WO2024004558A1 - Refrigeration device, and refrigeration device control method - Google Patents

Refrigeration device, and refrigeration device control method Download PDF

Info

Publication number
WO2024004558A1
WO2024004558A1 PCT/JP2023/021218 JP2023021218W WO2024004558A1 WO 2024004558 A1 WO2024004558 A1 WO 2024004558A1 JP 2023021218 W JP2023021218 W JP 2023021218W WO 2024004558 A1 WO2024004558 A1 WO 2024004558A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
stage compressor
flow path
low
compressed
Prior art date
Application number
PCT/JP2023/021218
Other languages
French (fr)
Japanese (ja)
Inventor
剛 吉田
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Publication of WO2024004558A1 publication Critical patent/WO2024004558A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present disclosure relates to a refrigeration device and a method of controlling the refrigeration device.
  • a refrigeration system includes a low-stage compressor and a high-stage compressor and is configured to perform two-stage compression.
  • a configuration is known in which an intercooler is provided to cool the refrigerant discharged from the low-stage compressor (see, for example, Patent Document 1).
  • At least one embodiment of the present disclosure provides a method for efficiently suppressing the degree of superheating of refrigerant sucked into a high-stage compressor in a refrigeration system configured to perform two-stage compression. purpose.
  • a refrigeration device includes: a low stage compressor for compressing refrigerant; a high stage compressor for compressing the refrigerant after being compressed by the low stage compressor; a flash tank capable of receiving the refrigerant after being compressed by the high-stage compressor; a liquid injection flow path for supplying refrigerant liquid in the flash tank to the refrigerant after being compressed by the low-stage compressor and discharged from the low-stage compressor; Equipped with.
  • a method for controlling a refrigeration device includes: A method for controlling a refrigeration device, the method comprising: The refrigeration device includes: a low stage compressor for compressing refrigerant; a high stage compressor for compressing the refrigerant after being compressed by the low stage compressor; a flash tank capable of receiving the refrigerant after being compressed by the high-stage compressor; a liquid injection flow path for supplying refrigerant liquid in the flash tank to the refrigerant after being compressed by the low stage compressor; a first expansion valve provided in the liquid injection flow path; Equipped with a suction temperature detection step of detecting the suction temperature of the refrigerant sucked into the high-stage compressor; a suction pressure detection step of detecting the suction pressure of the refrigerant sucked into the high-stage compressor; a suction superheat degree calculation step of calculating a suction superheat degree of the refrigerant sucked into the high-stage compressor based on the detected suction temperature and the detected suction
  • the degree of superheat of refrigerant sucked into a high-stage compressor can be efficiently suppressed.
  • FIG. 1 is a system diagram of a refrigeration device according to an embodiment. 1 is an example of a Mollier diagram of a refrigeration system according to an embodiment that uses CO 2 refrigerant. It is a flowchart which shows the flow of the process performed in a control apparatus for adjusting the opening degree of a 1st expansion valve.
  • expressions such as “same,””equal,” and “homogeneous” that indicate that things are in an equal state do not only mean that things are exactly equal, but also have tolerances or differences in the degree to which the same function can be obtained. It also represents the existing state.
  • expressions expressing shapes such as squares and cylinders do not only refer to shapes such as squares and cylinders in a strict geometric sense, but also include uneven parts and chamfers to the extent that the same effect can be obtained. Shapes including parts, etc. shall also be expressed.
  • the expressions “comprising,”"comprising,””comprising,””containing,” or “having" one component are not exclusive expressions that exclude the presence of other components.
  • FIG. 1 is a system diagram of a refrigeration system according to an embodiment.
  • the refrigeration system 1 according to one embodiment is, for example, a two-stage compression two-stage expansion type refrigeration system that uses CO 2 refrigerant.
  • a low stage compressor 11, a high stage compressor 12, and a flash tank 13 are provided in a refrigerant circulation path 30.
  • two low stage compressors 11 are provided in parallel to the refrigerant circulation path 30.
  • two high-stage compressors 12 are provided in parallel to the refrigerant circulation path 30.
  • an accumulator 14 is provided in a refrigerant flow path 31 that connects the outlet of the low-stage compressor 11 and the inlet of the high-stage compressor 12.
  • a condenser 15 that operates as a gas cooler is provided in a refrigerant flow path 32 that connects the outlet of the high-stage compressor 12 and the inlet of the flash tank 13.
  • a heat exchanger 17 is provided in the refrigerant circulation path 30 for exchanging heat between the liquid phase part of the flash tank 13 and the refrigerant that has passed through the evaporator 16 as a cooling load, for example. There is.
  • the low-stage compressor 1 The refrigerant flow path 31a connects the outlet of the accumulator 14 to the refrigerant flow path 31a.
  • the refrigeration apparatus 1 includes a flash gas flow path 36 that connects the gas phase portion of the flash tank 13 and a refrigerant flow path 31a that connects the outlet of the low stage compressor 11 and the accumulator 14. .
  • a first expansion valve 41 is provided in the liquid injection flow path 35, and a second expansion valve (high-stage An expansion valve) 42 is provided.
  • the refrigeration apparatus 1 has a refrigerant flow path 34 b that connects the heat exchanger 17 and the evaporator 16 among the refrigerant flow paths 34 for supplying the refrigerant liquid in the flash tank 13 to the evaporator 16 .
  • a third expansion valve (low stage expansion valve) 43 is provided.
  • a fourth expansion valve 44 is provided in the flash gas flow path 36.
  • an oil separator 21 for separating refrigerant gas and refrigerating machine oil is provided in a refrigerant flow path 32a that connects the outlet of the high-stage compressor 12 and the condenser 15. .
  • the refrigeration oil separated by the oil separator 21 is configured to be returned to the low-stage compressor 11 and the high-stage compressor 12 via an oil tank (not shown). .
  • the refrigeration system 1 includes a control device 50 for controlling each part of the refrigeration system 1.
  • the control device 50 includes a processor 51 that executes various calculation processes, and a memory 53 that non-temporarily or temporarily stores various data processed by the processor 51.
  • the processor 51 is realized by a CPU, GPU, MPU, DSP, various other arithmetic devices, or a combination thereof.
  • the memory 53 is realized by ROM, RAM, flash memory, or a combination thereof.
  • the control content of the control device 50 will be mainly explained regarding adjustment of the opening degree of the first expansion valve 41. Note that the control contents of the control device 50 will be described in detail later.
  • the refrigeration system 1 includes various sensors for controlling each part of the refrigeration system 1.
  • Various sensors for controlling each part of the refrigeration system 1 include, for example, a suction temperature sensor 55 for detecting the suction temperature Ti of the refrigerant sucked into the high-stage compressor 12; A suction pressure sensor 57 is included to detect the suction pressure Pi of the refrigerant.
  • the refrigerant compressed by the low stage compressor 11 and the high stage compressor 12 is cooled by the condenser 15.
  • the refrigerant cooled by the condenser 15 is depressurized through the second expansion valve 42 and then sent to the flash tank 13 where it is separated into a gas phase and a liquid phase.
  • the refrigerant liquid forming the liquid phase in the flash tank 13 exits the flash tank 13 and exchanges heat with the refrigerant returning from the evaporator 16 in the heat exchanger 17 to heat the refrigerant.
  • the refrigerant liquid in the flash tank 13 is supplied to the refrigerant after being compressed by the low stage compressor 11 and discharged from the low stage compressor 11.
  • An injection flow path 35 is provided.
  • a heat exchanger for cooling the refrigerant sucked into the high-stage compressor 12.
  • problems arise such as securing an installation location and increasing costs.
  • the refrigerant liquid in the flash tank 13 is supplied to the refrigerant after being compressed in the low stage compressor 11 and discharged from the low stage compressor 11. It has been found that the degree of superheating of the refrigerant being sucked can be effectively suppressed.
  • the refrigeration system 1 according to the embodiment there is no installation space for installing a heat exchanger for cooling the refrigerant sucked into the high-stage compressor 12, and there is no need to pay the cost for installing the heat exchanger.
  • the degree of superheating of the refrigerant sucked into the high-stage compressor 12 can be efficiently suppressed regardless of the temperature conditions of the outside air. Thereby, the efficiency of the high-stage compressor 12 can be improved at low cost.
  • the liquid injection channel 35 is a channel through which the liquid phase part of the flash tank 13 and the refrigerant after being compressed by the low stage compressor 11 flow through the low stage compressor 11.
  • the refrigerant flow path 31 connecting the outlet of the high-stage compressor 12 and the inlet of the high-stage compressor 12 may be provided so as to communicate with each other.
  • a downstream end 35d of the liquid injection channel 35 is preferably connected to the refrigerant channel 31.
  • the upstream end 35u of the liquid injection channel 35 is connected to the flash tank 13 and the heat exchanger 17 in the refrigerant channel 34 for supplying the refrigerant liquid in the flash tank 13 to the evaporator 16, as shown in FIG. It may be connected to the refrigerant flow path 34a that connects the flash tank 13, or it may be directly connected to the flash tank 13.
  • the refrigeration apparatus 1 may include a first expansion valve 41 provided in the liquid injection channel 35. Thereby, the refrigerant liquid in the flash tank 13 can be supplied to the refrigerant compressed by the low-stage compressor 11 with good controllability.
  • the refrigeration device 1 may include a second expansion valve 42 provided in the refrigerant flow path 32b, which is a flow path connecting the condenser 15 and the flash tank 13. Thereby, the discharge pressure of the high stage compressor 12 can be adjusted. Furthermore, in the refrigeration system 1 according to the embodiment, a flash gas flow path 36 connecting the gas phase portion of the flash tank 13 and the refrigerant flow path 31a connecting the outlet of the low stage compressor 11 and the accumulator 14 is provided. It is preferable to include a fourth expansion valve 44. Since the pressure in the flash tank 13 can be adjusted by the fourth expansion valve 44, the supply of the refrigerant liquid in the flash tank 13, which is supplied to the refrigerant after being compressed by the low stage compressor 11, is stabilized. Thereby, the degree of superheat of the refrigerant supplied to the high-stage compressor 12 can be stably suppressed.
  • the refrigeration apparatus 1 includes an accumulator 14 as a gas-liquid separator provided in a refrigerant flow path 31, which is a flow path through which refrigerant after being compressed by the low stage compressor 11 flows. good.
  • the liquid injection flow path 35 is preferably provided so as to communicate the liquid phase portion of the flash tank 13 and the refrigerant flow path 31 .
  • the downstream end 35 d of the liquid injection flow path 35 is preferably connected to the refrigerant flow path 31 a between the low stage compressor 11 and the accumulator 14 in the refrigerant flow path 31 . This can prevent the refrigerant liquid in the flash tank from being supplied to the high stage compressor in a liquid state.
  • the refrigeration device 1 may include a flash gas flow path 36 for supplying refrigerant gas in the gas phase in the flash tank 13 to the refrigerant compressed by the low stage compressor 11. . Thereby, the refrigerant gas generated within the flash tank 13 can be returned to the high stage compressor 12.
