JPH0563000A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0563000A
JPH0563000A JP22321491A JP22321491A JPH0563000A JP H0563000 A JPH0563000 A JP H0563000A JP 22321491 A JP22321491 A JP 22321491A JP 22321491 A JP22321491 A JP 22321491A JP H0563000 A JPH0563000 A JP H0563000A
Authority
JP
Japan
Prior art keywords
gate
film
junction
side wall
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22321491A
Other languages
Japanese (ja)
Inventor
Motoaki Ito
元昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22321491A priority Critical patent/JPH0563000A/en
Publication of JPH0563000A publication Critical patent/JPH0563000A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of manufacturing an SOI element, where a SOIFET junction is kept in symmetric property so as to restrain a parasitic bipolar effect, and the SOI element is stabilized in element characteristics and enhanced in reliability. CONSTITUTION:In a process of making an insulated gate FET formed on an element forming film 2 provided onto an insulator 1, a gate 4 is formed on an element forming film 2 through the intermediary of a gate insulating film 3, then a side wall 5 formed of the insulating film 3 is formed on the side face of the gate 4, and a source and a drain 6 are formed on the element forming film 2 located on both the sides of the gate 4, and an additional process where fixed positive charge 7 is generated in the side wall 5 by the irradiation of radiation is added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係り,特にSOI 素子の製造方法に関する。SOI(Silicon
on Insulator) 基板に形成された素子は素子間分離の完
全性, 素子を薄いSOI 膜に形成した場合の高速性, 基板
に対する寄生容量の低減等数多くの利点を持っている。
反面, チャネル部が浮遊状態にあるのでドレイン/チャ
ネル部/ソースで形成される寄生バイポーラ動作が起こ
り易くなり,素子特性の安定化,素子の信頼性を阻害す
るため,対策が必要とされている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing an SOI element. SOI (Silicon
On Insulator) The device formed on the substrate has many advantages such as the integrity of device isolation, the high speed when the device is formed on a thin SOI film, and the reduction of parasitic capacitance to the substrate.
On the other hand, since the channel part is in a floating state, the parasitic bipolar operation formed by the drain / channel part / source is likely to occur, which stabilizes the device characteristics and hinders the reliability of the device. .

【0002】本発明はこの必要性に対応した方法として
利用できる。
The present invention can be used as a method to meet this need.

【0003】[0003]

【従来の技術】SOI 基板は通常支持基板上に絶縁膜(SO
I 絶縁膜)を介して素子形成膜(SOI膜)が形成された
基板である。
2. Description of the Related Art An SOI substrate is usually an insulating film (SO
This is a substrate on which an element forming film (SOI film) is formed via an I insulating film).

【0004】従来,寄生バイポーラ効果を抑制するため
には,ソース側の接合を破壊してソースを基板に接続す
ることによりチャネル部を浮遊状態にしないという考え
方が一般的である。
Conventionally, in order to suppress the parasitic bipolar effect, it is generally considered that the junction on the source side is destroyed and the source is connected to the substrate so that the channel portion is not brought into a floating state.

【0005】そのために,次のような対策がとられてい
た。例えばnチャネルFET の場合, 支持基板に接続する
高濃度p型層を,ソース接合に接続してその下側に形成
した構造にする。
Therefore, the following measures have been taken. For example, in the case of an n-channel FET, the high-concentration p-type layer connected to the supporting substrate is connected to the source junction to form a structure below the source junction.

【0006】または,ソース接合のみに配線のアルミニ
ウム(Al)と基板のシリコン(Si)とを加熱等により界面に
おいて反応させ,Al/Si合金をスパイク状に成長させて
接合を破壊する方法等がある。
Alternatively, there is a method in which aluminum (Al) of the wiring and silicon (Si) of the substrate are reacted at the interface by heating or the like only at the source junction, and the Al / Si alloy is grown in a spike shape to destroy the junction. is there.

【0007】[0007]

【発明が解決しようとする課題】従来例のように接合を
基板に短絡または破壊してチャネル部の浮遊状態を解消
するには, ソース接合のみを短絡または破壊する必要が
ある。
In order to short-circuit or destroy the junction to the substrate and eliminate the floating state of the channel portion as in the conventional example, only the source junction needs to be short-circuited or destroyed.

