mechanism, 2 is a variable frequency high-stage compression mechanism, 3a is a load side heat exchanger used for air conditioning (hereinafter referred to as an air conditioning heat exchanger), 3b is a load used for hot water supply A side heat exchanger (hereinafter referred to as a hot water heat exchanger), 4 is a main expansion device, 5 is a heat source side heat exchanger, and a low-stage compression mechanism 1 and a high-stage compression mechanism in which these are connected in series The main refrigeration cycle is configured by connecting with 2. 6
Is a refrigerant-refrigerant heat exchanger for exchanging heat between the low-stage refrigerant and the high-stage refrigerant, and for the high-stage via the low-stage refrigerant inlet 6a of the refrigerant-refrigerant heat exchanger 6 and the auxiliary expansion device 7. The refrigerant inlet 6b is
It is connected to auxiliary expansion devices 8a and 8b on the outlet side of the load side heat exchangers 3a and 3b. The low-stage refrigerant outlet 6c of the refrigerant-to-refrigerant heat exchanger 6 is connected to the main expansion device 4, and the high-stage refrigerant outlet 6d is located at an intermediate confluence 6e of the low-stage side compression mechanism 1 and the high-stage side compression mechanism 2. Connected.

【0015】空調用熱交換器3aは、室内ファン(図示
せず)などと室内ユニット9を構成し部屋10に設置さ
れる。また給湯用熱交換器3bは、貯湯槽11、流量可
変の貯湯ポンプ機構12などと給湯ユニット13を構成
している。
The air-conditioning heat exchanger 3a constitutes an indoor unit 9 together with an indoor fan (not shown) and is installed in the room 10. The hot water supply heat exchanger 3b constitutes a hot water supply unit 13 together with a hot water storage tank 11, a hot water storage pump mechanism 12 having a variable flow rate, and the like.

【0016】14は高段側圧縮機構2で圧縮されて負荷
側熱交換器3a、3bの出口に至るまでの冷媒圧力を高
段圧力として検出して高段圧力設定値と一致するように
高段側圧縮機構2の周波数を制御する高段側圧縮機構制
御器であり、15は主絞り装置4で減圧されて低段側圧
縮機構1に吸入される冷媒圧力を低段圧力として検出
し、副絞り装置7で減圧された冷媒と低段側圧縮機構1
で圧縮された冷媒の圧力を中間圧力として検出して中間
圧力が高段圧力と低段圧力の相乗平均値と一致するよう
に低段側圧縮機構1の周波数を制御する低段側圧縮機構
制御器である。
Numeral 14 indicates the refrigerant pressure from the high-stage compression mechanism 2 to the outlets of the load-side heat exchangers 3a and 3b, which is detected as a high-stage pressure and is set to a high value so as to match the high-stage pressure set value. A high-stage compression mechanism controller that controls the frequency of the high-stage compression mechanism 2, and 15 detects the refrigerant pressure reduced by the main expansion device 4 and sucked into the low-stage compression mechanism 1 as a low-stage pressure, Refrigerant decompressed by the auxiliary expansion device 7 and the low-stage compression mechanism 1
The low-stage side compression mechanism control for detecting the pressure of the refrigerant compressed as the intermediate pressure and controlling the frequency of the low-stage side compression mechanism 1 so that the intermediate pressure matches the geometric mean value of the high-stage pressure and the low-stage pressure. It is a vessel.

【0017】16は低段側圧縮機構1の吸入部での冷媒
の過熱度を低段側吸入過熱度として検出して前記低段側
吸入過熱度が低段側吸入過熱度設定値と一致するように
前記主絞り装置4を制御する主絞り装置制御器であり、
17は高段側圧縮機構2の吸入部での冷媒の過熱度を高
段側吸入過熱度として検出して前記高段側吸入過熱度が
高段側吸入過熱度設定値と一致するように副絞り装置7
を制御する副絞り装置制御器である。
Reference numeral 16 detects the superheat degree of the refrigerant in the suction portion of the low-stage compression mechanism 1 as the low-stage suction superheat degree, and the low-stage suction superheat degree matches the low-stage suction superheat degree set value. A main throttle device controller for controlling the main throttle device 4 as described above,
Reference numeral 17 is a sub-detector for detecting the superheat degree of the refrigerant in the suction portion of the high-stage side compression mechanism 2 as the high-stage side intake superheat degree so that the high-stage side intake superheat degree matches the high-stage side intake superheat degree set value. Diaphragm device 7
It is a sub-throttle device controller for controlling.

