JP2010008304A - Method and device for ac withstand voltage test - Google Patents

Method and device for ac withstand voltage test Download PDF

Info

Publication number
JP2010008304A
JP2010008304A JP2008169859A JP2008169859A JP2010008304A JP 2010008304 A JP2010008304 A JP 2010008304A JP 2008169859 A JP2008169859 A JP 2008169859A JP 2008169859 A JP2008169859 A JP 2008169859A JP 2010008304 A JP2010008304 A JP 2010008304A
Authority
JP
Japan
Prior art keywords
voltage
test
generator
terminals
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008169859A
Other languages
Japanese (ja)
Inventor
Hiroshi Koyama
博 小山
Koichi Hoshina
好一 保科
Haruhisa Wada
治寿 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008169859A priority Critical patent/JP2010008304A/en
Publication of JP2010008304A publication Critical patent/JP2010008304A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To apply a large voltage cross terminals without increasing a voltage to ground. <P>SOLUTION: A switch 7 including a pair of terminals and a capacitor 8 connected in parallel with the terminal are provided inside a switch device 6. A test AC voltage generator 1 and a test AC voltage generator 2 are connected to two external terminals of the switch device 6, respectively. A voltage is supplied to the primary side of the test AC voltage generator 1 connected to the one terminal via a voltage regulator 3 from a power generator 5, and a compensation reactor 4 is further connected thereto. The power generator 5 is directly connected to the primary side of the test AC voltage generator 2 connected to the terminal at the opposite side. The power generator 5 is connected so that a phase of the test AC voltage generator 2 at the terminal at the opposite side is shifted by 180 degrees from a phase of the output voltage of the test AC voltage generator 1 at the one terminal. The output voltage of the power generator 5 is commonly supplied as the primary side voltage of the test AC voltage generator 1 and the test AC voltage generator 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガス絶縁開閉機器の内部端子間の交流耐電圧試験方法と装置に関するもので
あって、特に、対地間交流耐電圧試験時よりも高電圧の電圧を印加して耐電圧試験を行う
ことのできる試験方法と装置に係る。
The present invention relates to an AC withstand voltage test method and apparatus between internal terminals of a gas-insulated switchgear, and in particular, conducts a withstand voltage test by applying a higher voltage than that at the time of an AC withstand voltage test between ground. It relates to a test method and apparatus that can be used.

ガス絶縁開閉機器の基本的な構成は、絶縁ガスを封入して接地した金属容器を備え、こ
の金属容器内に高電圧が印加される通電用導体が挿入され、この通電用導体を開閉するス
イッチを有する。また、ガス絶縁開閉機器の種類によっては、前記スイッチの端子間にコ
ンデンサを並列に配置したものがある。
The basic configuration of a gas-insulated switchgear includes a metal container that contains an insulating gas and is grounded, and a switch for opening and closing the current-carrying conductor, into which a current-carrying conductor to which a high voltage is applied is inserted. Have Some types of gas-insulated switchgear have capacitors arranged in parallel between the terminals of the switch.

前記のような構成を有するガス絶縁開閉機器に対する従来の規格による端子間の交流耐
電圧試験は、端子間を検証しなければならない試験電圧値と対地間を検証しなければなら
ない試験電圧値が同じであったため、試験用交流電圧発生装置一台で開閉機器の交流耐電
圧試験を実施することができた。特許文献1から特許文献4は、このような従来の交流耐
電圧試験方法と装置を示す公知技術である。
In the conventional withstand voltage test between terminals according to the conventional standard for the gas-insulated switchgear having the above-described configuration, the test voltage value that must be verified between the terminals and the test voltage value that must be verified between the terminals are the same. Therefore, it was possible to carry out an AC withstand voltage test of the switchgear with one AC voltage generator for testing. Patent Documents 1 to 4 are known techniques showing such conventional AC withstanding voltage test methods and apparatuses.

