JPH0560062B2 - - Google Patents

Info

Publication number
JPH0560062B2
JPH0560062B2 JP209685A JP209685A JPH0560062B2 JP H0560062 B2 JPH0560062 B2 JP H0560062B2 JP 209685 A JP209685 A JP 209685A JP 209685 A JP209685 A JP 209685A JP H0560062 B2 JPH0560062 B2 JP H0560062B2
Authority
JP
Japan
Prior art keywords
voltage
transformer
disconnector
terminal
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP209685A
Other languages
Japanese (ja)
Other versions
JPS61161458A (en
Inventor
Susumu Nishiwaki
Toshikazu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP209685A priority Critical patent/JPS61161458A/en
Publication of JPS61161458A publication Critical patent/JPS61161458A/en
Publication of JPH0560062B2 publication Critical patent/JPH0560062B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] この発明はSF6ガス断路器の充電電流しや断性
能を試験する為の回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a circuit for testing the charging current and disconnection performance of an SF 6 gas disconnector.

[発明の技術的背景] 変電所において、断路器は変電所内機器の電力
系統からの切り離しや、回路の切り換え等の目的
で開閉操作される。断路器の開閉は隣接したしや
断器が開路の状態で行われ、断路器はそのしや断
器に至る変電所内の短い線路の微少な充電電流を
開閉する。第3図は変電所の構成の一例を示す
が、例えば、断路器Aはしや断器aまでの短い線
路mを開閉し、断路器Dは断路器E及びしや断器
bが開路のとき線路区間nが開閉する。又、断路
器C,E,K,N及びしや断器fが開路の状態
で、断路器Iは母線1を開閉する。
[Technical Background of the Invention] In a substation, a disconnector is opened and closed for the purpose of disconnecting equipment within the substation from the power system, switching circuits, and the like. The opening and closing of a disconnector is performed while the adjacent cable breaker is open, and the disconnector switches on and off a minute charging current in a short line within the substation leading to the cable breaker. Figure 3 shows an example of the configuration of a substation. For example, disconnector A opens and closes a short line m to disconnector a, and disconnector D opens and closes disconnector E and disconnector b. When track section n opens and closes. Further, when the disconnectors C, E, K, N and the bow disconnector f are open, the disconnector I opens and closes the bus bar 1.

また、変電所内機器のおいては、絶縁性能が高
く、小型・縮小化が可能であるというその優れた
長所に鑑み、SF6ガスを封入したガス絶縁開閉機
器が広く使用されている。SF6ガス断路器は、こ
の様なガス絶縁開閉機器の一つであり、各種のガ
ス絶縁開閉機器を採用した変電所において使用さ
れている。
Furthermore, gas insulated switchgear filled with SF 6 gas is widely used in substation equipment due to its excellent insulation performance and ability to be made smaller and smaller. The SF 6 gas disconnect switch is one such gas-insulated switchgear, and is used in substations that employ various gas-insulated switchgear.

なお、SF6ガス断路器が用いられる変電所は、
第3図に示す断路器、しや断器、母線などを、全
てSF6ガスを封入した金属容器に収納した全ガス
絶縁変電所と母線だけを架空線とした複合形ガス
絶縁変電所とに大別される。
In addition, substations where SF 6 gas disconnectors are used are:
Figure 3 shows a fully gas-insulated substation in which all disconnectors, disconnectors, busbars, etc. are housed in a metal container filled with SF 6 gas, and a combined gas-insulated substation with only the busbar as an overhead wire. Broadly classified.

ところで、断路器による充電電流しや断の際に
は、多数個の再点弧が発生し、第4図に示すよう
な負荷側線路対地電圧波形11が得られることが
知られている。なお、図中12は電源側線路対地
電圧波形、13は、再点弧サージ電圧である。
By the way, it is known that when the charging current is interrupted by a disconnector, a large number of restrikes occur, resulting in a load-side line-to-ground voltage waveform 11 as shown in FIG. In addition, in the figure, 12 is a power supply side line-to-ground voltage waveform, and 13 is a restriking surge voltage.