【0018】18は給湯用熱交換器3bで加熱された給
湯水の温度を給湯水温度として検出して前記給湯水温度
を給湯水温度設定値と一致するように貯湯ポンプ機構1
2を制御する貯湯ポンプ機構制御器であり、19は貯湯
槽11に蓄えられた湯量を貯湯量として検出して前記貯
湯量を貯湯量設定値と一致するように給湯用熱交換器3
bの出口側に接続された補助絞り装置8bを制御する給
湯用補助絞り装置制御器である。
Reference numeral 18 denotes a hot water storage pump mechanism 1 that detects the temperature of the hot water supplied by the hot water heat exchanger 3b as the hot water temperature and makes the hot water temperature match the hot water temperature set value.
2 is a hot water storage pump mechanism controller that controls the hot water supply heat exchanger 3 for detecting the amount of hot water stored in the hot water storage tank 11 as the hot water storage amount and matching the hot water storage amount with the hot water storage amount set value.
It is an auxiliary expansion device controller for hot water supply which controls an auxiliary expansion device 8b connected to the outlet side of b.

【0019】20は室内ユニット9が設置された部屋1
0の室温を検出して前記室温を室温設定値と一致するよ
うに空調用熱交換器3aの出口側に接続された補助絞り
装置8aを制御する空調用補助絞り装置制御器である。
Reference numeral 20 denotes a room 1 in which the indoor unit 9 is installed.
The auxiliary throttle device controller for air conditioning controls the auxiliary throttle device 8a connected to the outlet side of the air conditioning heat exchanger 3a so that the room temperature of 0 is detected and the room temperature matches the room temperature set value.

【0020】21は並列に接続された複数台の負荷側熱
交換器(本実施例においては、空調用熱交換器3aと給
湯用熱交換器3b)の優先順位を設定して前記優先順位
に応じて前記複数台の補助絞り装置8a、8bを制御す
る補助絞り装置制御器である。
Reference numeral 21 designates a priority order of a plurality of load side heat exchangers (in this embodiment, the air conditioning heat exchanger 3a and the hot water supply heat exchanger 3b) connected in parallel and set to the above priority order. It is an auxiliary expansion device controller that controls the plurality of auxiliary expansion devices 8a and 8b accordingly.

【0021】次に、以上のような構成の実施例の動作を
説明する。高段側圧縮機構2から圧縮吐出された冷媒
は、空調用熱交換器3aで部屋10の空気と、あるいは
給湯用熱交換器3bで給湯水と熱交換して、熱を与え凝
縮液化する。このとき高段圧縮機構2の周波数は、高段
圧縮機構制御器14によって高段圧力(空調用熱交換器
3a内あるいは給湯用熱交換器3b内での冷媒の凝縮圧
力)が高段圧力設定値と一致するように操作される。し
たがって高段圧力が適正な圧力に維持されるため、空調
用熱交換器3aあるいは給湯用熱交換器3bで安定して
高温を得ることが可能となる。
Next, the operation of the embodiment having the above configuration will be described. The refrigerant compressed and discharged from the high-stage compression mechanism 2 exchanges heat with the air in the room 10 in the air conditioning heat exchanger 3a or with the hot water supply water in the hot water supply heat exchanger 3b to give heat to be condensed and liquefied. At this time, the frequency of the high-stage compression mechanism 2 is set by the high-stage compression mechanism controller 14 so that the high-stage pressure (condensation pressure of the refrigerant in the air conditioning heat exchanger 3a or the hot water supply heat exchanger 3b) is high. Manipulated to match the value. Therefore, since the high-stage pressure is maintained at an appropriate pressure, it is possible to stably obtain a high temperature in the air conditioning heat exchanger 3a or the hot water supply heat exchanger 3b.

【0022】このようにして、空調用熱交換器3a内あ
るいは給湯用熱交換器3b内で対象体に熱を与えて凝縮
液化した冷媒は、副絞り装置7の手前で低段用冷媒と高
段用冷媒とに分岐される。ここで高段用冷媒は副絞り装
置7で減圧されて、周囲に寒冷を発生した後、冷媒対冷
媒熱交換器6にその高段用冷媒入口6bから入って高段
用冷媒出口6dから出る。一方、低段用冷媒はそのまま
冷媒対冷媒熱交換器6にその低段用冷媒入口6aから入
り低段用冷媒出口6cから出る。したがってその冷媒対
冷媒熱交換器6内では低段用冷媒と減圧されて寒冷を発
生している高段用冷媒とが熱交換する。この結果、低段
用冷媒は冷却されて過冷却度が増大するのに対して、高
段用冷媒は部分的に気化する。
In this way, the refrigerant condensed and liquefied by applying heat to the object in the heat exchanger 3a for air conditioning or the heat exchanger 3b for hot water supply is condensed with the low-stage refrigerant before the auxiliary expansion device 7. It is branched to the stage refrigerant. Here, the high-stage refrigerant is decompressed by the auxiliary expansion device 7 to generate cold around, and then enters the refrigerant-to-refrigerant heat exchanger 6 through the high-stage refrigerant inlet 6b and exits through the high-stage refrigerant outlet 6d. .. On the other hand, the low-stage refrigerant enters the refrigerant-to-refrigerant heat exchanger 6 as it is from the low-stage refrigerant inlet 6a and exits from the low-stage refrigerant outlet 6c. Therefore, in the refrigerant-to-refrigerant heat exchanger 6, the low-stage refrigerant and the high-stage refrigerant that are decompressed and generate cold are heat-exchanged. As a result, the low-stage refrigerant is cooled and the degree of supercooling is increased, while the high-stage refrigerant is partially vaporized.