これらの公知技術の対地間交流耐電圧試験は、図3に示すように、一台の試験用交流電
圧発生装置1に開閉機器6のスイッチ7を閉じた状態で開閉機器6を接続する。電圧源5
から電圧調整器3を通し、試験用交流電圧発生装置の1次側に接続し、補償リアクトル4
を調整して、1次側電流値を最小にして、開閉機器6に交流電圧を印加することで対地間
の交流耐電圧試験を実施する。
As shown in FIG. 3, in these known art ground-to-ground AC withstand voltage tests, the switchgear 6 is connected to a single test AC voltage generator 1 with the switch 7 of the switchgear 6 closed. Voltage source 5
Through the voltage regulator 3 and connected to the primary side of the test AC voltage generator, and the compensation reactor 4
Is adjusted to minimize the primary current value, and an AC voltage is applied to the switchgear 6 to perform an AC withstanding voltage test between the ground.

端子間の交流電圧対電圧試験は、図4に示すように、一台の試験用交流電圧発生装置1
に開閉機器6のスイッチ7を開いた状態で一方を接続し、他方の端子は接地する。電圧源
5から電圧調整器3を通し、試験用交流電圧発生装置の1次側に接続し、補償リアクトル
4を調整して、1次側電流値を最小にして、開閉機器6に交流電圧を印加することで端子
間の交流耐電圧試験を実施する。
The AC voltage-to-voltage test between terminals is performed as shown in FIG.
One is connected with the switch 7 of the switchgear 6 open, and the other terminal is grounded. The voltage source 5 is passed through the voltage regulator 3 and connected to the primary side of the test AC voltage generator, and the compensation reactor 4 is adjusted to minimize the primary side current value. The AC withstand voltage test between terminals is carried out by applying.

特開平6−213978号公報JP-A-6-213978 特開平6−269109号公報JP-A-6-269109 特開2000−35457号公報JP 2000-35457 A 特開2005−241297号公報JP-A-2005-241297

ところで、上述した試験装置に対する従来の試験方法では、端子間試験電圧値が対地間
の試験電圧値よりも大きくなった場合、対地間にも同じ大きさの電圧が印加されるため、
対地間で絶縁破壊が発生する可能性が高くなるという問題点があった。しかし、最近では
、端子間試験電圧として対地間の試験電圧よりも高い電圧が要求されることが有り、その
ような場合に、従来技術では、対応できなかった。
By the way, in the conventional test method for the above-described test apparatus, when the inter-terminal test voltage value is larger than the test voltage value between the ground, a voltage of the same magnitude is applied between the ground,
There was a problem that the possibility of dielectric breakdown occurring between the ground and the ground increases. However, recently, a voltage higher than the test voltage between the ground may be required as the test voltage between terminals, and such a case cannot be handled by the conventional technology.

この解決策として、本発明者等は、一方の端子に従来技術の試験装置を接続すると共に
、他方の端子にもう一台の同じ構成の試験装置を接続し、両端子に印加する電圧が逆位相
となるようにした試験装置を提案した。確かに、このような装置では、端子間に高電圧を
印加できるものの、開閉機器の種類によっては、次のような問題があることを見いだした
As a solution to this problem, the present inventors have connected a conventional test apparatus to one terminal and another test apparatus having the same configuration to the other terminal, and the voltages applied to both terminals are reversed. A test device was proposed that was in phase. Certainly, in such a device, although a high voltage could be applied between the terminals, it was found that there were the following problems depending on the type of switchgear.

すなわち、大容量の開閉機器には、端子間にかかる電圧を均等にしたり、高い遮断性能
を得たりするために端子間と並列にコンデンサを接続したものがあるが、このようなコン
デンサ8を接続した装置にあっては、図4の回路をそれぞれの端子に接続した場合に、コ
ンデンサ8を介して電流が相互に流れてしまう。その結果、一方の試験回路から見た負荷
は、遮断器と他方の試験回路を含めた回路になってしまい、両端子間に逆位相の電圧を印
加することができなくなる。
That is, some large-capacity switchgear devices have capacitors connected in parallel with the terminals in order to equalize the voltage applied between the terminals and obtain a high cutoff performance. In such a device, when the circuit of FIG. 4 is connected to each terminal, current flows through the capacitor 8. As a result, the load viewed from one test circuit becomes a circuit including the circuit breaker and the other test circuit, and it is impossible to apply a voltage having an opposite phase between both terminals.