  • the flash gas flow path 36 is preferably provided so as to communicate the gas phase portion of the flash tank 13 and the refrigerant flow path 31.
  • a downstream end 36 d of the flash gas flow path 36 is preferably connected to a refrigerant flow path 31 a between the low stage compressor 11 and the accumulator 14 in the refrigerant flow path 31 .
  • the refrigerant is preferably a CO 2 refrigerant.
  • FIG. 2 is an example of a Mollier diagram of the refrigeration system 1 according to an embodiment that uses CO 2 refrigerant.
  • the slope of the isentropic line Ei shown by the plurality of thin solid lines in FIG. 2 becomes smaller.
  • the power consumption of the high stage compressor 12 is almost the same when the refrigerant liquid in the flash tank 13 is supplied to the refrigerant after being compressed by the low stage compressor 11 and when it is not supplied. It turned out that there was no difference. Thereby, the degree of superheat of the refrigerant sucked into the high-stage compressor 12 can be efficiently suppressed while suppressing an increase in the power consumption of the high-stage compressor 12.
  • point n is the critical point of CO2
  • line X on the left side of point n is a saturated liquid line
  • line Y on the right side of point n is a saturated vapor line.
  • Point a is the state quantity of the refrigerant at the inlet of the low stage compressor 11
  • point b is the state quantity of the refrigerant at the outlet of the low stage compressor 11.
  • Point c is the state quantity of the refrigerant at the inlet of the high stage compressor 12
  • point d is the state quantity of the refrigerant at the outlet of the high stage compressor 12.
  • Point e is the state quantity of the refrigerant at the outlet of the condenser 15 as a gas cooler
  • point f is the state quantity of the refrigerant in the gas-liquid mixed state at the outlet of the second expansion valve 42.
  • the g point is the state quantity of the liquid phase part of the flash tank 13
  • the h point is the state quantity of the gas phase part after gas-liquid separation in the flash tank 13.
  • Point i is the state quantity of the refrigerant after leaving the flash tank 13 and passing through the heat exchanger 17
  • point j is the state quantity of the refrigerant at the outlet of the third expansion valve 43
  • point k is the state quantity of the refrigerant at the outlet of the evaporator 16. It is the state quantity of the refrigerant.
  • Point l is the state quantity of the refrigerant at the outlet of the fourth expansion valve 44
  • point m is the state quantity of the refrigerant at the outlet of the first expansion valve 41.
  • the liquid injection flow path 35 and the flash gas flow path 36 meet at point b, that is, the refrigerant flow path 31a between the low stage compressor 11 and the accumulator 14.
  • the specific enthalpy h of the refrigerant at point c that is, the inlet of the high-stage compressor 12, is lower than point b. Note that, for convenience of understanding, the same locations in FIG. 1 are also given symbols a to m.
  • the control device 50 is a control device for controlling each part of the refrigeration device 1, and also adjusts the opening degree of the first expansion valve 41.
  • the control device 50 calculates the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 based on the suction temperature detected by the suction temperature sensor 55 and the suction pressure detected by the suction pressure sensor 57,
  • the opening degree of the first expansion valve 41 is adjusted so that the calculated suction superheat degree becomes a preset target value. Thereby, as will be described later, the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 can be stably suppressed.
  • FIG. 3 is a flowchart showing the flow of processing performed in the control device 50 to adjust the opening degree of the first expansion valve 41.
  • a program for executing the processing shown in the flowchart of FIG. 3 is read by the processor 51 from the memory 53 and executed.
  • the method for controlling the refrigeration apparatus 1 includes a suction temperature detection step S10, a suction pressure detection step S20, a suction superheat degree calculation step S30, and an opening adjustment step S40.
  • the suction temperature detection step S10 is a step of detecting the suction temperature Ti of the refrigerant sucked into the high-stage compressor 12.
  • the processor 51 acquires the refrigerant suction temperature Ti detected by the suction temperature sensor 55.
  • the suction pressure detection step S20 is a step of detecting the suction pressure Pi of the refrigerant sucked into the high-stage compressor 12.
  • the processor 51 acquires the refrigerant suction pressure Pi detected by the suction pressure sensor 57.
  • the suction superheat degree calculation step S30 is a step of calculating the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 based on the detected suction temperature Ti and the detected suction pressure Pi.
  • the processor 51 determines whether the high-stage compressor 12 Calculate the suction superheat degree of the refrigerant sucked into the
  • Opening degree adjustment step S40 is a step of adjusting the opening degree of the first expansion valve 41 so that the calculated suction superheat degree becomes a preset target value.
  • the processor 51 sets the refrigerant suction superheat degree calculated in the suction superheat degree calculation step S30 to the target value of the suction superheat degree that is set in advance and stored in the memory 53.
  • the opening degree of the first expansion valve 41 is calculated, and a control signal for driving an actuator (not shown) of the first expansion valve 41 to achieve the calculated opening degree is output.
  • an actuator adjusts the opening degree of the first expansion valve 41 by receiving the control signal.
  • the opening degree of the first expansion valve 41 is adjusted so that the degree of suction superheat of the refrigerant sucked into the high-stage compressor 12 becomes the target value of the degree of suction superheat.
  • the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 can be stably suppressed. Thereby, the efficiency of the high-stage compressor 12 can be stably improved.
  • the refrigeration apparatus 1 includes a low-stage compressor 11 for compressing refrigerant, and a high-stage compressor for compressing the refrigerant after being compressed by the low-stage compressor 11.
  • a flash tank 13 that can receive the refrigerant compressed by the high stage compressor 12, and a flash tank that can receive the refrigerant compressed by the low stage compressor 11 and discharged from the low stage compressor 11.
  • a liquid injection flow path 35 for supplying the refrigerant liquid in 13 is provided.
  • the liquid injection flow path 35 is a flow path through which the refrigerant after being compressed by the liquid phase part of the flash tank 13 and the low stage compressor 11 flows. (refrigerant channel 31).
  • the downstream end 35d of the liquid injection channel 35 is preferably connected to the channel (refrigerant channel 31).
  • the refrigerant liquid in the flash tank 13 can be supplied to the refrigerant after being compressed by the low stage compressor 11 with a simple configuration.
  • the configuration of (1) or (2) above may include a first expansion valve 41 provided in the liquid injection channel 35.
  • the refrigerant liquid in the flash tank 13 can be stably supplied to the refrigerant after being compressed by the low stage compressor 11.
  • the discharge pressure of the high-stage compressor 12 can be adjusted.
  • the refrigerant is provided in the flow path (refrigerant flow path 31) through which the refrigerant after being compressed by the low stage compressor 11 flows. It is preferable to include a gas-liquid separator (accumulator 14).
  • the liquid injection flow path 35 is preferably provided so as to communicate the liquid phase portion of the flash tank 13 and the flow path (refrigerant flow path 31).
  • the downstream end 35d of the liquid injection channel 35 is connected to the channel (refrigerant channel 31a) between the low stage compressor 11 and the gas-liquid separator (accumulator 14) in the channel (refrigerant channel 31). It would be good to be connected.
  • a flash gas flow path 36 may be provided.
  • the refrigerant gas generated in the flash tank 13 can be returned to the high-stage compressor 12. Furthermore, the degree of superheating of the refrigerant sucked into the high-stage compressor 12 can be suppressed by the refrigerant gas generated within the flash tank 13.
  • a gas-liquid separator ( It is preferable to include an accumulator 14).
  • the flash gas flow path 36 is preferably provided so as to communicate the gas phase portion of the flash tank 13 and the flow path (refrigerant flow path 31).
  • the downstream end 36d of the flash gas flow path 36 is connected to the flow path (refrigerant flow path 31a) between the low-stage compressor 11 and the gas-liquid separator (accumulator 14) in the flow path (refrigerant flow path 31). It would be good to be connected.
  • the refrigerant may be a CO 2 refrigerant.
  • the degree of superheat of the refrigerant sucked into the high-stage compressor 12 can be efficiently suppressed while suppressing an increase in the power consumption of the high-stage compressor 12.
  • the first expansion valve 41 provided in the liquid injection flow path 35 and the refrigerant sucked into the high-stage compressor 12
  • the control device 50 calculates the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 based on the suction temperature Ti detected by the suction temperature sensor 55 and the suction pressure Pi detected by the suction pressure sensor 57.
  • the opening degree of the first expansion valve 41 is adjusted so that the calculated suction superheat degree becomes a preset target value.
  • the degree of suction superheat of the refrigerant sucked into the high-stage compressor 12 can be stably suppressed.
  • a method for controlling the refrigeration apparatus 1 is a method for controlling the refrigeration apparatus 1.
  • the refrigeration system 1 includes a low stage compressor 11 for compressing refrigerant, a high stage compressor 12 for compressing the refrigerant after being compressed by the low stage compressor 11, and a refrigerant compressed by the high stage compressor 12.
  • a flash tank 13 that can receive the refrigerant after being compressed by the low-stage compressor 11, a liquid injection flow path 35 for supplying the refrigerant liquid in the flash tank 13 to the refrigerant after being compressed by the low stage compressor 11, and a liquid injection flow path.
  • a first expansion valve 41 provided at 35 is provided.
  • a method for controlling a refrigeration system 1 includes a suction temperature detection step S10 for detecting a suction temperature Ti of refrigerant sucked into the high-stage compressor 12;
  • the suction pressure detection step S20 detects the suction pressure Pi of the refrigerant, and the degree of suction superheat of the refrigerant sucked into the high-stage compressor 12 is calculated based on the detected suction temperature Ti and the detected suction pressure Pi.
  • an opening adjustment step S40 for adjusting the opening degree of the first expansion valve 41 so that the calculated suction superheat degree becomes a preset target value.
  • the degree of suction superheat of the refrigerant sucked into the high-stage compressor 12 can be stably suppressed regardless of the outside temperature, so that the efficiency of the high-stage compressor 12 can be stably improved.
  • Refrigeration device 11 Low stage compressor 12 High stage compressor 13 Flash tank 14 Accumulator 15 Condenser 16 Evaporator 35 Liquid injection channel 36 Flash gas channel 41 First expansion valve 42 Second expansion valve (high stage expansion valve) 43 Third expansion valve (low stage expansion valve) 44 Fourth expansion valve 50 Control device 55 Suction temperature sensor 57 Suction temperature sensor

Abstract

A refrigeration device according to an embodiment of the present disclosure comprises: a low-stage compressor for compressing a refrigerant; a high-stage compressor for compressing the refrigerant that has been compressed by the low-stage compressor; a flash tank capable of accepting the refrigerant that has been compressed by the high-stage compressor; and a liquid injection flow passage for supplying refrigerant liquid in the flash tank into the refrigerant that has been compressed by the low-stage compressor and discharged from the low-stage compressor.