【0023】冷媒対冷媒熱交換器6を出た低段用冷媒
は、主絞り装置4、熱源側熱交換器5を経て低段側圧縮
機構1に吸入される。このとき主絞り装置4は、主絞り
装置制御器16によって低段側圧縮機構1の吸入部での
冷媒の過熱度(=低段側吸入過熱度)が低段側吸入過熱
度設定値と一致するように操作される。したがって低段
側吸入過熱度が適正に維持されるため、液圧縮による圧
縮機構の破損防止あるいは低段側圧縮機構1の吐出冷媒
温度の上昇防止が実現でき、さらに低段側圧縮機構1の
効率が向上するものである。また低段側圧縮機構1は、
低段側圧縮機構制御器15によって低段側圧縮機構1の
吐出圧力(=中間圧力)が低段側圧縮機構1の吸入圧力
(=低段圧力)と高段圧力の相乗平均値と一致するよう
に操作される。したがって低段側圧縮機構1、高段側圧
縮機構2での圧縮比が適正に維持されるため、各段の圧
縮機構の効率のよい条件で運転することができる。
The low-stage refrigerant that has exited the refrigerant-refrigerant heat exchanger 6 is drawn into the low-stage compression mechanism 1 via the main expansion device 4 and the heat source side heat exchanger 5. At this time, in the main expansion device 4, the main expansion device controller 16 causes the refrigerant superheat degree (= low-stage intake superheat degree) in the suction portion of the low-stage compression mechanism 1 to match the low-stage intake superheat set value. To be operated. Therefore, since the low-stage suction superheat degree is appropriately maintained, it is possible to prevent the compression mechanism from being damaged by the liquid compression or to prevent the discharge refrigerant temperature of the low-stage compression mechanism 1 from rising, and the efficiency of the low-stage compression mechanism 1 is further improved. Will be improved. Also, the low-stage compression mechanism 1
By the low-stage compression mechanism controller 15, the discharge pressure (= intermediate pressure) of the low-stage compression mechanism 1 matches the geometric mean value of the suction pressure (= low-stage pressure) of the low-stage compression mechanism 1 and the high-stage pressure. To be operated. Therefore, since the compression ratios of the low-stage compression mechanism 1 and the high-stage compression mechanism 2 are appropriately maintained, the compression mechanism of each stage can be operated under efficient conditions.

【0024】このようにして、低段側圧縮機構1で圧縮
された低段用冷媒は高温となり、冷媒対冷媒熱交換器6
内で部分的に気化した高段用冷媒と合流する。ここで低
段用冷媒は部分的に気化した高段用冷媒により冷却され
た後、高段側圧縮機構2で圧縮される。このとき副絞り
装置7は、副絞り装置制御器17によって高段側圧縮機
構2の吸入部での冷媒の過熱度(=高段側吸入過熱度)
が高段側吸入過熱度設定値と一致するように操作され
る。したがって高段側吸入過熱度が適正に維持されるた
め、液圧縮による圧縮機構の破損防止あるいは高段側圧
縮機構2の吐出冷媒温度の上昇防止が実現でき、さらに
高段側圧縮機構2の効率が向上するものである。
In this way, the low-stage refrigerant compressed by the low-stage compression mechanism 1 reaches a high temperature, and the refrigerant-refrigerant heat exchanger 6
It merges with the partially vaporized high-stage refrigerant. Here, the low-stage refrigerant is cooled by the partially vaporized high-stage refrigerant, and then compressed by the high-stage compression mechanism 2. At this time, the sub expansion device 7 is superheated by the sub expansion device controller 17 at the suction portion of the high-stage compression mechanism 2 (= high-stage intake superheat).
Is operated so as to match the high-stage intake superheat setting value. Therefore, since the high-stage suction superheat degree is appropriately maintained, it is possible to prevent the compression mechanism from being damaged by the liquid compression or prevent the discharge refrigerant temperature of the high-stage compression mechanism 2 from rising, and the efficiency of the high-stage compression mechanism 2 is further improved. Will be improved.

【0025】次に、貯湯ポンプ機構12、貯湯ポンプ機
構制御器18と、補助絞り装置8a、8bと給湯用補助
絞り装置制御器19、空調用補助絞り装置制御器20、
補助絞り装置制御器21について説明する。
Next, the hot water storage pump mechanism 12, the hot water storage pump mechanism controller 18, the auxiliary expansion devices 8a and 8b, the hot water supply auxiliary expansion device controller 19, the air conditioning auxiliary expansion device controller 20,
The auxiliary aperture device controller 21 will be described.