まず、開極とほぼ同時に微少の充電電流はしや
断され、そのとき負荷側の線路にはしや断瞬時の
電源電圧V1が残留している。電源電圧は交流で
あつて変化するから、断路器の極間にはこの線路
の残留電圧と電源電圧の差が印加される。このと
き断路器は未だ開極途上であつて、極間絶縁回復
が十分でなく、極間電圧e1で再点弧する。する
と、線路の静電容量は数百〜数千ピコフアラツド
程度であるから、流れる過渡電流が減衰するとす
ぐしや断が成立し、負荷側線路の電圧はそのとき
の電源電圧V2と一致した大きさで残留する。電
源電圧はさらに変化するから、極間電圧e2で再び
再点弧を発生する。以下同様にして極間電圧e3
e4,e5,e6,e7,e8,…で再点呼を繰返す。断路
器の極間距離は次第に大きくなるので、極間の放
電開始電圧の極性効果を無視すれば、一般的にe8
>e7>…>e2>e1である断路器の極間絶縁が回復
して電源電圧波高値の2倍程度以上になれば、再
点弧せずしや断は完了する。
First, the minute charging current is interrupted almost simultaneously with the opening, and at that time, the power supply voltage V 1 at the instant of the interruption remains on the line on the load side. Since the power supply voltage is alternating current and changes, the difference between the residual voltage of this line and the power supply voltage is applied between the poles of the disconnector. At this time, the disconnector is still in the process of opening, and the inter-electrode insulation recovery is not sufficient, and it is re-ignited at the inter-electrode voltage e1 . Then, since the capacitance of the line is on the order of several hundred to several thousand picofurads, as soon as the flowing transient current attenuates, a disconnection occurs, and the voltage on the load side line increases to a level equal to the power supply voltage V 2 at that time. It remains. Since the power supply voltage changes further, restriking occurs again at the electrode-to-electrode voltage e2 . Similarly, the interelectrode voltage e 3 ,
Repeat roll call at e 4 , e 5 , e 6 , e 7 , e 8 , etc. Since the distance between the poles of the disconnector gradually increases, if the polarity effect of the discharge starting voltage between the poles is ignored, generally e 8
>e 7 >...>e 2 >e 1 When the insulation between the poles of the disconnector recovers and the power supply voltage reaches about twice the peak value or more, the restarting and disconnection are completed.

そして、これら再点弧のときにサージ電圧が発
生する。例えば第4図a点での再点弧の現象を時
間的に拡大し、概念的に示すと第5図のようにな
る。このときのサージ電圧は、開閉する負荷側の
線路が短いため周波数が高く、多くの場合、その
基本振動は数百KHzに達する。
A surge voltage is generated during these restrikes. For example, when the phenomenon of restriking at point a in FIG. 4 is temporally expanded and conceptually illustrated, it becomes as shown in FIG. 5. The surge voltage at this time has a high frequency because the line on the load side that is opened and closed is short, and in many cases, its fundamental vibration reaches several hundred KHz.

従つて、再点弧時に断路器の極間には高周波電
流が流れる。もし断路器がこの高周波電流を第5
図Bのx点に示すように最初の電流零点でしや断
すると、負荷側線路の電圧は同図Aのy点の電圧
で残留することになる。しかし、実系統ではこの
様なことは発生しない。再点弧時の過渡電流が十
分減衰した時点でしや断が成立し、負荷側線路の
電圧が電源電圧と一致した後でしや断される。断
路器によつて充電電流をしや断する際に多数回の
再点弧が発生するが、線路側の残留電圧は最大で
電源側電圧波高値である。最大の再点弧サージを
考える場合、電源側が電源電圧の波高値、負荷側
線路が逆極性の電源電圧波高値で再点弧したとき
を検討すれば十分である。
Therefore, a high frequency current flows between the poles of the disconnector at the time of restriking. If the disconnector disables this high frequency current
When the current is cut off at the first zero current point as shown at point x in Figure B, the voltage on the load side line remains at the voltage at point y in Figure A. However, such a thing does not occur in a real system. When the transient current at the time of restriking has sufficiently attenuated, a break occurs, and after the voltage on the load side line matches the power supply voltage, the break occurs. Many restrikes occur when the charging current is cut off by a disconnector, but the maximum residual voltage on the line is the peak value of the voltage on the power supply side. When considering the maximum restriking surge, it is sufficient to consider when the power supply side is restriked at the peak value of the power supply voltage and the load side line is restriked at the peak value of the power supply voltage of opposite polarity.