Description

冷凍装置及び冷凍装置の制御方法Refrigeration equipment and refrigeration equipment control method
 本開示は、冷凍装置及び冷凍装置の制御方法に関する。 The present disclosure relates to a refrigeration device and a method of controlling the refrigeration device.
 低段圧縮機と高段圧縮機とを備え、二段圧縮を行うように構成された冷凍装置が知られている。このような冷凍装置において、高段圧縮機の効率を上げるためには高段圧縮機に吸入される冷媒の過熱度を抑制する必要がある。そこで、高段圧縮機に吸入される冷媒の過熱度を抑制するために、低段圧縮機の吐出冷媒を冷却する中間冷却器を設けた構成が知られている(例えば特許文献1参照)。 A refrigeration system is known that includes a low-stage compressor and a high-stage compressor and is configured to perform two-stage compression. In such a refrigeration system, in order to increase the efficiency of the high-stage compressor, it is necessary to suppress the degree of superheating of the refrigerant sucked into the high-stage compressor. Therefore, in order to suppress the degree of superheating of the refrigerant sucked into the high-stage compressor, a configuration is known in which an intercooler is provided to cool the refrigerant discharged from the low-stage compressor (see, for example, Patent Document 1).
特開2009‐133585号公報Japanese Patent Application Publication No. 2009-133585
 しかし、このような中間冷却器を設ける場合、設置場所及び放熱スペースの確保やコスト増といった課題が生じ、特に空冷式の場合は騒音の課題も生じる。また外気温度が高い場合は低段圧縮機の吐出冷媒を十分に冷却出来ない虞もある。 However, when providing such an intercooler, there are problems such as securing an installation location and heat radiation space, and an increase in cost, and especially in the case of an air-cooled type, there is also the problem of noise. Furthermore, when the outside air temperature is high, there is a possibility that the refrigerant discharged from the low stage compressor cannot be sufficiently cooled.
 本開示の少なくとも一実施形態は、上述の事情に鑑みて、二段圧縮を行うように構成された冷凍装置において、高段圧縮機に吸入される冷媒の過熱度を効率的に抑制することを目的とする。 In view of the above-mentioned circumstances, at least one embodiment of the present disclosure provides a method for efficiently suppressing the degree of superheating of refrigerant sucked into a high-stage compressor in a refrigeration system configured to perform two-stage compression. purpose.
(1)本開示の少なくとも一実施形態に係る冷凍装置は、
 冷媒を圧縮するための低段圧縮機と、
 前記低段圧縮機で圧縮された後の前記冷媒を圧縮するための高段圧縮機と、
 前記高段圧縮機で圧縮された後の前記冷媒を受け入れることができるフラッシュタンクと、
 前記低段圧縮機で圧縮されて前記低段圧縮機から排出された後の前記冷媒に前記フラッシュタンク内の冷媒液を供給するための液インジェクション流路と、
を備える。
(1) A refrigeration device according to at least one embodiment of the present disclosure includes:
a low stage compressor for compressing refrigerant;
a high stage compressor for compressing the refrigerant after being compressed by the low stage compressor;
a flash tank capable of receiving the refrigerant after being compressed by the high-stage compressor;
a liquid injection flow path for supplying refrigerant liquid in the flash tank to the refrigerant after being compressed by the low-stage compressor and discharged from the low-stage compressor;
Equipped with.
(2)本開示の少なくとも一実施形態に係る冷凍装置の制御方法は、
 冷凍装置の制御方法であって、
 前記冷凍装置は、
  冷媒を圧縮するための低段圧縮機と、
  前記低段圧縮機で圧縮された後の前記冷媒を圧縮するための高段圧縮機と、
  前記高段圧縮機で圧縮された後の前記冷媒を受け入れることができるフラッシュタンクと、
  前記低段圧縮機で圧縮された後の前記冷媒に前記フラッシュタンク内の冷媒液を供給するための液インジェクション流路と、
 前記液インジェクション流路に設けられる第1膨張弁と、
を備え、
 前記高段圧縮機に吸入される前記冷媒の吸入温度を検出する吸入温度検出ステップと、
 前記高段圧縮機に吸入される前記冷媒の吸入圧力を検出する吸入圧力検出ステップと、
 検出された前記吸入温度と、検出された前記吸入圧力とに基づいて、前記高段圧縮機に吸入される前記冷媒の吸入過熱度を算出する吸入過熱度算出ステップと、
 算出された前記吸入過熱度が予め設定された目標値となるように前記第1膨張弁の開度を調節する開度調節ステップと、
を備える。
(2) A method for controlling a refrigeration device according to at least one embodiment of the present disclosure includes:
A method for controlling a refrigeration device, the method comprising:
The refrigeration device includes:
a low stage compressor for compressing refrigerant;
a high stage compressor for compressing the refrigerant after being compressed by the low stage compressor;
a flash tank capable of receiving the refrigerant after being compressed by the high-stage compressor;
a liquid injection flow path for supplying refrigerant liquid in the flash tank to the refrigerant after being compressed by the low stage compressor;
a first expansion valve provided in the liquid injection flow path;
Equipped with
a suction temperature detection step of detecting the suction temperature of the refrigerant sucked into the high-stage compressor;
a suction pressure detection step of detecting the suction pressure of the refrigerant sucked into the high-stage compressor;
a suction superheat degree calculation step of calculating a suction superheat degree of the refrigerant sucked into the high-stage compressor based on the detected suction temperature and the detected suction pressure;
an opening degree adjusting step of adjusting the opening degree of the first expansion valve so that the calculated suction superheat degree becomes a preset target value;
Equipped with.
 本開示の少なくとも一実施形態によれば、二段圧縮を行うように構成された冷凍装置において高段圧縮機に吸入される冷媒の過熱度を効率的に抑制できる。 According to at least one embodiment of the present disclosure, in a refrigeration system configured to perform two-stage compression, the degree of superheat of refrigerant sucked into a high-stage compressor can be efficiently suppressed.
一実施形態に係る冷凍装置の系統図である。FIG. 1 is a system diagram of a refrigeration device according to an embodiment. CO冷媒を使用する一実施形態に係る冷凍装置のモリエル線図の一例である。1 is an example of a Mollier diagram of a refrigeration system according to an embodiment that uses CO 2 refrigerant. 第1膨張弁の開度の調節のために制御装置において実施される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process performed in a control apparatus for adjusting the opening degree of a 1st expansion valve.
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present disclosure, and are merely illustrative examples. do not have.
For example, expressions expressing relative or absolute positioning such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""centered,""concentric," or "coaxial" are strictly In addition to representing such an arrangement, it also represents a state in which they are relatively displaced with a tolerance or an angle or distance that allows the same function to be obtained.
For example, expressions such as "same,""equal," and "homogeneous" that indicate that things are in an equal state do not only mean that things are exactly equal, but also have tolerances or differences in the degree to which the same function can be obtained. It also represents the existing state.
For example, expressions expressing shapes such as squares and cylinders do not only refer to shapes such as squares and cylinders in a strict geometric sense, but also include uneven parts and chamfers to the extent that the same effect can be obtained. Shapes including parts, etc. shall also be expressed.
On the other hand, the expressions "comprising,""comprising,""comprising,""containing," or "having" one component are not exclusive expressions that exclude the presence of other components.
 図1は、一実施形態に係る冷凍装置の系統図である。一実施形態に係る冷凍装置1は、例えばCO冷媒を使用する二段圧縮二段膨張式の冷凍装置である。一実施形態に係る冷凍装置1は、冷媒循環路30に、低段圧縮機11と、高段圧縮機12と、フラッシュタンク13とが設けられている。一実施形態に係る冷凍装置1では、冷媒循環路30に対して例えば2基の低段圧縮機11が並列に設けられている。一実施形態に係る冷凍装置1では、冷媒循環路30に対して例えば2基の高段圧縮機12が並列に設けられている。 FIG. 1 is a system diagram of a refrigeration system according to an embodiment. The refrigeration system 1 according to one embodiment is, for example, a two-stage compression two-stage expansion type refrigeration system that uses CO 2 refrigerant. In the refrigeration apparatus 1 according to one embodiment, a low stage compressor 11, a high stage compressor 12, and a flash tank 13 are provided in a refrigerant circulation path 30. In the refrigeration system 1 according to one embodiment, for example, two low stage compressors 11 are provided in parallel to the refrigerant circulation path 30. In the refrigeration system 1 according to one embodiment, for example, two high-stage compressors 12 are provided in parallel to the refrigerant circulation path 30.
 一実施形態に係る冷凍装置1は、低段圧縮機11の出口と高段圧縮機12の入口とを接続する冷媒流路31にアキュムレータ14が設けられている。
 一実施形態に係る冷凍装置1は、高段圧縮機12の出口とフラッシュタンク13の入口とを接続する冷媒流路32にガスクーラとして作動する凝縮器15が設けられている。一実施形態に係る冷凍装置1は、冷媒循環路30に、フラッシュタンク13の液相部と例えば冷却負荷としての蒸発器16を経た冷媒とを熱交換するための熱交換器17が設けられている。
In the refrigeration system 1 according to one embodiment, an accumulator 14 is provided in a refrigerant flow path 31 that connects the outlet of the low-stage compressor 11 and the inlet of the high-stage compressor 12.
In the refrigeration system 1 according to one embodiment, a condenser 15 that operates as a gas cooler is provided in a refrigerant flow path 32 that connects the outlet of the high-stage compressor 12 and the inlet of the flash tank 13. In the refrigeration system 1 according to one embodiment, a heat exchanger 17 is provided in the refrigerant circulation path 30 for exchanging heat between the liquid phase part of the flash tank 13 and the refrigerant that has passed through the evaporator 16 as a cooling load, for example. There is.
 一実施形態に係る冷凍装置1は、フラッシュタンク13の液相部と、低段圧縮機11の出口と高段圧縮機12の入口とを接続する冷媒流路31の内、低段圧縮機11の出口とアキュムレータ14とを接続する冷媒流路31aとを接続する液インジェクション流路35を備えている。
 一実施形態に係る冷凍装置1は、フラッシュタンク13の気相部と、低段圧縮機11の出口とアキュムレータ14とを接続する冷媒流路31aとを接続するフラッシュガス流路36を備えている。
In the refrigeration system 1 according to one embodiment, the low-stage compressor 1 The refrigerant flow path 31a connects the outlet of the accumulator 14 to the refrigerant flow path 31a.
The refrigeration apparatus 1 according to one embodiment includes a flash gas flow path 36 that connects the gas phase portion of the flash tank 13 and a refrigerant flow path 31a that connects the outlet of the low stage compressor 11 and the accumulator 14. .
 一実施形態に係る冷凍装置1は、液インジェクション流路35に第1膨張弁41が設けられ、凝縮器15とフラッシュタンク13の入口とを接続する冷媒流路32bに第2膨張弁(高段膨張弁)42が設けられている。一実施形態に係る冷凍装置1は、フラッシュタンク13内の冷媒液を蒸発器16に供給するための冷媒流路34の内、熱交換器17と蒸発器16とを接続する冷媒流路34bに第3膨張弁(低段膨張弁)43が設けられている。一実施形態に係る冷凍装置1は、フラッシュガス流路36に第4膨張弁44が設けられている。 In the refrigeration apparatus 1 according to one embodiment, a first expansion valve 41 is provided in the liquid injection flow path 35, and a second expansion valve (high-stage An expansion valve) 42 is provided. The refrigeration apparatus 1 according to one embodiment has a refrigerant flow path 34 b that connects the heat exchanger 17 and the evaporator 16 among the refrigerant flow paths 34 for supplying the refrigerant liquid in the flash tank 13 to the evaporator 16 . A third expansion valve (low stage expansion valve) 43 is provided. In the refrigeration apparatus 1 according to one embodiment, a fourth expansion valve 44 is provided in the flash gas flow path 36.
 一実施形態に係る冷凍装置1は、高段圧縮機12の出口と凝縮器15とを接続する冷媒流路32aに冷媒ガスと冷凍機油とを分離するための油分離器21が設けられている。一実施形態に係る冷凍装置1では、油分離器21で分離された冷凍機油は、不図示の油タンクを介して低段圧縮機11及び高段圧縮機12に戻されるように構成されている。 In the refrigeration system 1 according to one embodiment, an oil separator 21 for separating refrigerant gas and refrigerating machine oil is provided in a refrigerant flow path 32a that connects the outlet of the high-stage compressor 12 and the condenser 15. . In the refrigeration system 1 according to one embodiment, the refrigeration oil separated by the oil separator 21 is configured to be returned to the low-stage compressor 11 and the high-stage compressor 12 via an oil tank (not shown). .