【0026】貯湯槽11内の貯湯量が減少すると、給湯
用補助絞り装置制御器19によって給湯用補助絞り装置
8bを操作して給湯用熱交換器3b内を流れる冷媒流量
を増加させ、給湯用熱交換器3bの加熱能力を増大させ
る。一方、給湯用熱交換器3b内の冷媒圧力(=高段圧
力)は高段側圧縮機構制御器14、高段側圧縮機構2に
より適正な圧力に維持されているので貯湯ポンプ機構制
御器18によって検出される給湯水温度(給湯用熱交換
器3bで加熱された給湯水の温度)が上昇する。このと
き貯湯ポンプ機構12は、貯湯ポンプ機構制御器18に
よって給湯水温度が給湯水温度設定値と一致するように
給湯用熱交換器3b内を流れる冷媒と熱交換する給湯水
量を増加させる。したがって所定の高温の給湯水を短時
間で給湯することができる。
When the amount of hot water stored in the hot water storage tank 11 is reduced, the hot water supply auxiliary expansion device controller 19 operates the hot water supply auxiliary expansion device 8b to increase the flow rate of the refrigerant flowing in the hot water supply heat exchanger 3b. The heating capacity of the heat exchanger 3b is increased. On the other hand, the refrigerant pressure (= high stage pressure) in the hot water supply heat exchanger 3b is maintained at an appropriate pressure by the high stage side compression mechanism controller 14 and the high stage side compression mechanism 2, so the hot water storage pump mechanism controller 18 The temperature of the hot water supplied (the temperature of the hot water heated by the hot-water heat exchanger 3b) detected by the temperature rises. At this time, the hot water storage pump mechanism 12 increases the amount of hot water supplied by the hot water storage pump mechanism controller 18 to exchange heat with the refrigerant flowing through the hot water supply heat exchanger 3b so that the hot water supply water temperature matches the hot water supply water temperature set value. Therefore, it is possible to supply hot water having a predetermined high temperature in a short time.

【0027】室内ユニット9を設置した部屋10を暖房
したい場合、空調用補助絞り装置制御器20によって空
調用補助絞り装置8aを操作して空調用熱交換器3a内
を流れる冷媒流量を増加させ、空調用熱交換器3aの加
熱能力を増大させる。一方、空調用熱交換器3a内の冷
媒は高段圧縮機構制御器14、高段側圧縮機構2により
適正な圧力(=高段圧力設定値)に維持されているので
空調用熱交換器3a、室内ファン(図示せず)等によっ
て部屋10の空気と熱交換させて主邸の高温空気を部屋
10に吹き出すことにより、部屋10を短時間で暖房す
ることができる。
When it is desired to heat the room 10 in which the indoor unit 9 is installed, the air conditioning auxiliary expansion device controller 20 operates the air conditioning auxiliary expansion device 8a to increase the flow rate of the refrigerant flowing through the air conditioning heat exchanger 3a. The heating capacity of the air-conditioning heat exchanger 3a is increased. On the other hand, since the refrigerant in the air conditioning heat exchanger 3a is maintained at an appropriate pressure (= high pressure setting value) by the high-stage compression mechanism controller 14 and the high-stage compression mechanism 2, the air conditioning heat exchanger 3a The room 10 can be heated in a short time by exchanging heat with the air in the room 10 by an indoor fan (not shown) and blowing out the hot air of the main residence into the room 10.

【0028】また、給湯負荷と空調負荷が同時に発生し
たときに補助絞り装置制御器21が作動する。
When the hot water supply load and the air conditioning load occur simultaneously, the auxiliary expansion device controller 21 operates.

【0029】まず空調負荷と給湯負荷に優先順位がない
とき、補助絞り装置制御器21は、給湯用補助絞り装置
制御器19、空調用補助絞り装置制御器20による各操
作量で、それぞれ給湯用補助絞り装置8b、空調用補助
絞り装置8aを操作する。
First, when the air conditioning load and the hot water supply load are not prioritized, the auxiliary throttle device controller 21 supplies the hot water with each operation amount by the hot water supply auxiliary throttle device controller 19 and the air conditioning auxiliary throttle device controller 20. The auxiliary expansion device 8b and the air conditioning auxiliary expansion device 8a are operated.

【0030】つぎに空調負荷と給湯負荷に優先順位があ
るときを、給湯を優先的に行いたい場合で説明する。こ
のとき、補助絞り装置制御器21は、給湯用補助絞り装
置制御器19による給湯用補助絞り装置8bの操作量と
空調用補助絞り装置制御器20による空調用補助絞り装
置8aの操作量のうち、給湯用補助絞り装置制御器19
による操作量を優先的に給湯用絞り装置8bに出力する
ことによって給湯負荷にすばやく対応することができ
る。たとえば、給湯用補助絞り装置8bは給湯用補助絞
り装置制御器19による操作量で操作し、空調用補助絞
り装置8aは空調用補助絞り装置制御器20による操作
量より小なる操作量で操作することによって、給湯用熱
交換器3bに優先的により多くの冷媒を循環させて給湯
用熱交換器3bの加熱能力を増大させることができるも
のである。
Next, when the air conditioning load and the hot water supply load are prioritized, the case of preferentially performing hot water supply will be described. At this time, the auxiliary expansion device controller 21 determines whether the operation amount of the hot water supply auxiliary expansion device 8b by the hot water supply auxiliary expansion device controller 19 or the operation amount of the air conditioning auxiliary expansion device 8a by the air conditioning auxiliary expansion device controller 20. , Hot water supply auxiliary throttle device controller 19
By preferentially outputting the operation amount by the hot water supply expansion device 8b, it is possible to quickly cope with the hot water supply load. For example, the hot water supply auxiliary expansion device 8b is operated by an operation amount by the hot water supply auxiliary expansion device controller 19, and the air conditioning auxiliary expansion device 8a is operated by an operation amount smaller than the operation amount by the air conditioning auxiliary expansion device controller 20. This allows more refrigerant to be circulated preferentially through the hot water supply heat exchanger 3b to increase the heating capacity of the hot water supply heat exchanger 3b.