また、試験回路において、補償リアクトル4を供試開閉機器の対地に対して有している
浮遊の静電容量(供試開閉機器の負荷容量)とLC共振させると、電源の電流を小さくす
ることができる。すなわち、一般に、リアクトルとコンデンサの電流位相は、180°ず
れているので、両者を共振させることで電流が小さくなる。
Moreover, in the test circuit, when the resonant capacitance of the compensating reactor 4 with respect to the ground of the test switchgear (load capacity of the test switchgear) is LC-resonated, the current of the power supply is reduced. Can do. That is, in general, the current phase of the reactor and the capacitor is shifted by 180 °, so that the current is reduced by resonating both.

そのため、従来の試験回路を、両端子にそれぞれ接続した場合には、耐電圧試験時にL
C共振が生じるように、両端子に接続した2つの回路の回路常数を設定して両回路のバラ
ンスを調整しておく必要がある。しかし、試験時に一方の回路の電圧調整が要求される場
合もあり、そのような場合には、一方の回路の回路常数に変化が生じ、反対側の回路との
バランスが崩れてLC共振が損なわれる。
Therefore, when a conventional test circuit is connected to both terminals, the L
It is necessary to adjust the balance between the two circuits by setting the circuit constants of the two circuits connected to both terminals so that C resonance occurs. However, there is a case where the voltage adjustment of one circuit is required at the time of the test. In such a case, the circuit constant of one circuit is changed, the balance with the circuit on the opposite side is lost, and the LC resonance is impaired. It is.

この一方の回路の回路常数の変化による影響を排除するには、共振点から外れて回路を
組むことが考えられるが、その場合はLC共振が発生しないため、電流を多く流すことに
なる。しかし、高電圧試験装置では、大電流を流すことは好ましくない。そのため、従来
の回路を両端子にそれぞれ接続するだけでは、問題点の解決にはならない。
In order to eliminate the influence of the change in the circuit constant of one of the circuits, it is conceivable that the circuit is formed out of the resonance point. In this case, since LC resonance does not occur, a large amount of current flows. However, it is not preferable to flow a large current in the high voltage test apparatus. Therefore, simply connecting a conventional circuit to both terminals does not solve the problem.

本発明は前記のような従来技術の問題点を解決するために提案されたものであって、そ
の第1の目的は、開閉機器の対地間に過電圧を印加することなく、端子間に対地間試験電
圧以上の交流電圧を印加して試験を行う交流耐電圧試験方法と装置を提供することにある。
The present invention has been proposed to solve the above-described problems of the prior art, and a first object of the present invention is to provide grounding between terminals without applying an overvoltage between grounding switchgears. An object of the present invention is to provide an AC withstanding voltage test method and apparatus for applying an AC voltage equal to or higher than a test voltage to perform a test.

本発明の第2の目的は、コンデンサを並列に接続した両端子間に逆位相の交流を印加す
るにあたり、LC共振を確保して電源の電流を小さくすることができると共に、このLC
共振を崩すことなく、一方の端子に印加する電圧の制御を容易に実施できる交流耐電圧試
験方法と装置を提供することにある。
The second object of the present invention is to secure LC resonance and reduce the current of the power source when applying an anti-phase alternating current between both terminals connected in parallel with a capacitor.
An object of the present invention is to provide an AC withstanding voltage test method and apparatus capable of easily controlling a voltage applied to one terminal without destroying resonance.