 一実施形態に係る冷凍装置1は、冷凍装置1の各部を制御するための制御装置50を備えている。制御装置50は、各種演算処理を実行するプロセッサ51と、プロセッサ51によって処理される各種データを非一時的または一時的に記憶するメモリ53とを備える。プロセッサ51は、CPU、GPU、MPU、DSP、これら以外の各種演算装置、又はこれらの組み合わせなどによって実現される。メモリ53は、ROM、RAM、フラッシュメモリ、またはこれらの組み合わせなどによって実現される。
 以下の説明では、制御装置50の制御内容について、主に第1膨張弁41の開度の調節に関して説明する。なお、制御装置50の制御内容については、後で詳述する。
 一実施形態に係る冷凍装置1は、冷凍装置1の各部を制御するための各種のセンサを備えている。冷凍装置1の各部を制御するための各種のセンサには、例えば高段圧縮機12に吸入される冷媒の吸入温度Tiを検出するための吸入温度センサ55と、高段圧縮機12に吸入される冷媒の吸入圧力Piを検出するため吸入圧力センサ57とが含まれる。
The refrigeration system 1 according to one embodiment includes a control device 50 for controlling each part of the refrigeration system 1. The control device 50 includes a processor 51 that executes various calculation processes, and a memory 53 that non-temporarily or temporarily stores various data processed by the processor 51. The processor 51 is realized by a CPU, GPU, MPU, DSP, various other arithmetic devices, or a combination thereof. The memory 53 is realized by ROM, RAM, flash memory, or a combination thereof.
In the following description, the control content of the control device 50 will be mainly explained regarding adjustment of the opening degree of the first expansion valve 41. Note that the control contents of the control device 50 will be described in detail later.
The refrigeration system 1 according to one embodiment includes various sensors for controlling each part of the refrigeration system 1. Various sensors for controlling each part of the refrigeration system 1 include, for example, a suction temperature sensor 55 for detecting the suction temperature Ti of the refrigerant sucked into the high-stage compressor 12; A suction pressure sensor 57 is included to detect the suction pressure Pi of the refrigerant.
 このように構成される一実施形態に係る冷凍装置1では、低段圧縮機11及び高段圧縮機12で圧縮された冷媒は、凝縮器15で冷却される。凝縮器15で冷却された冷媒は、第2膨張弁42を通って減圧された後、フラッシュタンク13に送られ気相と液相に分離される。
 フラッシュタンク13内の液相部を形成する冷媒液は、フラッシュタンク13から出て、熱交換器17で蒸発器16から戻る冷媒と熱交換して該冷媒を加熱する。フラッシュタンク13から熱交換器17に送られた冷媒液は、熱交換器17を出て第3膨張弁43を経て減圧され、蒸発器16及び熱交換器17を経由して気化し、低段圧縮機11に供給される。
In the refrigeration system 1 according to the embodiment configured as described above, the refrigerant compressed by the low stage compressor 11 and the high stage compressor 12 is cooled by the condenser 15. The refrigerant cooled by the condenser 15 is depressurized through the second expansion valve 42 and then sent to the flash tank 13 where it is separated into a gas phase and a liquid phase.
The refrigerant liquid forming the liquid phase in the flash tank 13 exits the flash tank 13 and exchanges heat with the refrigerant returning from the evaporator 16 in the heat exchanger 17 to heat the refrigerant. The refrigerant liquid sent from the flash tank 13 to the heat exchanger 17 exits the heat exchanger 17, passes through the third expansion valve 43, is depressurized, is vaporized via the evaporator 16 and the heat exchanger 17, and is transferred to the lower stage. It is supplied to the compressor 11.
 一実施形態に係る冷凍装置1では、上述したように、低段圧縮機11で圧縮されて低段圧縮機11から排出された後の冷媒にフラッシュタンク13内の冷媒液を供給するための液インジェクション流路35を備えている。
 高段圧縮機12の効率を上げるためには、高段圧縮機12に吸入される冷媒の過熱度を抑制する必要がある。そこで、高段圧縮機12に吸入される冷媒を冷却するための熱交換器を用いることが考えられる。しかし、このような熱交換器を設ける場合、設置場所の確保やコスト増といった課題が生じる。
 発明者らが鋭意検討した結果、低段圧縮機11で圧縮されて低段圧縮機11から排出された後の冷媒にフラッシュタンク13内の冷媒液を供給することで、高段圧縮機12に吸入される冷媒の過熱度を効率的に抑制できることが判明した。
 一実施形態に係る冷凍装置1によれば、高段圧縮機12に吸入される冷媒を冷却するための熱交換器を設ける設置場所や該熱交換器を設けるためのコストの負担がなく、また外気の温度条件に左右されず高段圧縮機12に吸入される冷媒の過熱度を効率的に抑制できる。これにより、高段圧縮機12の効率向上を低コストで実現できる。
In the refrigeration apparatus 1 according to the embodiment, as described above, the refrigerant liquid in the flash tank 13 is supplied to the refrigerant after being compressed by the low stage compressor 11 and discharged from the low stage compressor 11. An injection flow path 35 is provided.
In order to increase the efficiency of the high-stage compressor 12, it is necessary to suppress the degree of superheating of the refrigerant sucked into the high-stage compressor 12. Therefore, it is conceivable to use a heat exchanger for cooling the refrigerant sucked into the high-stage compressor 12. However, when providing such a heat exchanger, problems arise such as securing an installation location and increasing costs.
As a result of intensive study by the inventors, the refrigerant liquid in the flash tank 13 is supplied to the refrigerant after being compressed in the low stage compressor 11 and discharged from the low stage compressor 11. It has been found that the degree of superheating of the refrigerant being sucked can be effectively suppressed.
According to the refrigeration system 1 according to the embodiment, there is no installation space for installing a heat exchanger for cooling the refrigerant sucked into the high-stage compressor 12, and there is no need to pay the cost for installing the heat exchanger. The degree of superheating of the refrigerant sucked into the high-stage compressor 12 can be efficiently suppressed regardless of the temperature conditions of the outside air. Thereby, the efficiency of the high-stage compressor 12 can be improved at low cost.
 一実施形態に係る冷凍装置1では、液インジェクション流路35は、フラッシュタンク13の液相部と、低段圧縮機11で圧縮された後の冷媒が流通する流路である低段圧縮機11の出口と高段圧縮機12の入口とを接続する冷媒流路31と、を連通するように設けられるとよい。液インジェクション流路35の下流端35dは、上記冷媒流路31に接続されるとよい。
 これにより、単純な構成により低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の冷媒液を供給できる。
 なお、液インジェクション流路35の上流端35uは、図1に示すようにフラッシュタンク13内の冷媒液を蒸発器16に供給するための冷媒流路34の内、フラッシュタンク13と熱交換器17とを接続する冷媒流路34aに接続されていてもよいし、フラッシュタンク13に直接接続されていてもよい。
In the refrigeration system 1 according to the embodiment, the liquid injection channel 35 is a channel through which the liquid phase part of the flash tank 13 and the refrigerant after being compressed by the low stage compressor 11 flow through the low stage compressor 11. The refrigerant flow path 31 connecting the outlet of the high-stage compressor 12 and the inlet of the high-stage compressor 12 may be provided so as to communicate with each other. A downstream end 35d of the liquid injection channel 35 is preferably connected to the refrigerant channel 31.
Thereby, the refrigerant liquid in the flash tank 13 can be supplied to the refrigerant after being compressed by the low stage compressor 11 with a simple configuration.
Note that the upstream end 35u of the liquid injection channel 35 is connected to the flash tank 13 and the heat exchanger 17 in the refrigerant channel 34 for supplying the refrigerant liquid in the flash tank 13 to the evaporator 16, as shown in FIG. It may be connected to the refrigerant flow path 34a that connects the flash tank 13, or it may be directly connected to the flash tank 13.
 一実施形態に係る冷凍装置1では、液インジェクション流路35に設けられる第1膨張弁41を備えるとよい。
 これにより、低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の冷媒液を制御性良く供給できる。
The refrigeration apparatus 1 according to one embodiment may include a first expansion valve 41 provided in the liquid injection channel 35.
Thereby, the refrigerant liquid in the flash tank 13 can be supplied to the refrigerant compressed by the low-stage compressor 11 with good controllability.
 一実施形態に係る冷凍装置1では、凝縮器15とフラッシュタンク13とを接続する流路である冷媒流路32bに設けられる第2膨張弁42を備えるとよい。
 これにより、高段圧縮機12の吐出圧力を調節できる。
 また、一実施形態に係る冷凍装置1では、フラッシュタンク13の気相部と、低段圧縮機11の出口とアキュムレータ14とを接続する冷媒流路31aとを接続するフラッシュガス流路36に設けられる第4膨張弁44を備えるとよい。
 第4膨張弁44によってフラッシュタンク13内の圧力を調節することができるので、低段圧縮機11で圧縮された後の冷媒に供給されるフラッシュタンク13内の冷媒液の供給が安定する。これにより、高段圧縮機12に供給される冷媒の過熱度を安定的に抑制できる。
The refrigeration device 1 according to one embodiment may include a second expansion valve 42 provided in the refrigerant flow path 32b, which is a flow path connecting the condenser 15 and the flash tank 13.
Thereby, the discharge pressure of the high stage compressor 12 can be adjusted.
Furthermore, in the refrigeration system 1 according to the embodiment, a flash gas flow path 36 connecting the gas phase portion of the flash tank 13 and the refrigerant flow path 31a connecting the outlet of the low stage compressor 11 and the accumulator 14 is provided. It is preferable to include a fourth expansion valve 44.
Since the pressure in the flash tank 13 can be adjusted by the fourth expansion valve 44, the supply of the refrigerant liquid in the flash tank 13, which is supplied to the refrigerant after being compressed by the low stage compressor 11, is stabilized. Thereby, the degree of superheat of the refrigerant supplied to the high-stage compressor 12 can be stably suppressed.
 一実施形態に係る冷凍装置1では、低段圧縮機11で圧縮された後の冷媒が流通する流路である冷媒流路31に設けられた気液分離器としてのアキュムレータ14を備えているとよい。液インジェクション流路35は、フラッシュタンク13の液相部と上記冷媒流路31とを連通するように設けられているとよい。液インジェクション流路35の下流端35dは、上記冷媒流路31の内、低段圧縮機11とアキュムレータ14との間の冷媒流路31aに接続されるとよい。
 これにより、フラッシュタンク内の冷媒液が液体のまま高段圧縮機に供給されることを防止できる。
The refrigeration apparatus 1 according to one embodiment includes an accumulator 14 as a gas-liquid separator provided in a refrigerant flow path 31, which is a flow path through which refrigerant after being compressed by the low stage compressor 11 flows. good. The liquid injection flow path 35 is preferably provided so as to communicate the liquid phase portion of the flash tank 13 and the refrigerant flow path 31 . The downstream end 35 d of the liquid injection flow path 35 is preferably connected to the refrigerant flow path 31 a between the low stage compressor 11 and the accumulator 14 in the refrigerant flow path 31 .
This can prevent the refrigerant liquid in the flash tank from being supplied to the high stage compressor in a liquid state.
 一実施形態に係る冷凍装置1では、低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の気相部の冷媒ガスを供給するためのフラッシュガス流路36を備えていてもよい。
 これにより、フラッシュタンク13内で発生した冷媒ガスを高段圧縮機12に戻すことができる。
The refrigeration device 1 according to one embodiment may include a flash gas flow path 36 for supplying refrigerant gas in the gas phase in the flash tank 13 to the refrigerant compressed by the low stage compressor 11. .
Thereby, the refrigerant gas generated within the flash tank 13 can be returned to the high stage compressor 12.
 一実施形態に係る冷凍装置1では、フラッシュガス流路36は、フラッシュタンク13の気相部と上記冷媒流路31とを連通するように設けられているとよい。フラッシュガス流路36の下流端36dは、上記冷媒流路31の内、低段圧縮機11とアキュムレータ14との間の冷媒流路31aに接続されるとよい。
 これにより、フラッシュガス流路36を流れる冷媒に冷媒液が含まれたとしても、冷媒液が液体のまま高段圧縮機12に供給されることを防止できる。
In the refrigeration apparatus 1 according to one embodiment, the flash gas flow path 36 is preferably provided so as to communicate the gas phase portion of the flash tank 13 and the refrigerant flow path 31. A downstream end 36 d of the flash gas flow path 36 is preferably connected to a refrigerant flow path 31 a between the low stage compressor 11 and the accumulator 14 in the refrigerant flow path 31 .
Thereby, even if the refrigerant liquid is included in the refrigerant flowing through the flash gas passage 36, it is possible to prevent the refrigerant liquid from being supplied to the high-stage compressor 12 in a liquid state.
 一実施形態に係る冷凍装置1では、冷媒は、CO冷媒であるとよい。その理由について、以下で説明する。
 図2は、CO冷媒を使用する一実施形態に係る冷凍装置1のモリエル線図の一例である。