【0031】同様に空調を優先的に行いたい場合、補助
絞り装置制御器21は、空調用補助絞り装置制御器20
による空調用補助絞り装置8aの操作量と給湯用補助絞
り装置制御器19による給湯用補助絞り装置8bの操作
量のうち、空調用補助絞り装置制御器20による操作量
を優先的に空調用絞り装置8aに出力することによって
空調負荷にすばやく対応することができる。
Similarly, when it is desired to preferentially perform air conditioning, the auxiliary throttle device controller 21 is the auxiliary throttle device controller 20 for air conditioning.
Among the operation amount of the auxiliary air conditioning expansion device 8a and the operation amount of the hot water supply auxiliary expansion device controller 19 by the hot water supply auxiliary expansion device controller 19, the operation amount by the air conditioning auxiliary expansion device controller 20 is preferentially given to the air conditioning expansion device. By outputting to the device 8a, it is possible to quickly cope with the air conditioning load.

【0032】なお上記の実施例では、二台の負荷側熱交
換器を並列に接続した構成としたが、負荷側熱交換器の
台数に限定されるものではない。
In the above embodiment, two load side heat exchangers are connected in parallel, but the number of load side heat exchangers is not limited.

【0033】なお、本発明の各制御器は、それら制御機
能を発揮する回路の他、コンピュータを利用してソフト
ウェア的に実現されてもよい。
Each controller of the present invention may be realized by software using a computer, in addition to the circuit that exhibits those control functions.

【0034】[0034]

【発明の効果】以上のように、本発明の2段圧縮ヒート
ポンプシステムは、負荷側熱交換器での高温と高能力を
確保し、かつ二段圧縮ヒートポンプシステム全体を高効
率で安定した信頼性の高い運転が実現できるものであ
る。
As described above, the two-stage compression heat pump system of the present invention ensures high temperature and high capacity in the load side heat exchanger, and the two-stage compression heat pump system is highly efficient and stable and reliable. It is possible to realize high driving performance.

【0035】また、必要に応じて並列に接続された複数
台の負荷側熱交換器の内のいずれかに優先的に冷媒を循
環させる補助絞り装置制御器により、たとえば給湯ある
いはある部屋の空調を優先させて湯切れ、空調の立上り
時間などを改善できるという長所を有する。
Further, if necessary, for example, hot water supply or air conditioning of a certain room is controlled by an auxiliary expansion device controller which circulates the refrigerant preferentially in any of a plurality of load side heat exchangers connected in parallel. It has the advantage that priority can be given to improving hot water shortage and air conditioning start-up time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二段圧縮ヒートポンプシステムの一実
施例の構成図である。
FIG. 1 is a configuration diagram of an embodiment of a two-stage compression heat pump system of the present invention.

【図2】本発明の二段圧縮ヒートポンプシステムを空調
給湯システムとして用いた一実施例における制御装置を
示す構成図である。
FIG. 2 is a configuration diagram showing a control device in an embodiment using the two-stage compression heat pump system of the present invention as an air conditioning hot water supply system.

【符号の説明】[Explanation of symbols]