この様に、断路器の充電電流しや断において
は、以上の様な再点弧サージ電圧の発生といつた
現象を示す為、従来、例えば第6図に示す様な回
路構成にて、最大のサージ電圧に対して断路器が
耐え得るか否かの試験が行なわれている。
In this way, when the charging current of the disconnector is cut off, the above-mentioned phenomena such as the occurrence of the restriking surge voltage occur, so conventionally, for example, the circuit configuration shown in Figure 6 is Tests are being conducted to determine whether disconnectors can withstand surge voltages.

同図において、1は供試断路器、2は負荷側コ
ンデンサ、3は電源側コンデンサ、4はリアクト
ル、5は変圧器、6は交流電源である。コンデン
サ2はフイールドにおける断路器の負荷側線路の
静電容量を模擬したものであり、この試験回路に
おいてはこのコンデンサ2に流れる充電電流を供
試断路器1で直接開閉する。供試断路器1が再点
弧したときに発生するサージ電圧は主として負荷
側コンデンサ2、供試断路器1、リアクトル4、
電源側コンデンサ3の回路で決定される。SF6
路器の場合、再点弧の時に、その際発生するサー
ジ電圧によつて、断路器の極間から接地電位の金
属容器へ地絡する現象があり、充電電流開閉試験
の際にはこの現象にも着目しなければならない。
このためには、試験回路において発生するサージ
電圧を実系統におけるサージ電圧にできるだけ等
しくする必要がある。第6図における電源側コン
デンサ3は、この目的のために接続されているも
のである。電源側コンデンサ3の静電容量値を負
荷側コンデンサ2の静電容量値より大きくするこ
とによつて、大きなサージ電圧を発生することが
できる。
In the figure, 1 is a disconnector under test, 2 is a load side capacitor, 3 is a power supply side capacitor, 4 is a reactor, 5 is a transformer, and 6 is an AC power source. The capacitor 2 simulates the capacitance of the load-side line of a disconnector in the field, and in this test circuit, the charging current flowing through the capacitor 2 is directly switched on and off by the disconnector 1 under test. The surge voltage generated when the test disconnector 1 is re-ignited is mainly caused by the load side capacitor 2, the test disconnector 1, the reactor 4,
It is determined by the circuit of the power supply side capacitor 3. In the case of SF 6 disconnectors, there is a phenomenon in which a ground fault occurs between the poles of the disconnector to the metal container at ground potential due to the surge voltage generated at the time of restriking. We must also pay attention to this phenomenon.
For this purpose, it is necessary to make the surge voltage generated in the test circuit as equal as possible to the surge voltage in the actual system. The power supply side capacitor 3 in FIG. 6 is connected for this purpose. By making the capacitance value of the power supply side capacitor 3 larger than the capacitance value of the load side capacitor 2, a large surge voltage can be generated.

[背景技術の問題点] しかしながら、以上述べた様な従来の試験回路
には、次の様な問題点がある。
[Problems with Background Art] However, the conventional test circuit as described above has the following problems.