 CO冷媒では、図2に示したモリエル線図において、ある一定の圧力において比エンタルピが大きくなるほど、図2において複数の細い実線で示した等エントロピ線Eiの傾きは小さくなる。そのため、高段圧縮機12に吸入される冷媒の吸入圧力が同じであり、高段圧縮機12から吐出される冷媒の吐出圧力が同じであっても、高段圧縮機12に吸入される冷媒の比エンタルピと高段圧縮機12から吐出される冷媒の比エンタルピとの差は、高段圧縮機12に吸入される冷媒の比エンタルピが小さくなるほど小さくなる。
 低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の冷媒液を供給することで、高段圧縮機12に吸入される冷媒の吸入量が増えるが、上述したように高段圧縮機12に吸入される冷媒の比エンタルピと高段圧縮機12から吐出される冷媒の比エンタルピとの差が小さくなる。
 発明者らが鋭意検討した結果、低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の冷媒液を供給する場合と供給しない場合とでは、高段圧縮機12の消費動力にほとんど差がないことが判明した。
 これにより、高段圧縮機12の消費動力の増加を抑制しつつ、高段圧縮機12に吸入される冷媒の過熱度を効率的に抑制できる。
In the refrigeration apparatus 1 according to one embodiment, the refrigerant is preferably a CO 2 refrigerant. The reason for this will be explained below.
FIG. 2 is an example of a Mollier diagram of the refrigeration system 1 according to an embodiment that uses CO 2 refrigerant.
In the CO 2 refrigerant, in the Mollier diagram shown in FIG. 2, as the specific enthalpy increases at a certain pressure, the slope of the isentropic line Ei shown by the plurality of thin solid lines in FIG. 2 becomes smaller. Therefore, even if the suction pressure of the refrigerant sucked into the high-stage compressor 12 is the same and the discharge pressure of the refrigerant discharged from the high-stage compressor 12 is the same, the refrigerant sucked into the high-stage compressor 12 The difference between the specific enthalpy of the refrigerant discharged from the high-stage compressor 12 becomes smaller as the specific enthalpy of the refrigerant sucked into the high-stage compressor 12 becomes smaller.
By supplying the refrigerant liquid in the flash tank 13 to the refrigerant compressed by the low stage compressor 11, the amount of refrigerant sucked into the high stage compressor 12 increases. The difference between the specific enthalpy of the refrigerant sucked into the compressor 12 and the specific enthalpy of the refrigerant discharged from the high-stage compressor 12 becomes smaller.
As a result of intensive study by the inventors, the power consumption of the high stage compressor 12 is almost the same when the refrigerant liquid in the flash tank 13 is supplied to the refrigerant after being compressed by the low stage compressor 11 and when it is not supplied. It turned out that there was no difference.
Thereby, the degree of superheat of the refrigerant sucked into the high-stage compressor 12 can be efficiently suppressed while suppressing an increase in the power consumption of the high-stage compressor 12.
 なお、図2において、n点はCOの臨界点であり、n点より左側のラインXは飽和液線であり、n点より右側のラインYは飽和蒸気線である。a点は低段圧縮機11の入口における冷媒の状態量であり、b点は低段圧縮機11の出口における冷媒の状態量である。c点は高段圧縮機12の入口における冷媒の状態量であり、d点は高段圧縮機12の出口における冷媒の状態量である。e点はガスクーラとしての凝縮器15の出口における冷媒の状態量であり、f点は第2膨張弁42出口の気液混合状態の冷媒の状態量である。g点はフラッシュタンク13の液相部の状態量であり、h点はフラッシュタンク13で気液分離された後の気相部の状態量である。i点はフラッシュタンク13から出て熱交換器17を通過した後の冷媒の状態量であり、j点は第3膨張弁43出口の冷媒の状態量であり、k点は蒸発器16出口の冷媒の状態量である。l点は第4膨張弁44出口の冷媒の状態量であり、m点は第1膨張弁41出口の冷媒の状態量である。 In FIG. 2, point n is the critical point of CO2 , line X on the left side of point n is a saturated liquid line, and line Y on the right side of point n is a saturated vapor line. Point a is the state quantity of the refrigerant at the inlet of the low stage compressor 11, and point b is the state quantity of the refrigerant at the outlet of the low stage compressor 11. Point c is the state quantity of the refrigerant at the inlet of the high stage compressor 12, and point d is the state quantity of the refrigerant at the outlet of the high stage compressor 12. Point e is the state quantity of the refrigerant at the outlet of the condenser 15 as a gas cooler, and point f is the state quantity of the refrigerant in the gas-liquid mixed state at the outlet of the second expansion valve 42. The g point is the state quantity of the liquid phase part of the flash tank 13, and the h point is the state quantity of the gas phase part after gas-liquid separation in the flash tank 13. Point i is the state quantity of the refrigerant after leaving the flash tank 13 and passing through the heat exchanger 17, point j is the state quantity of the refrigerant at the outlet of the third expansion valve 43, and point k is the state quantity of the refrigerant at the outlet of the evaporator 16. It is the state quantity of the refrigerant. Point l is the state quantity of the refrigerant at the outlet of the fourth expansion valve 44, and point m is the state quantity of the refrigerant at the outlet of the first expansion valve 41.
 一実施形態に係る冷凍装置1では、b点、すなわち低段圧縮機11とアキュムレータ14との間の冷媒流路31aにおいて、液インジェクション流路35及びフラッシュガス流路36が合流しているので、c点、すなわち高段圧縮機12の入口における冷媒の比エンタルピhは、b点より下がる。
 なお、理解の便宜のため、図1中の同一の場所にも符号a~mを付している。
In the refrigeration system 1 according to one embodiment, the liquid injection flow path 35 and the flash gas flow path 36 meet at point b, that is, the refrigerant flow path 31a between the low stage compressor 11 and the accumulator 14. The specific enthalpy h of the refrigerant at point c, that is, the inlet of the high-stage compressor 12, is lower than point b.
Note that, for convenience of understanding, the same locations in FIG. 1 are also given symbols a to m.
(第1膨張弁41の開度の調節について)
 上述したように、一実施形態に係る制御装置50は、冷凍装置1の各部を制御するための制御装置であり、第1膨張弁41の開度の調節も行う。制御装置50は、吸入温度センサ55で検出された吸入温度と、吸入圧力センサ57で検出された吸入圧力とに基づいて、高段圧縮機12に吸入される冷媒の吸入過熱度を算出し、算出された吸入過熱度が予め設定された目標値となるように第1膨張弁41の開度を調節するように構成されている。
 これにより、後述するように、高段圧縮機12に吸入される冷媒の吸入過熱度を安定して抑制できる。
(Regarding adjustment of the opening degree of the first expansion valve 41)
As described above, the control device 50 according to one embodiment is a control device for controlling each part of the refrigeration device 1, and also adjusts the opening degree of the first expansion valve 41. The control device 50 calculates the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 based on the suction temperature detected by the suction temperature sensor 55 and the suction pressure detected by the suction pressure sensor 57, The opening degree of the first expansion valve 41 is adjusted so that the calculated suction superheat degree becomes a preset target value.
Thereby, as will be described later, the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 can be stably suppressed.
 図3は、第1膨張弁41の開度の調節のために制御装置50において実施される処理の流れを示すフローチャートである。図3のフローチャートに示す処理を実行するためのプログラムは、プロセッサ51がメモリ53から読み込んで実行する。 FIG. 3 is a flowchart showing the flow of processing performed in the control device 50 to adjust the opening degree of the first expansion valve 41. A program for executing the processing shown in the flowchart of FIG. 3 is read by the processor 51 from the memory 53 and executed.
 一実施形態に係る冷凍装置1の制御方法は、吸入温度検出ステップS10と、吸入圧力検出ステップS20と、吸入過熱度算出ステップS30と、開度調節ステップS40と、を備える。 The method for controlling the refrigeration apparatus 1 according to one embodiment includes a suction temperature detection step S10, a suction pressure detection step S20, a suction superheat degree calculation step S30, and an opening adjustment step S40.
 吸入温度検出ステップS10は、高段圧縮機12に吸入される冷媒の吸入温度Tiを検出するステップである。吸入温度検出ステップS10では、プロセッサ51は、吸入温度センサ55で検出した冷媒の吸入温度Tiを取得する。
 吸入圧力検出ステップS20は、高段圧縮機12に吸入される冷媒の吸入圧力Piを検出するステップである。吸入圧力検出ステップS20では、プロセッサ51は、吸入圧力センサ57で検出した冷媒の吸入圧力Piを取得する。
The suction temperature detection step S10 is a step of detecting the suction temperature Ti of the refrigerant sucked into the high-stage compressor 12. In the suction temperature detection step S10, the processor 51 acquires the refrigerant suction temperature Ti detected by the suction temperature sensor 55.
The suction pressure detection step S20 is a step of detecting the suction pressure Pi of the refrigerant sucked into the high-stage compressor 12. In the suction pressure detection step S20, the processor 51 acquires the refrigerant suction pressure Pi detected by the suction pressure sensor 57.
 吸入過熱度算出ステップS30は、検出された吸入温度Tiと、検出された吸入圧力Piとに基づいて、高段圧縮機12に吸入される冷媒の吸入過熱度を算出するステップである。吸入過熱度算出ステップS30では、プロセッサ51は、吸入温度検出ステップS10で取得した冷媒の吸入温度Tiと、吸入圧力検出ステップS20で取得した冷媒の吸入圧力Piとに基づいて、高段圧縮機12に吸入される冷媒の吸入過熱度を算出する。 The suction superheat degree calculation step S30 is a step of calculating the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 based on the detected suction temperature Ti and the detected suction pressure Pi. In the suction superheat degree calculation step S30, the processor 51 determines whether the high-stage compressor 12 Calculate the suction superheat degree of the refrigerant sucked into the
 開度調節ステップS40は、算出された吸入過熱度が予め設定された目標値となるように第1膨張弁41の開度を調節するステップである。開度調節ステップS40では、プロセッサ51は、吸入過熱度算出ステップS30で算出した冷媒の吸入過熱度が、予め設定されていてメモリ53に記憶されている吸入過熱度の目標値となるように第1膨張弁41の開度を算出し、算出した開度となるように第1膨張弁41の不図示のアクチュエータを駆動するための制御信号を出力する。
 第1膨張弁41では、当該制御信号を受信することで不図示のアクチュエータが第1膨張弁41における開度を調節する。これにより、高段圧縮機12に吸入される冷媒の吸入過熱度が吸入過熱度の目標値となるように第1膨張弁41における開度が調節される。
 一実施形態に係る冷凍装置1の制御方法によれば、高段圧縮機12に吸入される冷媒の吸入過熱度を安定して抑制できる。これにより、高段圧縮機12の効率を安定して向上できる。
Opening degree adjustment step S40 is a step of adjusting the opening degree of the first expansion valve 41 so that the calculated suction superheat degree becomes a preset target value. In the opening adjustment step S40, the processor 51 sets the refrigerant suction superheat degree calculated in the suction superheat degree calculation step S30 to the target value of the suction superheat degree that is set in advance and stored in the memory 53. The opening degree of the first expansion valve 41 is calculated, and a control signal for driving an actuator (not shown) of the first expansion valve 41 to achieve the calculated opening degree is output.
In the first expansion valve 41, an actuator (not shown) adjusts the opening degree of the first expansion valve 41 by receiving the control signal. Thereby, the opening degree of the first expansion valve 41 is adjusted so that the degree of suction superheat of the refrigerant sucked into the high-stage compressor 12 becomes the target value of the degree of suction superheat.
According to the method for controlling the refrigeration system 1 according to the embodiment, the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 can be stably suppressed. Thereby, the efficiency of the high-stage compressor 12 can be stably improved.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the embodiments described above, and also includes forms in which modifications are made to the embodiments described above, and forms in which these forms are appropriately combined.
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係る冷凍装置1は、冷媒を圧縮するための低段圧縮機11と、低段圧縮機11で圧縮された後の冷媒を圧縮するための高段圧縮機12と、高段圧縮機12で圧縮された後の冷媒を受け入れることができるフラッシュタンク13と、低段圧縮機11で圧縮されて低段圧縮機11から排出された後の冷媒にフラッシュタンク13内の冷媒液を供給するための液インジェクション流路35と、を備える。
The contents described in each of the above embodiments can be understood as follows, for example.
(1) The refrigeration apparatus 1 according to at least one embodiment of the present disclosure includes a low-stage compressor 11 for compressing refrigerant, and a high-stage compressor for compressing the refrigerant after being compressed by the low-stage compressor 11. A flash tank 13 that can receive the refrigerant compressed by the high stage compressor 12, and a flash tank that can receive the refrigerant compressed by the low stage compressor 11 and discharged from the low stage compressor 11. A liquid injection flow path 35 for supplying the refrigerant liquid in 13 is provided.