1 低段側圧縮機構 10 部屋 2 高段側圧縮機構 11 貯湯槽 3a 空調用熱交換器 12 貯湯ポンプ
機構 3b 給湯用熱交換器 13 貯湯ユニッ
ト 4 主絞り装置 14 高段側圧縮
機構制御器 5 熱源側熱交換器 15 低段側圧縮
機構制御器 6 冷媒対冷媒熱交換器 16 主絞り装置
制御器 6a 低段用冷媒入口 17 副絞り装置
制御器 6b 高段用冷媒入口 18 貯湯ポンプ
機構制御器 6c 低段用冷媒出口 19 給湯用補助
絞り装置制御器 6d 高段用冷媒出口 20 空調用補助
絞り装置制御器 6e 中間合流点 21 補助絞り装
置制御器 7 副絞り装置 8a、8b 補助絞り装置 9 室内ユニット
1 Low-stage side compression mechanism 10 Room 2 High-stage side compression mechanism 11 Hot water storage tank 3a Air conditioning heat exchanger 12 Hot water storage pump mechanism 3b Hot water supply heat exchanger 13 Hot water storage unit 4 Main throttle device 14 High pressure side compression mechanism controller 5 Heat source Side heat exchanger 15 Low-stage compression mechanism controller 6 Refrigerant-to-refrigerant heat exchanger 16 Main throttle device controller 6a Low-stage refrigerant inlet 17 Secondary throttle device controller 6b High-stage refrigerant inlet 18 Hot water storage pump mechanism controller 6c Low-stage refrigerant outlet 19 Hot water supply auxiliary expansion device controller 6d High-stage refrigerant outlet 20 Air conditioning auxiliary expansion device controller 6e Intermediate confluence point 21 Auxiliary expansion device controller 7 Sub expansion device 8a, 8b Auxiliary expansion device 9 Indoor unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田頭 實 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Tagashira 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 周波数可変の低段側圧縮機構と周波数可
変の高段側圧縮機構を直列に接続し、これに負荷側熱交
換器、主絞り装置、熱源側熱交換器を接続して主冷凍サ
イクルを構成する二段圧縮ヒートポンプシステムであっ
て、低段用冷媒と高段用冷媒とを熱交換させる冷媒対冷
媒熱交換器の低段用冷媒入口と、副絞り装置を介した前
記冷媒対冷媒熱交換器の高段用冷媒入口が、前記負荷側
熱交換器の出口と接続され、前記冷媒対冷媒熱交換器の
低段用冷媒出口が前記主絞り装置を介して前記熱源側熱
交換器の入口と接続され、前記冷媒対冷媒熱交換器の高
段用冷媒出口が前記低段側圧縮機構と前記高段側圧縮機
構の中間に接続され、さらに前記高段側圧縮機構で圧縮
されて前記負荷側熱交換器の出口に至るまでの冷媒圧力
を高段圧力として検出して高段圧力設定値と一致するよ
うに前記高段側圧縮機構の周波数を制御する高段側圧縮
機構制御器と、前記主絞り装置で減圧されて前記低段側
圧縮機構に吸入される冷媒圧力を低段圧力として検出
し、かつ前記副絞り装置で減圧された冷媒と前記低段側
圧縮機構で圧縮された冷媒の圧力を中間圧力として検出
して前記中間圧力が前記高段圧力と前記低段圧力の相乗
平均値と実質上一致するように前記低段側圧縮機構の周
波数を制御する低段側圧縮機構制御器を備えたことを特
徴とする二段圧縮ヒートポンプシステム。
1. A frequency variable low-stage compression mechanism and a frequency variable high-stage compression mechanism are connected in series, and a load side heat exchanger, a main expansion device, and a heat source side heat exchanger are connected to the main. A two-stage compression heat pump system constituting a refrigeration cycle, the low-stage refrigerant inlet of a refrigerant-to-refrigerant heat exchanger for exchanging heat between a low-stage refrigerant and a high-stage refrigerant, and the refrigerant through a sub expansion device. The high-stage refrigerant inlet of the refrigerant-to-refrigerant heat exchanger is connected to the outlet of the load-side heat exchanger, and the low-stage refrigerant outlet of the refrigerant-to-refrigerant heat exchanger is connected to the heat source side heat through the main expansion device. Connected to the inlet of the exchanger, the high-stage refrigerant outlet of the refrigerant-refrigerant heat exchanger is connected to the middle of the low-stage compression mechanism and the high-stage compression mechanism, and further compressed by the high-stage compression mechanism. The refrigerant pressure from the discharge side to the outlet of the load side heat exchanger is detected as a high-stage pressure. And a high-stage compression mechanism controller that controls the frequency of the high-stage compression mechanism so as to match the high-stage pressure set value, and the main throttle device reduces the pressure and sucks the low-stage compression mechanism. The refrigerant pressure is detected as a low-stage pressure, and the pressure of the refrigerant reduced by the sub-throttle device and the refrigerant compressed by the low-stage side compression mechanism is detected as an intermediate pressure, and the intermediate pressure is the high-stage pressure. A two-stage compression heat pump system comprising a low-stage compression mechanism controller that controls the frequency of the low-stage compression mechanism so as to substantially match the geometric mean value of the low-stage pressure.
【請求項2】 低段側圧縮機構吸入部での冷媒の過熱度
を低段側吸入過熱度として検出して前記低段側吸入過熱
度が低段側吸入過熱度設定値と一致するように前記主絞
り装置を制御する主絞り装置制御器を備えたことを特徴
とする請求項1記載の二段圧縮ヒートポンプシステム。
2. The superheat degree of the refrigerant in the suction portion of the low-stage compression mechanism is detected as the low-stage suction superheat degree so that the low-stage suction superheat degree coincides with the low-stage suction superheat degree set value. The two-stage compression heat pump system according to claim 1, further comprising a main expansion device controller that controls the main expansion device.
【請求項3】 高段側圧縮機構吸入部での冷媒の過熱度
を高段側吸入過熱度として検出して前記高段側吸入過熱
度が高段側吸入過熱度設定値と一致するように前記副絞
り装置を制御する副絞り装置制御器を備えたことを特徴
とする請求項2記載の二段圧縮ヒートポンプシステム。
3. The superheat degree of the refrigerant in the intake portion of the high-stage compression mechanism is detected as the high-stage intake superheat degree so that the high-stage intake superheat degree matches the high-stage intake superheat degree set value. The two-stage compression heat pump system according to claim 2, further comprising a sub expansion device controller that controls the sub expansion device.