前記の目的を達成するために、本発明は、2台の試験用交流電圧発生装置を用い、交流
電圧発生装置の1次側の電源電圧を共通にし、それぞれ逆位相になるように接続を変えて
、ガス絶縁開閉機器の端子間に逆位相の交流電圧を印加して耐電圧試験を行うことを特徴
とする。
In order to achieve the above object, the present invention uses two test AC voltage generators, shares the power supply voltage on the primary side of the AC voltage generator, and changes the connection so that they are in opposite phases. The withstand voltage test is performed by applying an AC voltage having an opposite phase between terminals of the gas-insulated switchgear.

2つの試験回路のうち、一方は共通の1次側の電源電圧に関係なく電圧調整器により2
次側出力電圧を制御することができる試験回路とし、他方は共通の1次側の電源電圧で直
接2次側出力電圧を制御する試験回路とすることもできる。
Of the two test circuits, one is controlled by the voltage regulator regardless of the common primary power supply voltage.
The test circuit can control the secondary output voltage, and the other can be a test circuit that directly controls the secondary output voltage using a common primary power supply voltage.

2台の交流電圧発生装置に共通の1次側電圧源として、大電流を流すことができ、しか
も、出力電圧を可変とした大容量発電機を用いることもできる。
As a primary voltage source common to the two AC voltage generators, a large-capacity generator capable of flowing a large current and having a variable output voltage can be used.

2台の試験用交流電圧発生装置から成る2つの試験回路のうち、一方の試験用交流電圧
発生装置で構成される試験回路については、1次側電源電流が最小となるように補償リア
クトルで補償を行った回路構成とし、他方の発電機出力の電圧で直接2次側出力電圧を制
御する耐電圧試験回路は、補償リアクトルを用いない試験回路構成とすることもできる。
Of the two test circuits consisting of two test AC voltage generators, the test circuit consisting of one test AC voltage generator is compensated with a compensation reactor so that the primary power supply current is minimized. The withstand voltage test circuit that directly controls the secondary output voltage with the voltage of the other generator output may be a test circuit configuration that does not use a compensation reactor.

前記2台の試験用交流電圧発生装置で構成される試験回路のうち、一方の誘導形電圧調
整器を用いて出力電圧値を制御する試験回路の交流電圧発生装置の1次側には電圧源を接
続せずに、他方の発電機出力で交流電圧発生装置の2次側出力電圧を制御する側の試験回
路側にのみ電圧源を接続して、端子間に逆位相の電圧を発生させることもできる。
Of the test circuits composed of the two test AC voltage generators, a voltage source is provided on the primary side of the AC voltage generator of the test circuit that controls the output voltage value using one inductive voltage regulator. To connect the voltage source only to the test circuit side that controls the secondary output voltage of the AC voltage generator with the other generator output, and to generate a reverse-phase voltage between the terminals. You can also.

本発明によれば、端子間に逆位相の交流電圧を印加することで、対地間電圧を上げるこ
となく、端子間に大きな電圧を印加することが可能になる。特に、端子間と並列にコンデ
ンサを接続し、しかも、一方の端子に接続する試験用交流電圧発生装置には補償リアクト
ルを用いない試験回路構成とした場合には、LC共振の発生を確保した状態で、片側の端
子に印加する電圧の制御を行い、端子間に任意の差電圧を印加することができる。
According to the present invention, it is possible to apply a large voltage between the terminals without increasing the ground voltage by applying an anti-phase AC voltage between the terminals. In particular, in the case where a capacitor is connected in parallel with the terminals and the test AC voltage generator connected to one of the terminals has a test circuit configuration that does not use a compensation reactor, the state in which the occurrence of LC resonance is secured Thus, the voltage applied to the terminal on one side can be controlled, and an arbitrary differential voltage can be applied between the terminals.