 上記(1)の構成によれば、高段圧縮機12に吸入される冷媒を冷却するための熱交換器を設ける設置場所や該熱交換器を設けるためのコストの負担がなく、高段圧縮機12に吸入される冷媒の過熱度を効率的に抑制できる。これにより、高段圧縮機12の効率向上を低コストで実現できる。 According to the configuration (1) above, there is no need to install a heat exchanger for cooling the refrigerant sucked into the high-stage compressor 12, and there is no need to pay the cost for installing the heat exchanger. The degree of superheating of the refrigerant sucked into the machine 12 can be efficiently suppressed. Thereby, the efficiency of the high-stage compressor 12 can be improved at low cost.
(2)幾つかの実施形態では、上記(1)の構成において、液インジェクション流路35は、フラッシュタンク13の液相部と低段圧縮機11で圧縮された後の冷媒が流通する流路(冷媒流路31)とを連通するように設けられるとよい。液インジェクション流路35の下流端35dは、上記流路(冷媒流路31)に接続されるとよい。 (2) In some embodiments, in the configuration of (1) above, the liquid injection flow path 35 is a flow path through which the refrigerant after being compressed by the liquid phase part of the flash tank 13 and the low stage compressor 11 flows. (refrigerant channel 31). The downstream end 35d of the liquid injection channel 35 is preferably connected to the channel (refrigerant channel 31).
 上記(2)の構成によれば、単純な構成により低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の冷媒液を供給できる。 According to the configuration (2) above, the refrigerant liquid in the flash tank 13 can be supplied to the refrigerant after being compressed by the low stage compressor 11 with a simple configuration.
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、液インジェクション流路35に設けられる第1膨張弁41を備えるとよい。 (3) In some embodiments, the configuration of (1) or (2) above may include a first expansion valve 41 provided in the liquid injection channel 35.
 上記(3)の構成によれば、低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の冷媒液を安定的に供給できる。 According to the configuration (3) above, the refrigerant liquid in the flash tank 13 can be stably supplied to the refrigerant after being compressed by the low stage compressor 11.
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、高段圧縮機12で圧縮された後の冷媒を冷却するための凝縮器と、凝縮器15とフラッシュタンク13とを接続する流路(冷媒流路32b)に設けられる第2膨張弁42と、を備えるとよい。 (4) In some embodiments, in any of the configurations (1) to (3) above, a condenser for cooling the refrigerant after being compressed by the high-stage compressor 12, and a condenser 15. It is preferable to include a second expansion valve 42 provided in the flow path (refrigerant flow path 32b) that connects the flash tank 13.
 上記(4)の構成によれば、高段圧縮機12の吐出圧力を調節できる。 According to the configuration (4) above, the discharge pressure of the high-stage compressor 12 can be adjusted.
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、低段圧縮機11で圧縮された後の冷媒が流通する流路(冷媒流路31)に設けられた気液分離器(アキュムレータ14)を備えているとよい。液インジェクション流路35は、フラッシュタンク13の液相部と上記流路(冷媒流路31)とを連通するように設けられているとよい。液インジェクション流路35の下流端35dは、上記流路(冷媒流路31)の内、低段圧縮機11と気液分離器(アキュムレータ14)との間の流路(冷媒流路31a)に接続されるとよい。 (5) In some embodiments, in any of the configurations (1) to (4) above, the refrigerant is provided in the flow path (refrigerant flow path 31) through which the refrigerant after being compressed by the low stage compressor 11 flows. It is preferable to include a gas-liquid separator (accumulator 14). The liquid injection flow path 35 is preferably provided so as to communicate the liquid phase portion of the flash tank 13 and the flow path (refrigerant flow path 31). The downstream end 35d of the liquid injection channel 35 is connected to the channel (refrigerant channel 31a) between the low stage compressor 11 and the gas-liquid separator (accumulator 14) in the channel (refrigerant channel 31). It would be good to be connected.
 上記(5)の構成によれば、フラッシュタンク13内の冷媒液が液体のまま高段圧縮機12に供給されることを防止できる。 According to the configuration (5) above, it is possible to prevent the refrigerant liquid in the flash tank 13 from being supplied to the high-stage compressor 12 in a liquid state.
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の冷媒ガスを供給するためのフラッシュガス流路36を備えていてもよい。 (6) In some embodiments, in any of the configurations (1) to (5) above, for supplying refrigerant gas in the flash tank 13 to the refrigerant after being compressed by the low stage compressor 11. A flash gas flow path 36 may be provided.
 上記(6)の構成によれば、フラッシュタンク13内で発生した冷媒ガスを高段圧縮機12に戻すことができる。また、フラッシュタンク13内で発生した冷媒ガスによって高段圧縮機12に吸入される冷媒の過熱度を抑制できる。 According to the configuration (6) above, the refrigerant gas generated in the flash tank 13 can be returned to the high-stage compressor 12. Furthermore, the degree of superheating of the refrigerant sucked into the high-stage compressor 12 can be suppressed by the refrigerant gas generated within the flash tank 13.
(7)幾つかの実施形態では、上記(6)の構成において、低段圧縮機11で圧縮された後の冷媒が流通する流路(冷媒流路31)に設けられた気液分離器(アキュムレータ14)を備えているとよい。フラッシュガス流路36は、フラッシュタンク13の気相部と上記流路(冷媒流路31)とを連通するように設けられているとよい。フラッシュガス流路36の下流端36dは、上記流路(冷媒流路31)の内、低段圧縮機11と気液分離器(アキュムレータ14)との間の流路(冷媒流路31a)に接続されるとよい。 (7) In some embodiments, in the configuration of (6) above, a gas-liquid separator ( It is preferable to include an accumulator 14). The flash gas flow path 36 is preferably provided so as to communicate the gas phase portion of the flash tank 13 and the flow path (refrigerant flow path 31). The downstream end 36d of the flash gas flow path 36 is connected to the flow path (refrigerant flow path 31a) between the low-stage compressor 11 and the gas-liquid separator (accumulator 14) in the flow path (refrigerant flow path 31). It would be good to be connected.
 上記(7)の構成によれば、フラッシュガス流路36を流れる冷媒に冷媒液が含まれたとしても、冷媒液が液体のまま高段圧縮機12に供給されることを防止できる。 According to the configuration (7) above, even if refrigerant liquid is included in the refrigerant flowing through the flash gas flow path 36, it is possible to prevent the refrigerant liquid from being supplied to the high-stage compressor 12 in a liquid state.
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、冷媒は、CO冷媒であるとよい。 (8) In some embodiments, in any of the configurations (1) to (7) above, the refrigerant may be a CO 2 refrigerant.
 上記(8)の構成によれば、高段圧縮機12の消費動力の増加を抑制しつつ、高段圧縮機12に吸入される冷媒の過熱度を効率的に抑制できる。 According to the configuration (8) above, the degree of superheat of the refrigerant sucked into the high-stage compressor 12 can be efficiently suppressed while suppressing an increase in the power consumption of the high-stage compressor 12.
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、液インジェクション流路35に設けられる第1膨張弁41と、高段圧縮機12に吸入される冷媒の吸入温度Tiを検出するための吸入温度センサ55と、高段圧縮機12に吸入される冷媒の吸入圧力Piを検出するための吸入圧力センサ57と、第1膨張弁41の開度を調節するための制御装置50と、を備えるとよい。制御装置50は、吸入温度センサ55で検出された吸入温度Tiと、吸入圧力センサ57で検出された吸入圧力Piとに基づいて、高段圧縮機12に吸入される冷媒の吸入過熱度を算出し、算出された吸入過熱度が予め設定された目標値となるように第1膨張弁41の開度を調節するように構成されているとよい。 (9) In some embodiments, in any of the configurations (1) to (8) above, the first expansion valve 41 provided in the liquid injection flow path 35 and the refrigerant sucked into the high-stage compressor 12 A suction temperature sensor 55 for detecting the suction temperature Ti of the refrigerant, a suction pressure sensor 57 for detecting the suction pressure Pi of the refrigerant sucked into the high-stage compressor 12, and adjusting the opening degree of the first expansion valve 41. It is preferable to include a control device 50 for controlling. The control device 50 calculates the suction superheat degree of the refrigerant sucked into the high-stage compressor 12 based on the suction temperature Ti detected by the suction temperature sensor 55 and the suction pressure Pi detected by the suction pressure sensor 57. However, it is preferable that the opening degree of the first expansion valve 41 is adjusted so that the calculated suction superheat degree becomes a preset target value.
 上記(9)の構成によれば、高段圧縮機12に吸入される冷媒の吸入過熱度を安定して抑制できる。 According to the configuration (9) above, the degree of suction superheat of the refrigerant sucked into the high-stage compressor 12 can be stably suppressed.
(10)本開示の少なくとも一実施形態に係る冷凍装置1の制御方法は、冷凍装置1の制御方法である。冷凍装置1は、冷媒を圧縮するための低段圧縮機11と、低段圧縮機11で圧縮された後の冷媒を圧縮するための高段圧縮機12と、高段圧縮機12で圧縮された後の冷媒を受け入れることができるフラッシュタンク13と、低段圧縮機11で圧縮された後の冷媒にフラッシュタンク13内の冷媒液を供給するための液インジェクション流路35と、液インジェクション流路35に設けられる第1膨張弁41と、を備える。本開示の少なくとも一実施形態に係る冷凍装置1の制御方法は、高段圧縮機12に吸入される冷媒の吸入温度Tiを検出する吸入温度検出ステップS10と、高段圧縮機12に吸入される冷媒の吸入圧力Piを検出する吸入圧力検出ステップS20と、検出された吸入温度Tiと、検出された吸入圧力Piとに基づいて、高段圧縮機12に吸入される冷媒の吸入過熱度を算出する吸入過熱度算出ステップS30と、算出された吸入過熱度が予め設定された目標値となるように第1膨張弁41の開度を調節する開度調節ステップS40と、を備える。 (10) A method for controlling the refrigeration apparatus 1 according to at least one embodiment of the present disclosure is a method for controlling the refrigeration apparatus 1. The refrigeration system 1 includes a low stage compressor 11 for compressing refrigerant, a high stage compressor 12 for compressing the refrigerant after being compressed by the low stage compressor 11, and a refrigerant compressed by the high stage compressor 12. A flash tank 13 that can receive the refrigerant after being compressed by the low-stage compressor 11, a liquid injection flow path 35 for supplying the refrigerant liquid in the flash tank 13 to the refrigerant after being compressed by the low stage compressor 11, and a liquid injection flow path. A first expansion valve 41 provided at 35 is provided. A method for controlling a refrigeration system 1 according to at least one embodiment of the present disclosure includes a suction temperature detection step S10 for detecting a suction temperature Ti of refrigerant sucked into the high-stage compressor 12; The suction pressure detection step S20 detects the suction pressure Pi of the refrigerant, and the degree of suction superheat of the refrigerant sucked into the high-stage compressor 12 is calculated based on the detected suction temperature Ti and the detected suction pressure Pi. and an opening adjustment step S40 for adjusting the opening degree of the first expansion valve 41 so that the calculated suction superheat degree becomes a preset target value.
 上記(10)の方法によれば、高段圧縮機12に吸入される冷媒の吸入過熱度を外気温度によらず安定して抑制できることにより、高段圧縮機12の効率を安定して向上できる。 According to the method (10) above, the degree of suction superheat of the refrigerant sucked into the high-stage compressor 12 can be stably suppressed regardless of the outside temperature, so that the efficiency of the high-stage compressor 12 can be stably improved. .
1 冷凍装置
11 低段圧縮機
12 高段圧縮機
13 フラッシュタンク
14 アキュムレータ
15 凝縮器
16 蒸発器
35 液インジェクション流路
36 フラッシュガス流路
41 第1膨張弁
42 第2膨張弁(高段膨張弁)
43 第3膨張弁(低段膨張弁)
44 第4膨張弁
50 制御装置
55 吸入温度センサ
57 吸入温度センサ
1 Refrigeration device 11 Low stage compressor 12 High stage compressor 13 Flash tank 14 Accumulator 15 Condenser 16 Evaporator 35 Liquid injection channel 36 Flash gas channel 41 First expansion valve 42 Second expansion valve (high stage expansion valve)
43 Third expansion valve (low stage expansion valve)
44 Fourth expansion valve 50 Control device 55 Suction temperature sensor 57 Suction temperature sensor