【請求項4】 並列に接続された複数台の負荷側熱交換
器の冷媒入口が前記高段側圧縮機構の吐出側と接続さ
れ、前記並列に接続された複数台の負荷側熱交換器の冷
媒出口がそれぞれ複数台の補助絞り装置を介して前記冷
媒対冷媒熱交換器の高段用冷媒入口と前記副絞り装置に
分岐して接続され、前記複数台の負荷側熱交換器のうち
少なくとも1台が給湯用熱交換器として利用されて、貯
湯槽、流量可変の貯湯ポンプ機構等を接続して給湯ユニ
ットを構成し、さらに前記給湯用熱交換器で加熱された
給湯水の温度を給湯水温度として検出して前記給湯水温
度を給湯水温度設定値と一致するように前記貯湯ポンプ
機構を制御する貯湯ポンプ機構制御器を備えたことを特
徴とする請求項3記載の二段圧縮ヒートポンプシステ
ム。
4. The refrigerant inlets of a plurality of load side heat exchangers connected in parallel are connected to the discharge side of the high-stage side compression mechanism, and the plurality of load side heat exchangers connected in parallel are connected. Refrigerant outlets are respectively branched and connected to the high-stage refrigerant inlet of the refrigerant-to-refrigerant heat exchanger and the auxiliary throttle device via a plurality of auxiliary throttle devices, and at least one of the plurality of load-side heat exchangers One is used as a heat exchanger for hot water supply, and a hot water storage tank, a hot water storage pump mechanism with variable flow rate, etc. are connected to form a hot water supply unit, and the temperature of the hot water supplied by the heat exchanger for hot water supply is supplied as hot water. The two-stage compression heat pump according to claim 3, further comprising: a hot water storage pump mechanism controller that controls the hot water storage pump mechanism so that the hot water supply water temperature is detected as a water temperature and matches the hot water supply water temperature set value. system.
【請求項5】 貯湯槽に蓄えられた湯量を貯湯量として
検出して前記貯湯量を貯湯量設定値と一致するように前
記複数台の補助絞り装置のうち前記給湯用熱交換器出口
側に接続された補助絞り装置を制御する給湯用補助絞り
装置制御器を備えたことを特徴とする請求項4記載の二
段圧縮ヒートポンプシステム。
5. The hot water supply heat exchanger outlet of the plurality of auxiliary expansion devices is detected so that the amount of hot water stored in the hot water storage tank is detected as a hot water storage amount and the hot water storage amount matches the hot water storage amount set value. The two-stage compression heat pump system according to claim 4, further comprising a hot water supply auxiliary expansion device controller for controlling the connected auxiliary expansion device.
【請求項6】 並列に接続された複数台の負荷側熱交換
器の冷媒入口が前記高段側圧縮機構の吐出側と接続さ
れ、前記並列に接続された複数台の負荷側熱交換器の冷
媒出口がそれぞれ複数台の補助絞り装置を介して前記冷
媒対冷媒熱交換器の高段用冷媒入口と前記副絞り装置に
接続され、前記複数台の負荷側熱交換器のうち少なくと
も1台が空調用熱交換器として利用されて、室内ファン
等とともに室内ユニットを構成し、さらに前記室内ユニ
ットが設置された部屋の室温を検出して前記室温を室温
設定値と一致するように前記複数台の補助絞り装置のう
ち前記空調用熱交換器出口側に接続された補助絞り装置
を制御する空調用補助絞り装置制御器を備えたことを特
徴とする請求項3記載の二段圧縮ヒートポンプシステ
ム。
6. The refrigerant inlets of a plurality of load side heat exchangers connected in parallel are connected to the discharge side of the high-stage compression mechanism, and the plurality of load side heat exchangers connected in parallel are connected. Refrigerant outlets are respectively connected to the high-stage refrigerant inlet of the refrigerant-to-refrigerant heat exchanger and the sub-throttle device via a plurality of auxiliary expansion devices, and at least one of the plurality of load-side heat exchangers is It is used as a heat exchanger for air conditioning, constitutes an indoor unit together with an indoor fan, etc., and further detects the room temperature of the room in which the indoor unit is installed to detect the room temperature and match the room temperature with a set value of the plurality of units. The two-stage compression heat pump system according to claim 3, further comprising an air conditioning auxiliary expansion device controller that controls the auxiliary expansion device connected to the outlet of the air conditioning heat exchanger.
【請求項7】 並列に接続された複数台の負荷側熱交換
器の冷媒入口が前記高段側圧縮機構の吐出側と接続さ
れ、前記並列に接続された複数台の負荷側熱交換器の冷
媒出口がそれぞれ複数台の補助絞り装置を介して前記冷
媒対冷媒熱交換器の高段用冷媒入口と前記副絞り装置に
接続され、さらに前記複数台の負荷側熱交換器のうちで
優先順位を設定して前記優先順位に応じて前記複数台の
補助絞り装置を制御する補助絞り装置制御器を備えたこ
とを特徴とする請求項3記載の二段圧縮ヒートポンプシ
ステム。
7. The refrigerant inlets of a plurality of load side heat exchangers connected in parallel are connected to the discharge side of the high-stage compression mechanism, and the plurality of load side heat exchangers connected in parallel are connected. Refrigerant outlets are connected to the high-stage refrigerant inlet of the refrigerant-to-refrigerant heat exchanger and the sub-throttle device via a plurality of auxiliary expansion devices, respectively, and priority is given to the plurality of load-side heat exchangers. 4. The two-stage compression heat pump system according to claim 3, further comprising: an auxiliary expansion device controller that controls the plurality of auxiliary expansion devices according to the priority order.
JP25354191A 1991-10-01 1991-10-01 Double stage compression type heat pump system Pending JPH0593552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25354191A JPH0593552A (en) 1991-10-01 1991-10-01 Double stage compression type heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25354191A JPH0593552A (en) 1991-10-01 1991-10-01 Double stage compression type heat pump system