【0008】しかしながら,FET は通常,ゲート電極に
自己整合して同時にソースとドレインを形成するため,
接合の非対称性を実現することは難しい。非対称性を実
現するには, ドレイン側を破壊から護るためにマスク工
程の追加が必要となる。
However, since the FET normally self-aligns with the gate electrode to simultaneously form the source and drain,
It is difficult to achieve the asymmetry of the joint. To realize the asymmetry, an additional mask process is required to protect the drain side from damage.

【0009】本発明は工程数を増加させないで, 寄生バ
イポーラ効果を抑制し,素子特性の安定化と素子の高信
頼化をはかることを目的とする。
An object of the present invention is to suppress the parasitic bipolar effect, to stabilize the device characteristics and to improve the reliability of the device without increasing the number of steps.

【0010】[0010]

【課題を解決するための手段】上記課題の解決は,絶縁
体1上の素子形成膜2に形成する絶縁ゲート型の電界効
果トランジスタ(FET) の製造工程であって,該素子形成
膜2上にゲート絶縁膜3を介してゲート4を形成し,次
いで該ゲートの側面に絶縁膜からなる側壁5を形成し,
次いで該ゲートの両側の該素子形成膜にソースドレイン
6を形成する工程を含む素子形成工程終了後,放射線の
照射により該側壁中に固定正電荷7を発生させる工程を
有する半導体装置の製造方法により達成される。
The solution to the above problems is a manufacturing process of an insulated gate field effect transistor (FET) formed on the element forming film 2 on the insulator 1. A gate 4 is formed via a gate insulating film 3, and then a side wall 5 made of an insulating film is formed on the side surface of the gate.
Then, after the element formation process including the step of forming the source / drain 6 on the device formation film on both sides of the gate is completed, a fixed positive charge 7 is generated in the side wall by irradiation of radiation by a method of manufacturing a semiconductor device. To be achieved.

【0011】[0011]

【作用】ドレイン接合の電界強度が大きい場合はドレイ
ン接合でのキャリアの衝突電離(インパクトイオン化)
電離が発生する。この場合, ソースとドレイン間の電界
により, nチャネルの場合はドレイン接合近傍のチャネ
ルに発生した電子−正孔対のうち電子はドレイン接合に
吸収されるが, 正孔はチャネル部をソースに向かって移
動することにより,ソース接合における電子の注入が起
こり, ソースをエミッタ,チャネル部をベース,ドレイ
ンをコレクタとする寄生バイポーラ動作を引き起こすこ
とになる。従ってこの寄生バイポーラ動作を抑制するた
めには, ドレイン接合の電界を緩和すればよい。
[Operation] When the electric field strength at the drain junction is high, collisional ionization of carriers at the drain junction (impact ionization)
Ionization occurs. In this case, due to the electric field between the source and the drain, in the case of an n-channel, the electrons of the electron-hole pairs generated in the channel near the drain junction are absorbed in the drain junction, but the holes move from the channel portion toward the source. Electrons are injected into the source junction due to the movement, causing a parasitic bipolar operation in which the source is the emitter, the channel is the base, and the drain is the collector. Therefore, in order to suppress this parasitic bipolar operation, the electric field at the drain junction should be relaxed.

【0012】ドレイン接合の電界を緩和するために,本
発明ではソースとドレインを形成する前にゲートの側面
に二酸化シリコン(SiO2)からなる側壁を形成し,素子形
成後に,素子に放射線(γ線,X線,粒子線 等)を照
射して側壁の酸化膜中に固定正電荷を発生させて(接合
部の電界と反対方向の電界を発生させて)接合部の電界
を緩和するようにしたものである。
In order to relax the electric field of the drain junction, in the present invention, a side wall made of silicon dioxide (SiO 2 ) is formed on the side surface of the gate before forming the source and the drain, and after the element is formed, the element is exposed to radiation (γ Beam, X-ray, particle beam, etc.) to generate a fixed positive charge in the oxide film on the side wall (to generate an electric field in the direction opposite to the electric field at the junction) to relax the electric field at the junction. It was done.

【0013】本発明では, 側壁の酸化膜内に発生した固
定正電荷によって,基板表面のポテンシャルに横方向の
分布を持たせ, 横方向の電界変化を発生させて接合部の
電界を緩和し,衝突電離を抑制するようにした。
According to the present invention, the fixed positive charges generated in the oxide film on the side wall cause the potential on the substrate surface to have a lateral distribution and generate a lateral electric field change to relax the electric field at the junction. I tried to suppress collision ionization.