即ち、第6図の試験回路においては、供試SF6
ガス断路器によつて充電電流をしや断する際の再
点弧によるサージ電圧の大きさは、再点弧が発生
する極間の電圧が大きいほど大きくなるが、この
再点弧が発生する極間の電圧は、しや断する都度
異なり、その最大値は多数回、例えば200回しや
断して1,2回しか得られないこともある。従つ
て、発生する最大のサージ電圧に対して断路器が
耐え得るか否かについて検証する為には、最大値
が得られるまで多数回の操作を行わなければなら
なず、試験の能率が極めて悪くなり、断路器試験
上の大きな問題となつていた。
That is, in the test circuit of Fig. 6, the test SF 6
The magnitude of the surge voltage due to restriking when the charging current is interrupted by a gas disconnector increases as the voltage between the poles where restriking occurs increases; The voltage between the electrodes differs each time the electrode is interrupted, and its maximum value may be obtained many times, for example, 200 times, or only once or twice. Therefore, in order to verify whether a disconnecting switch can withstand the maximum surge voltage that occurs, it is necessary to perform the operation many times until the maximum value is obtained, making the test extremely inefficient. The problem worsened and became a major problem in testing disconnectors.

[発明の目的] 本発明は、上述の様な従来技術の問題点を解消
する為に提案されたもので、その目的は、供試
SF6ガス断路器が充電電流をしや断する際の再点
弧が発生する最大の極間電圧において、連続して
再点弧させる構成を実現し、最苛酷の条件におい
て連続して試験が可能なSF6ガス断路器の充電電
流しや断性能試験回路を提供することを目的とす
る。
[Object of the invention] The present invention was proposed in order to solve the problems of the prior art as described above.
The SF 6 gas disconnector has realized a configuration that allows continuous restriking at the maximum voltage between poles at which restriking occurs when the charging current is cut off, and has been continuously tested under the most severe conditions. The purpose of this paper is to provide a charging current and disconnection performance test circuit for a possible SF 6 gas disconnector.

[発明の概要] 本発明は、係る目的を達成する為に、可動電極
を途中まで駆動して固定した供試SF6ガス断路器
の第1の端子にリアクトルの一方の端子を接続
し、このリアクトルの他方の端子とアースとの間
に第1のコンデンサと第1の変圧器の2次側巻線
を接続し、第1の変圧器の1次側巻線に交流電源
を接続し、且つ前記供試SF6ガス断路器の第2の
端子とアースとの間に第2のコンデンサを接続
し、供試SF6ガス断路器の第2の端子に抵抗体の
一方の端子を接続し、この抵抗体の他方の端子と
アースとの間に第2の変圧器の2次側巻線を接続
し、第2の変圧器の1次側巻線に交流電源を接続
し、更に、第1の変圧器の2次側巻線の対地電圧
と、第2の変圧器の2次側巻線の対地電圧との位
相差を180°とする様に構成したものである。
[Summary of the Invention] In order to achieve the above object, the present invention connects one terminal of a reactor to the first terminal of a test SF 6 gas disconnector in which a movable electrode is driven halfway and fixed. A first capacitor and a secondary winding of a first transformer are connected between the other terminal of the reactor and ground, an AC power source is connected to a primary winding of the first transformer, and Connecting a second capacitor between the second terminal of the SF 6 gas disconnector under test and ground, connecting one terminal of a resistor to the second terminal of the SF 6 gas disconnector under test, A secondary winding of a second transformer is connected between the other terminal of this resistor and the ground, an AC power source is connected to the primary winding of the second transformer, and an AC power source is connected to the primary winding of the second transformer. The phase difference between the voltage to ground of the secondary winding of the second transformer and the voltage to ground of the secondary winding of the second transformer is 180°.

そして、この様な構成を有することにより、交
流半波毎に、第2のコンデンサの電圧が第1の変
圧器の電圧とほぼ等しくなる為、再点弧が発生す
る最大の極間電圧又はこれ以上の電圧において、
連続した再点弧を実現している。
With such a configuration, the voltage of the second capacitor becomes approximately equal to the voltage of the first transformer every AC half-wave, so that the voltage between the poles at which restriking occurs is the maximum voltage or this value. At voltages above,
Achieves continuous restrike.