Publications (1)

Publication Number Publication Date
JPH0593552A true JPH0593552A (en) 1993-04-16

Family

ID=17252806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25354191A Pending JPH0593552A (en) 1991-10-01 1991-10-01 Double stage compression type heat pump system

Country Status (1)

Country Link
JP (1) JPH0593552A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147218A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
US7802441B2 (en) 2004-05-12 2010-09-28 Electro Industries, Inc. Heat pump with accumulator at boost compressor output
US7849700B2 (en) 2004-05-12 2010-12-14 Electro Industries, Inc. Heat pump with forced air heating regulated by withdrawal of heat to a radiant heating system
WO2015045247A1 (en) 2013-09-30 2015-04-02 三菱重工業株式会社 Heat pump system, and heat pump water heater
JP2017511871A (en) * 2014-03-04 2017-04-27 コンヴェクタ アクチェンゲゼルシャフト Cooling equipment
CN107278253A (en) * 2016-09-07 2017-10-20 徐生恒 Air energy double stage heat pump air-conditioning system
WO2024004558A1 (en) * 2022-06-30 2024-01-04 株式会社前川製作所 Refrigeration device, and refrigeration device control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802441B2 (en) 2004-05-12 2010-09-28 Electro Industries, Inc. Heat pump with accumulator at boost compressor output
US7849700B2 (en) 2004-05-12 2010-12-14 Electro Industries, Inc. Heat pump with forced air heating regulated by withdrawal of heat to a radiant heating system
JP2007147218A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
WO2015045247A1 (en) 2013-09-30 2015-04-02 三菱重工業株式会社 Heat pump system, and heat pump water heater
JP2017511871A (en) * 2014-03-04 2017-04-27 コンヴェクタ アクチェンゲゼルシャフト Cooling equipment
CN107278253A (en) * 2016-09-07 2017-10-20 徐生恒 Air energy double stage heat pump air-conditioning system
WO2018045507A1 (en) * 2016-09-07 2018-03-15 徐生恒 Air-source two-stage heat-pump air-conditioning system
WO2024004558A1 (en) * 2022-06-30 2024-01-04 株式会社前川製作所 Refrigeration device, and refrigeration device control method

Similar Documents

Publication Publication Date Title
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
US9587867B2 (en) Chiller system and control method thereof
US6843066B2 (en) Air conditioning system and method for controlling the same
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
US6807817B2 (en) Method for operating compressors of air conditioner
KR20150057624A (en) Air conditioner and a method controlling the same
EP1498668B1 (en) Heat source unit of air conditioner and air conditioner
US6843425B2 (en) Air conditioner and method for controlling the same
KR101166385B1 (en) A air conditioning system by water source and control method thereof
US20050155361A1 (en) Air conditioning system and method for controlling the same
JP6598882B2 (en) Refrigeration cycle equipment
US20210207834A1 (en) Air-conditioning system
JPH10166847A (en) Air conditioner for vehicle
US6808119B2 (en) Heat pump air conditioning system comprising additional heater and method for operating the same
JPH0593552A (en) Double stage compression type heat pump system
US7299648B2 (en) Refrigeration system of air conditioning apparatuses with bypass line between inlet and outlet of compressor
KR20160097566A (en) Air conditioner and a method for controlling the same
JPH062966A (en) Two-stage compression heat pump system
JPH1096545A (en) Air conditioner and control method thereof
KR102482403B1 (en) Air Conditioning system
KR100524719B1 (en) By-pass device with variable flow rate of multi air-conditioner system
KR102509997B1 (en) Outdoor Unit
JP2006046782A (en) Air conditioner and operation method of air conditioner
KR20080075581A (en) Control method for air conditioning system
JPH05240531A (en) Room cooling/heating hot water supplying apparatus