【0014】酸化膜中に放射線が照射されると酸化膜中
で発生した電子−正孔対はそれぞれ酸化膜中の電界に従
って移動する。この際,酸化膜中の電子の移動度は20 c
m V-1 s-1であり,正孔の移動度は2E-5 cm V-1 s-1と非
常に小さいため,結果的には正孔のみが酸化膜中にトラ
ップされ固定正電荷を発生する。この場合, 固定正電荷
の発生量は放射線の放射量と酸化膜中の電界の大きさに
依存する。
When the oxide film is irradiated with radiation, the electron-hole pairs generated in the oxide film move according to the electric field in the oxide film. At this time, the mobility of electrons in the oxide film is 20 c.
a m V -1 s -1, for the mobility of holes is very small and 2E-5 cm V -1 s -1 , the result only holes are trapped in the oxide film to the fixed positive charge Occur. In this case, the amount of fixed positive charges generated depends on the amount of radiation and the magnitude of the electric field in the oxide film.

【0015】図2は固定正電荷による横方向の電界変化
を示す図である。この図は,ドレイン接合部の横方向の
距離に対する固定正電荷による電界の変化を示す。
FIG. 2 is a diagram showing a lateral electric field change due to a fixed positive charge. This figure shows the change in electric field due to the fixed positive charge with respect to the lateral distance of the drain junction.

【0016】図において,(1) はチャネル領域,(2) は
側壁領域,(3)はドレイン領域である。本発明によると
酸化膜中に固定正電荷が発生し,nチャネルFET の場合
は固定正電荷の発生によってFET のしきい値電圧はデプ
レッション側に移動する(小さくなる)。側壁部は酸化
膜厚が一定でないので局所的なしきい値電圧は横方向に
分布を持つようになる。この場合の電源オフの場合の横
方向の電界変化は図2に示されるような分布を持つ。
In the figure, (1) is a channel region, (2) is a sidewall region, and (3) is a drain region. According to the present invention, a fixed positive charge is generated in the oxide film, and in the case of an n-channel FET, the threshold voltage of the FET moves (decreases) to the depletion side due to the generation of the fixed positive charge. Since the oxide film thickness on the side wall is not constant, the local threshold voltage has a lateral distribution. In this case, the electric field change in the lateral direction when the power is off has a distribution as shown in FIG.

【0017】このように基板表面のポテンシャルが横方
向に分布を持つことによって,固定正電荷による横方向
の電界変化が発生する。発生した電界の方向は接合の空
乏層中の電界と逆方向であるために接合での電界は緩和
されることになる。
Since the potential on the surface of the substrate has a lateral distribution in this way, a lateral electric field change due to the fixed positive charges occurs. Since the direction of the generated electric field is opposite to the electric field in the depletion layer of the junction, the electric field at the junction is relaxed.

【0018】また,本発明では素子形成後に放射線を照
射するため,その後に熱処理過程を受けることがなく酸
化膜内の固定正電荷はいつまでも消滅しないで保持され
る。ここで,図2において側壁領域(2) で,電界がチャ
ネル側でわずかに負に振れるているのは以下の理由によ
る。
Further, in the present invention, since the radiation is applied after the device is formed, the fixed positive charges in the oxide film are retained without being extinguished without being subjected to a heat treatment process thereafter. Here, in the side wall region (2) in FIG. 2, the electric field slightly fluctuates on the channel side for the following reason.

【0019】側壁中で蓄積される固定電荷は側壁の厚さ
が厚いところは少なく,薄いところが多く分布する。そ
のため伝導帯端のポテンシャルは厚いところから薄いと
ころに向かって高くなる。これに伴う電界変化の方向は
ドレインのpn接合のビルトイン電界の変化の方向とは逆
方向になっているためである。
The fixed charges accumulated in the side wall are distributed in many places where the side wall is thick and many places where the side wall is thin. Therefore, the potential at the conduction band edge increases from the thicker part to the thinner part. This is because the direction of the electric field change accompanying this is opposite to the direction of the change of the built-in electric field of the drain pn junction.

【0020】このように本発明では,ドレイン接合の電
界を緩和してドレイン接合でのキャリアの衝突電離によ
る電子−正孔対の発生を抑制することにより,工程を増
加させずに寄生バイポーラ効果を抑制するようにした。
As described above, in the present invention, the electric field at the drain junction is relaxed to suppress the generation of electron-hole pairs due to the collisional ionization of carriers at the drain junction, so that the parasitic bipolar effect can be achieved without increasing the number of steps. I tried to suppress it.