[発明の実施例] 第1図はこの発明の一実施例の説明図である。
1は供試SF6ガス断路器、2は負荷側コンデンサ
(第2のコンデンサ)、3は電源側コンデンサ(第
1のコンデンサ)、4はリアクトル、5は電源側
変圧器(第1の変圧器)、6は交流電源(第1の
交流電源)、7は負荷側変圧器(第2の変圧器)、
8は電源側交流電源(第2の交流電源)、9は高
抵抗体である。なお、変圧器5と変圧器7の電圧
の位相は互いに180度ずれている。
[Embodiment of the Invention] FIG. 1 is an explanatory diagram of an embodiment of the invention.
1 is the SF 6 gas disconnector under test, 2 is the load side capacitor (second capacitor), 3 is the power supply side capacitor (first capacitor), 4 is the reactor, 5 is the power supply side transformer (the first transformer) ), 6 is an AC power supply (first AC power supply), 7 is a load-side transformer (second transformer),
8 is a power supply side AC power source (second AC power source), and 9 is a high resistance body. Note that the voltage phases of transformer 5 and transformer 7 are 180 degrees out of phase with each other.

以上の様な構成を有する本実施例の作用は次の
通りである。
The operation of this embodiment having the above configuration is as follows.

まず、同回路にて試験を行なう際には、供試
SF6ガス断路器1の可動電極を駆動して途中で固
定し、固定電極との間に極間距離を所定の長さに
定め、極間放電開始電圧を、再点弧の発生する最
大極間電圧又はそれ以上の所定の電圧に設定して
おく。そして、変圧器5に電圧を発生し、更に、
変圧器7には変圧器5と電圧及び振幅がほぼ同じ
で位相に関しては180度異なる電圧を発生し、供
試SF6ガス断路器1の極間を放電させる。
First, when testing the same circuit,
The movable electrode of the SF 6 gas disconnector 1 is driven and fixed in the middle, the distance between the electrodes and the fixed electrode is set to a predetermined length, and the discharge starting voltage between the electrodes is set at the maximum pole at which restriking occurs. The voltage is set to a predetermined voltage that is equal to or higher than the current voltage. Then, a voltage is generated in the transformer 5, and further,
The transformer 7 generates a voltage that is approximately the same in voltage and amplitude as the transformer 5 but differs in phase by 180 degrees, and discharges between the poles of the SF 6 gas disconnector 1 under test.

すると、試験回路の各部の電圧は第2図に示す
ようになる。なお、図中21は負荷側コンデンサ
2の電圧、22は電源側コンデンサ3の電圧、2
3は変圧器7の電圧、24はサージ電圧である。
Then, the voltages at each part of the test circuit become as shown in FIG. In addition, in the figure, 21 is the voltage of the load side capacitor 2, 22 is the voltage of the power supply side capacitor 3, 2
3 is the voltage of the transformer 7, and 24 is the surge voltage.

まず、断路器の極間には、変圧器5及び変圧器
7の電圧の差が印加され、この電圧が極間の所定
の放電開始電圧以上になると放電する。このと
き、第6図と同じ様に、電源側コンデンサ3、リ
アクトル4、供試SF6ガス断路器1、負荷側コン
デンサ2の回路で主として決まるサージ電圧が発
生する。抵抗9は高抵抗であるので、変圧器5と
7の間には断路器極間を通して小さな商用周波電
流しか流れず、従つて、第5図において説明した
様に、負荷側のコンデンサ2の電圧が、変圧器5
の電圧とほぼ等しくなつた状態でしや断が成立す
る。すると、負荷側コンデンサ2は抵抗9を通し
て充電されて、変流器7の電圧と一致するように
なる。そして、再び、次の交流半波で供試断路器
1の極間に放電開始電圧以上の電圧が印加される
と放電してサージ電圧を発生する。
First, a voltage difference between the transformer 5 and the transformer 7 is applied between the poles of the disconnector, and when this voltage becomes equal to or higher than a predetermined discharge starting voltage between the poles, a discharge occurs. At this time, as in FIG. 6, a surge voltage is generated that is mainly determined by the circuit of the power supply side capacitor 3, reactor 4, sample SF 6 gas disconnector 1, and load side capacitor 2. Since the resistor 9 has a high resistance, only a small commercial frequency current flows between the transformers 5 and 7 through the poles of the disconnector, and therefore, as explained in FIG. 5, the voltage of the capacitor 2 on the load side However, transformer 5
A break occurs when the voltage becomes approximately equal to the voltage of . Then, the load-side capacitor 2 is charged through the resistor 9 and becomes equal to the voltage of the current transformer 7. Then, when a voltage higher than the discharge starting voltage is applied between the poles of the test disconnector 1 again in the next AC half wave, the test disconnector 1 discharges and generates a surge voltage.