Claims (10)

  1.  冷媒を圧縮するための低段圧縮機と、
     前記低段圧縮機で圧縮された後の前記冷媒を圧縮するための高段圧縮機と、
     前記高段圧縮機で圧縮された後の前記冷媒を受け入れることができるフラッシュタンクと、
     前記低段圧縮機で圧縮されて前記低段圧縮機から排出された後の前記冷媒に前記フラッシュタンク内の冷媒液を供給するための液インジェクション流路と、
    を備える冷凍装置。
    a low stage compressor for compressing refrigerant;
    a high stage compressor for compressing the refrigerant after being compressed by the low stage compressor;
    a flash tank capable of receiving the refrigerant after being compressed by the high-stage compressor;
    a liquid injection flow path for supplying refrigerant liquid in the flash tank to the refrigerant after being compressed by the low-stage compressor and discharged from the low-stage compressor;
    Refrigeration equipment equipped with.
  2.  前記液インジェクション流路は、前記フラッシュタンクの液相部と前記低段圧縮機で圧縮された後の前記冷媒が流通する流路とを連通するように設けられ、
     前記液インジェクション流路の下流端は、前記流路に接続される、
    請求項1に記載の冷凍装置。
    The liquid injection flow path is provided so as to communicate the liquid phase part of the flash tank with a flow path through which the refrigerant after being compressed by the low stage compressor flows,
    The downstream end of the liquid injection flow path is connected to the flow path,
    The refrigeration device according to claim 1.
  3.  前記液インジェクション流路に設けられる第1膨張弁、
    を備える、
    請求項1又は2に記載の冷凍装置。
    a first expansion valve provided in the liquid injection flow path;
    Equipped with
    The refrigeration device according to claim 1 or 2.
  4.  前記高段圧縮機で圧縮された後の前記冷媒を冷却するための凝縮器と、
     前記凝縮器と前記フラッシュタンクとを接続する流路に設けられる第2膨張弁と、
    を備える、
    請求項1又は2に記載の冷凍装置。
    a condenser for cooling the refrigerant after being compressed by the high-stage compressor;
    a second expansion valve provided in a flow path connecting the condenser and the flash tank;
    Equipped with
    The refrigeration device according to claim 1 or 2.
  5.  前記低段圧縮機で圧縮された後の前記冷媒が流通する流路に設けられた気液分離器、
    を備え、
     前記液インジェクション流路は、前記フラッシュタンクの液相部と前記流路とを連通するように設けられ、
     前記液インジェクション流路の下流端は、前記流路の内、前記低段圧縮機と前記気液分離器との間の流路に接続される、
    請求項1又は2に記載の冷凍装置。
    a gas-liquid separator provided in a flow path through which the refrigerant after being compressed by the low-stage compressor flows;
    Equipped with
    The liquid injection flow path is provided so as to communicate the liquid phase part of the flash tank with the flow path,
    A downstream end of the liquid injection flow path is connected to a flow path between the low-stage compressor and the gas-liquid separator among the flow paths.
    The refrigeration device according to claim 1 or 2.
  6.  前記低段圧縮機で圧縮された後の前記冷媒に前記フラッシュタンク内の冷媒ガスを供給するためのフラッシュガス流路、
    を備える、
    請求項1又は2に記載の冷凍装置。
    a flash gas flow path for supplying refrigerant gas in the flash tank to the refrigerant after being compressed by the low stage compressor;
    Equipped with
    The refrigeration device according to claim 1 or 2.
  7.  前記低段圧縮機で圧縮された後の前記冷媒が流通する流路に設けられた気液分離器、
    を備え、
     前記フラッシュガス流路は、前記フラッシュタンクの気相部と前記流路とを連通するように設けられ、
     前記フラッシュガス流路の下流端は、前記流路の内、前記低段圧縮機と前記気液分離器との間の流路に接続される、
    請求項6に記載の冷凍装置。
    a gas-liquid separator provided in a flow path through which the refrigerant after being compressed by the low-stage compressor flows;
    Equipped with
    The flash gas flow path is provided to communicate the gas phase part of the flash tank and the flow path,
    A downstream end of the flash gas flow path is connected to a flow path between the low-stage compressor and the gas-liquid separator among the flow paths.
    The refrigeration device according to claim 6.
  8.  前記冷媒は、CO冷媒である、
    請求項1又は2に記載の冷凍装置。
    the refrigerant is a CO2 refrigerant;
    The refrigeration device according to claim 1 or 2.
  9.  前記液インジェクション流路に設けられる第1膨張弁と、
     前記高段圧縮機に吸入される前記冷媒の吸入温度を検出するための吸入温度センサと、
     前記高段圧縮機に吸入される前記冷媒の吸入圧力を検出するための吸入圧力センサと、
     前記第1膨張弁の開度を調節するための制御装置と、
    を備え、
     前記制御装置は、前記吸入温度センサで検出された前記吸入温度と、前記吸入圧力センサで検出された前記吸入圧力とに基づいて、前記高段圧縮機に吸入される前記冷媒の吸入過熱度を算出し、算出された前記吸入過熱度が予め設定された目標値となるように前記第1膨張弁の開度を調節するように構成されている
    請求項1又は2に記載の冷凍装置。
    a first expansion valve provided in the liquid injection flow path;
    a suction temperature sensor for detecting the suction temperature of the refrigerant sucked into the high-stage compressor;
    a suction pressure sensor for detecting the suction pressure of the refrigerant sucked into the high-stage compressor;
    a control device for adjusting the opening degree of the first expansion valve;
    Equipped with
    The control device determines the suction superheat degree of the refrigerant sucked into the high-stage compressor based on the suction temperature detected by the suction temperature sensor and the suction pressure detected by the suction pressure sensor. The refrigeration system according to claim 1 or 2, wherein the refrigeration system is configured to adjust the opening degree of the first expansion valve so that the calculated suction superheat degree becomes a preset target value.
  10.  冷凍装置の制御方法であって、
     前記冷凍装置は、
      冷媒を圧縮するための低段圧縮機と、
      前記低段圧縮機で圧縮された後の前記冷媒を圧縮するための高段圧縮機と、
      前記高段圧縮機で圧縮された後の前記冷媒を受け入れることができるフラッシュタンクと、
      前記低段圧縮機で圧縮された後の前記冷媒に前記フラッシュタンク内の冷媒液を供給するための液インジェクション流路と、
     前記液インジェクション流路に設けられる第1膨張弁と、
    を備え、
     前記高段圧縮機に吸入される前記冷媒の吸入温度を検出する吸入温度検出ステップと、
     前記高段圧縮機に吸入される前記冷媒の吸入圧力を検出する吸入圧力検出ステップと、
     検出された前記吸入温度と、検出された前記吸入圧力とに基づいて、前記高段圧縮機に吸入される前記冷媒の吸入過熱度を算出する吸入過熱度算出ステップと、
     算出された前記吸入過熱度が予め設定された目標値となるように前記第1膨張弁の開度を調節する開度調節ステップと、
    を備える冷凍装置の制御方法。
    A method for controlling a refrigeration device, the method comprising:
    The refrigeration device includes:
    a low stage compressor for compressing refrigerant;
    a high stage compressor for compressing the refrigerant after being compressed by the low stage compressor;
    a flash tank capable of receiving the refrigerant after being compressed by the high-stage compressor;
    a liquid injection flow path for supplying refrigerant liquid in the flash tank to the refrigerant after being compressed by the low stage compressor;
    a first expansion valve provided in the liquid injection flow path;
    Equipped with
    a suction temperature detection step of detecting the suction temperature of the refrigerant sucked into the high-stage compressor;
    a suction pressure detection step of detecting the suction pressure of the refrigerant sucked into the high-stage compressor;
    a suction superheat degree calculation step of calculating a suction superheat degree of the refrigerant sucked into the high-stage compressor based on the detected suction temperature and the detected suction pressure;
    an opening degree adjusting step of adjusting the opening degree of the first expansion valve so that the calculated suction superheat degree becomes a preset target value;
    A method for controlling a refrigeration device comprising:
PCT/JP2023/021218 2022-06-30 2023-06-07 Refrigeration device, and refrigeration device control method WO2024004558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-106173 2022-06-30
JP2022106173A JP2024005797A (en) 2022-06-30 2022-06-30 Refrigerator and control method for refrigerator