【0021】[0021]

【実施例】図1 (A)〜(D) は本発明の実施例を説明する
断面図である。図において,1はSOI 絶縁膜(下地酸化
膜)で二酸化シリコン(SiO2)膜, 2はSOI 膜(素子形成
膜)でシリコン(Si)膜,3はゲート絶縁膜でSiO2膜,4
はゲートでポリシリコン膜,5は気相成長(CVD) による
SiO2膜からなる側壁,6はソースドレイン領域,7は側
壁中に発生した固定正電荷である。
1 (A) to 1 (D) are sectional views for explaining an embodiment of the present invention. In the figure, 1 is an SOI insulating film (base oxide film), a silicon dioxide (SiO 2 ) film, 2 is an SOI film (element forming film), a silicon (Si) film, 3 is a gate insulating film, a SiO 2 film, 4
Is a gate and is a polysilicon film, 5 is a vapor phase growth (CVD)
A side wall made of a SiO 2 film, 6 is a source / drain region, and 7 is a fixed positive charge generated in the side wall.

【0022】素子形成に使用したSOI 基板はSOI 膜のSi
膜厚が2000Å, 下地酸化膜厚が3500ÅのSIMOX 基板 (Si
基板内に酸素イオンを注入して, 下地絶縁膜を基板表面
から離れた位置に形成した基板) を用いた。
The SOI substrate used for element formation is the Si of the SOI film.
SIMOX substrate (Si with a film thickness of 2000 Å and underlying oxide film thickness of 3500 Å
A substrate was used in which oxygen ions were implanted into the substrate to form a base insulating film at a position apart from the substrate surface).

【0023】図1(A) において,Si膜2上に熱酸化によ
り厚さ 150ÅのゲートSiO2膜3を形成し,厚さ4000Åの
ポリシリコン膜からなるゲート4を形成する。図1(B)
において,基板上に厚さ4000ÅのCVD SiO2膜を堆積し,
異方性エッチングによりエッチバックしてゲート4の側
面に側壁5を形成する。
In FIG. 1A, a gate SiO 2 film 3 having a thickness of 150Å is formed on the Si film 2 by thermal oxidation, and a gate 4 made of a polysilicon film having a thickness of 4000Å is formed. Figure 1 (B)
At, a 4000 Å thick CVD SiO 2 film is deposited on the substrate,
Etch back by anisotropic etching to form side walls 5 on the side surfaces of the gate 4.

【0024】図1(C) において,ゲート4および側壁5
を注入マスクにして,Si膜2内に砒素イオン (As+ ) を
注入し, 活性化アニール(熱処理)を行ってソースドレ
イン6を形成する。
In FIG. 1C, the gate 4 and the side wall 5 are formed.
Using the as an implantation mask, arsenic ions (As + ) are implanted into the Si film 2 and activation annealing (heat treatment) is performed to form the source / drain 6.

【0025】図1(D) において,照射する放射線として
Co60のγ線を用い, 1E6 rad(Si) 吸収する条件で照射す
る。実施例により形成したnチャネルFET のγ線照射前
後のサブスレッショルド特性(ドレイン電圧5V)を図3
に示す。
In FIG. 1D, the radiation to be applied is
Irradiation is performed under the condition of 1E6 rad (Si) absorption using Co 60 γ-rays. FIG. 3 shows subthreshold characteristics (drain voltage 5 V) before and after γ-ray irradiation of the n-channel FET formed according to the embodiment.
Shown in.

【0026】図3は実施例の効果を説明する図である。
この図はゲート電圧VGに対するドレイン電流IDの立ち上
がり特性を示し,(1)はγ線照射前,(2) はγ線照射後
である。
FIG. 3 is a diagram for explaining the effect of the embodiment.
This figure shows the rise characteristics of the drain current ID with respect to the gate voltage VG. (1) before γ-ray irradiation, (2) after γ-ray irradiation.

【0027】γ線照射前(1) ではサブスレッショルドス
イング(IDの立ち上がり部のVG/logID)は45E-3 mV/dec
ade とバイポーラ効果により異常に小さくなっており,
γ線照射後(2) ではサブスレッショルドスイングは75E-
3 mV/decade と正常な値となっており, バイポーラ効果
はみられない。
Before γ-ray irradiation (1), the subthreshold swing (VG / logID at the rising edge of ID) was 45E-3 mV / dec
It is extremely small due to ade and the bipolar effect.
After gamma irradiation (2), the subthreshold swing is 75E-
It has a normal value of 3 mV / decade, and no bipolar effect is seen.