従つて、交流半波毎に、第2のコンデンサの電
圧が第1の変圧器の電圧とほぼ等しくなる為、再
点弧が発生する最大の極間電圧又はそれ以上の電
圧において、連続して再点弧することができる。
その結果、一回の操作で最苛酷条件において連続
して試験することが可能となり、従来の様に多数
回繰返し操作する必要はなくなり、試験能率を大
幅に向上できる。
Therefore, at every AC half-wave, the voltage on the second capacitor becomes approximately equal to the voltage on the first transformer, so that the voltage at or above the maximum pole-to-pole voltage at which restriking occurs is continuous. Can be re-ignited.
As a result, it becomes possible to perform continuous testing under the most severe conditions in a single operation, eliminating the need for repeated operations many times as in the past, and greatly improving testing efficiency.

[発明の効果] 以上説明したように、本発明によれば、負荷側
に、高抵抗、第2の変圧器、及び交流電源を設け
るという簡単な構成により、供試断路器が充電電
流をしや断する際の、再点弧が発生する最大の極
間電圧又はこれ以上の電圧における連続した再点
弧を実現し、最苛酷条件において連続して試験が
可能であり、従つて、試験能率を著しく向上する
ことができる様な優れたSF6ガス断路器の充電電
流しや断性能試験回路を提供できる。
[Effects of the Invention] As explained above, according to the present invention, the simple configuration of providing a high resistance, a second transformer, and an AC power source on the load side allows the disconnector under test to carry charging current. It realizes continuous restriking at the maximum voltage between poles at which restriking occurs or a voltage higher than this when the flame is cut off, and it is possible to perform tests continuously under the harshest conditions, thus increasing test efficiency. We can provide an excellent SF 6 gas disconnector charging current and disconnection performance test circuit that can significantly improve the performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2
図は本発明の回路の各部電圧を示す波形図、第3
図は変電所の構成の一例を示す配線図、第4図は
再点弧の発生を示す波形図、第5図は再点弧サー
ジ電圧を示す波形図、第6図は従来の試験回路を
示す回路図である。 1……供試SF6ガス断路器、2……負荷側コン
デンサ、3……電源側コンデンサ、4……リアク
トル、5……変流器、6……交流電源、7……変
流器、8……交流電源、9……高抵抗体。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing an embodiment of the present invention.
The figure is a waveform diagram showing voltages at various parts of the circuit of the present invention.
The figure is a wiring diagram showing an example of the configuration of a substation, Figure 4 is a waveform diagram showing the occurrence of restriking, Figure 5 is a waveform diagram showing restriking surge voltage, and Figure 6 is a conventional test circuit. FIG. 1... Test SF 6 gas disconnector, 2... Load side capacitor, 3... Power supply side capacitor, 4... Reactor, 5... Current transformer, 6... AC power supply, 7... Current transformer, 8...AC power supply, 9...High resistance object.

Claims (1)