Publications (1)

Publication Number Publication Date
WO2024004558A1 true WO2024004558A1 (en) 2024-01-04

Family

ID=89382798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021218 WO2024004558A1 (en) 2022-06-30 2023-06-07 Refrigeration device, and refrigeration device control method

Country Status (2)

Country Link
JP (1) JP2024005797A (en)
WO (1) WO2024004558A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593552A (en) * 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd Double stage compression type heat pump system
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device
JP2017044454A (en) * 2015-08-28 2017-03-02 三菱重工業株式会社 Refrigeration cycle device and control method for the same
US20170074550A1 (en) * 2015-09-16 2017-03-16 Heatcraft Refrigeration Products Llc Cooling System with Low Temperature Load

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593552A (en) * 1991-10-01 1993-04-16 Matsushita Electric Ind Co Ltd Double stage compression type heat pump system
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device
JP2017044454A (en) * 2015-08-28 2017-03-02 三菱重工業株式会社 Refrigeration cycle device and control method for the same
US20170074550A1 (en) * 2015-09-16 2017-03-16 Heatcraft Refrigeration Products Llc Cooling System with Low Temperature Load

Also Published As

Publication number Publication date
JP2024005797A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
KR100884804B1 (en) Refrigerant cycle device
US8572995B2 (en) Refrigeration system
JP5355016B2 (en) Refrigeration equipment and heat source machine
US11112140B2 (en) Air conditioning apparatus
JP2008039383A (en) Unit provided on cooling device for transcritical operation
US8635879B2 (en) Heat pump and method of controlling the same
JP2007255864A (en) Two-stage compression type refrigerating device
JP2009257756A (en) Heat pump apparatus, and outdoor unit for heat pump apparatus
JP2011214753A (en) Refrigerating device
US20090229306A1 (en) Vapor compression refrigerating cycle apparatus
JP4715797B2 (en) Ejector refrigeration cycle
WO2024004558A1 (en) Refrigeration device, and refrigeration device control method
US11802725B2 (en) Air-conditioning apparatus
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2006525488A (en) Vapor compression system
JP7369030B2 (en) Refrigeration system and refrigeration system control method
JP6149485B2 (en) Refrigeration equipment
JP2008002706A (en) Refrigerating machine
JP2009243880A (en) Heat pump device and outdoor unit of heat pump device
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
TW202405349A (en) Refrigeration devices and control methods of refrigeration devices
JP6335133B2 (en) heat pump
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JP6822007B2 (en) Refrigerant circuit device
JP2021014930A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831008

Country of ref document: EP

Kind code of ref document: A1