【0028】[0028]

【発明の効果】本発明により, SOI FET の接合におい
て,従来例のような特別の工程を必要としないで寄生バ
イポーラ効果を抑制し,素子特性の安定化と素子の高信
頼化をはかることができた。
According to the present invention, in the junction of the SOI FET, the parasitic bipolar effect can be suppressed without requiring a special process as in the conventional example, and the element characteristics can be stabilized and the element can be highly reliable. did it.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を説明する断面図FIG. 1 is a sectional view illustrating an embodiment of the present invention.

【図2】 固定正電荷による横方向の電界変化を示す図FIG. 2 is a diagram showing a lateral electric field change due to a fixed positive charge.

【図3】 実施例の効果を説明する図FIG. 3 is a diagram for explaining the effect of the embodiment.

【符号の説明】[Explanation of symbols]

1 SOI 絶縁膜で下地酸化膜 2 SOI 膜で素子形成用Si膜 3 ゲート絶縁膜でSiO2膜 4 ゲートでポリシリコン膜, 5はCVD SiO2膜からなる側壁 6 ソースドレイン領域 7 側壁中に発生した固定正電荷1 SOI insulating film, underlying oxide film 2 SOI film, Si film for element formation 3 Gate insulating film, SiO 2 film 4 Gate, polysilicon film, 5 side wall made of CVD SiO 2 film 6 Source / drain region 7 Side wall Fixed positive charge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体(1) 上の素子形成膜(2) に形成す
る絶縁ゲート型の電界効果トランジスタ(FET) の製造工
程であって, 該素子形成膜(2) 上にゲート絶縁膜(3)を介してゲート
(4)を形成し,次いで該ゲートの側面に絶縁膜からなる
側壁(5) を形成し,次いで該ゲートの両側の該素子形成
膜にソースドレイン(6) を形成する工程を含む素子形成
工程終了後,放射線の照射により該側壁中に固定正電荷
(7) を発生させる工程を有することを特徴とする半導体
装置の製造方法。
1. A process for manufacturing an insulated gate field effect transistor (FET) formed on an element forming film (2) on an insulator (1), comprising a gate insulating film on the element forming film (2). Gate through (3)
An element formation step including the step of forming (4), then forming side walls (5) made of an insulating film on the side surface of the gate, and then forming source drains (6) in the element formation film on both sides of the gate. After completion, fixed positive charge in the side wall due to irradiation of radiation
A method of manufacturing a semiconductor device, comprising the step of generating (7).
JP22321491A 1991-09-04 1991-09-04 Manufacture of semiconductor device Withdrawn JPH0563000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22321491A JPH0563000A (en) 1991-09-04 1991-09-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22321491A JPH0563000A (en) 1991-09-04 1991-09-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0563000A true JPH0563000A (en) 1993-03-12

Family

ID=16794582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22321491A Withdrawn JPH0563000A (en) 1991-09-04 1991-09-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0563000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142734A (en) * 1993-05-20 1995-06-02 Gold Star Electron Co Ltd Thin film transistor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142734A (en) * 1993-05-20 1995-06-02 Gold Star Electron Co Ltd Thin film transistor and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3495257B2 (en) Method for manufacturing semiconductor device
JP2716303B2 (en) Method of manufacturing MOS field effect transistor
US7511341B2 (en) SOI device having increased reliability and reduced free floating body effects
US7019378B2 (en) Field-shielded SOI-MOS structure free from floating body effects, and method of fabrication therefor
JPH0563000A (en) Manufacture of semiconductor device
JP2703883B2 (en) MIS transistor and method of manufacturing the same
JPH0475387A (en) Mis-type semiconductor device
JPH0637106A (en) Manufacture of semiconductor device
JPH0575041A (en) Cmos semiconductor device
JP3297548B2 (en) Method of manufacturing SOI semiconductor integrated circuit device
JP3316023B2 (en) Semiconductor device
JPH05299437A (en) Soi-type substrate and its manufacture
JPH0472770A (en) Manufacture of semiconductor device
JP3480500B2 (en) Semiconductor element forming method
JP2537649B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS61139068A (en) Semiconductor device and manufacture thereof
JP2918913B2 (en) Semiconductor device
JPH0652738B2 (en) Insulated gate type field effect transistor
JPH06302790A (en) Manufacture of insulating isolating substrate
JPH09199716A (en) Semiconductor device and its manufacture
JP2682426B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS596580A (en) Semiconductor device
KR0161840B1 (en) Method of manufacturing mosfet
JPS62112375A (en) Manufacture of semiconductor device
JPS6369271A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203