【特許請求の範囲】 1 可動電極を途中まで駆動して固定電極との間
に所定の極間距離を持つて固定した供試SF6ガス
断路器の第1の端子にリアクトルの一方の端子を
接続し、このリアクトルの他方の端子とアースと
の間に第1のコンデンサと第1の変圧器の2次側
巻線を接続し、第1の変圧器の1次側巻線に交流
電源を接続し、 前記供試SF6ガス断路器の第2の端子とアース
との間に第2のコンデンサを接続し、供試SF6
ス断路器の第2の端子に抵抗体の一方の端子を接
続し、この抵抗体の他方の端子とアースとの間に
第2の変圧器の2次側巻線を接続し、第2の変圧
器の1次側巻線に交流電源を接続し、 第1の変圧器の2次側巻線の対地電圧と、第2
の変圧器の2次側巻線の対地電圧との位相差を
180°としたことを特徴とするSF6ガス断路器の充
電電流しや断性能試験回路。
[Claims] 1. One terminal of the reactor is connected to the first terminal of the SF 6 gas disconnector under test, in which the movable electrode is driven halfway and fixed with a predetermined distance between it and the fixed electrode. Connect the first capacitor and the secondary winding of the first transformer between the other terminal of this reactor and ground, and connect the AC power to the primary winding of the first transformer. Connect a second capacitor between the second terminal of the SF 6 gas disconnector under test and the ground, and connect one terminal of the resistor to the second terminal of the SF 6 gas disconnector under test. connect the secondary winding of the second transformer between the other terminal of this resistor and ground, connect the AC power source to the primary winding of the second transformer, The ground voltage of the secondary winding of the first transformer and the second
The phase difference between the secondary winding of the transformer and the ground voltage is
A charging current and disconnection performance test circuit for an SF 6 gas disconnector characterized by a 180° angle.
JP209685A 1985-01-11 1985-01-11 Circuit for testing charging current breaking performance of gaseous sf6 disconnecting switch Granted JPS61161458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP209685A JPS61161458A (en) 1985-01-11 1985-01-11 Circuit for testing charging current breaking performance of gaseous sf6 disconnecting switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP209685A JPS61161458A (en) 1985-01-11 1985-01-11 Circuit for testing charging current breaking performance of gaseous sf6 disconnecting switch

Publications (2)

Publication Number Publication Date
JPS61161458A JPS61161458A (en) 1986-07-22
JPH0560062B2 true JPH0560062B2 (en) 1993-09-01

Family

ID=11519815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP209685A Granted JPS61161458A (en) 1985-01-11 1985-01-11 Circuit for testing charging current breaking performance of gaseous sf6 disconnecting switch

Country Status (1)

Country Link
JP (1) JPS61161458A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008304A (en) * 2008-06-30 2010-01-14 Toshiba Corp Method and device for ac withstand voltage test

Also Published As

Publication number Publication date
JPS61161458A (en) 1986-07-22

Similar Documents

Publication Publication Date Title
US6703839B2 (en) Synthetic making/breaking-capacity test circuit for high-voltage alternating-current circuit-breakers
JP2591525B2 (en) Circuit breaker test equipment
Kimbark Charts of three quantities associated with single-pole switching
JPS59169306A (en) Gas insulated switching device
Schnerer et al. Single phase switching tests on 765 kV and 750 kV transmission lines
JPH0560062B2 (en)
JP3103262B2 (en) Circuit breaker test circuit for switchgear
Koeppl et al. New aspects for neutral grounding of generators considering intermittent faults
JP2666946B2 (en) Capacitor switching performance test equipment
Pramana et al. Simulation Study of Circuit Breaker Failure on Extra High Voltage Reactor
JPH0145592B2 (en)
Backman et al. Passive DC neutral breaker for bipolar HVDC schemes
Marin et al. Study of Overvoltages at the Extinguishing Coil Disconnection from Medium Voltage Networks in Stabilized Earthing Regime
JPS5933715A (en) Charging current breakage testing circuit for sf6 gas interrupter
JPH0425505B2 (en)
Yamamoto et al. New short-circuit testing facilities to cope with the recent development of GIS
van der Sluis et al. A three phase synthetic test-circuit for metal-enclosed circuit-breakers
JPH0457053B2 (en)
JPS61101926A (en) Refiring surge test for gas-insulated switch gear
JPS5916231A (en) Charging current breakage testing circuit for sf6 gas disconnecting switch
JPS5928816A (en) Gas insulated substation
JPS59221680A (en) Testing method of reignition surge of gas insulation disconnecting switch
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
Bhasavanich et al. Digital Simulations and Field Measurement of Transients Associated with Large Capactior Bank Switching on Distribution Systems
JPH055067B2 (en)