また、端子間と並列にコンデンサを接続した場合には、一方の端子には電圧源を接続せ
ず、コンデンサを介して電圧源から反対側の端子の回路に電流を流すことで、反対側の回
路に逆位相の電圧を発生させることができる。その場合は、電圧源が一方の端子側だけで
よいので、装置の単純化が可能となる。
In addition, when a capacitor is connected in parallel with the terminals, a voltage source is not connected to one terminal, but a current is passed from the voltage source to the circuit on the opposite side via the capacitor, so that the opposite side It is possible to generate an antiphase voltage in the circuit. In that case, since the voltage source only needs to be on one terminal side, the apparatus can be simplified.

以下、本発明に係る交流耐電圧試験方法と装置の実施形態について、図面を参照して説
明する。なお、図3及び図4に示した従来技術と同一の部分については、同一の符号を付
し、説明は省略する。
Embodiments of an AC withstanding voltage test method and apparatus according to the present invention will be described below with reference to the drawings. 3 and 4 are denoted by the same reference numerals, and description thereof is omitted.

(1.第1実施形態)
(1−1.構成)
本発明の第1実施形態を、図1を参照して説明する。図1において、開閉機器6は内部
にスイッチ7を備え、このスイッチ7の内部端子間にはコンデンサ8が並列に接続されて
いる。開閉機器6の2つの外部端子には、試験用交流電圧発生装置1および試験用交流電
圧発生装置2がそれぞれ接続されている。一方の外部端子に接続された試験用交流電圧発
生装置1の1次側には、発電機5から電圧調整器3を介して電圧が供給され、さらに補償
リアクトル4が接続されている。
(1. First embodiment)
(1-1. Configuration)
A first embodiment of the present invention will be described with reference to FIG. In FIG. 1, the switchgear 6 includes a switch 7 inside, and a capacitor 8 is connected in parallel between the internal terminals of the switch 7. The test AC voltage generator 1 and the test AC voltage generator 2 are connected to two external terminals of the switchgear 6 respectively. A voltage is supplied from the generator 5 via the voltage regulator 3 to the primary side of the test AC voltage generator 1 connected to one external terminal, and a compensation reactor 4 is further connected.

反対側の外部端子に接続された試験用交流電圧発生装置2の1次側には、発電機5が直
接接続されている。また、発電機5は、一方の外部端子の試験用交流電圧発生装置1の出
力電圧の位相と、反対側の外部端子の試験用交流電圧発生装置2の出力電圧の位相が、1
80度ずれるように接続されている。
The generator 5 is directly connected to the primary side of the test AC voltage generator 2 connected to the opposite external terminal. Further, the generator 5 has the phase of the output voltage of the test AC voltage generator 1 at one external terminal and the phase of the output voltage of the test AC voltage generator 2 at the opposite external terminal 1.
They are connected so as to be offset by 80 degrees.

(1−2.作用)
このような構成を有する第1実施形態によれば、発電機5の出力電圧は、試験用交流電
圧発生装置1および試験用交流電圧発生装置2の1次側電圧として共通に供給され、試験
用交流電圧発生装置1及び試験用交流電圧発生装置2の2次側に交流高電圧を発生させる
ように作用する。
(1-2. Action)
According to the first embodiment having such a configuration, the output voltage of the generator 5 is commonly supplied as the primary voltage of the test AC voltage generator 1 and the test AC voltage generator 2 and is used for the test. It acts to generate an AC high voltage on the secondary side of the AC voltage generator 1 and the test AC voltage generator 2.

発電機5の出力電圧は、試験用交流電圧発生装置1の1次側へは、電圧調整器3を通し
て接続されているので、発電機5の出力電圧が変化しても試験用交流電圧発生装置1の1
次側に任意の電圧を印加することができる。また試験用交流電圧発生装置1の1次側には
、補償リアクトル4が接続されており、リアクトル容量を調整することでLC共振を発生
させ、1次側電流を小さくするように作用する。
Since the output voltage of the generator 5 is connected to the primary side of the test AC voltage generator 1 through the voltage regulator 3, the test AC voltage generator is changed even if the output voltage of the generator 5 changes. 1 of 1
An arbitrary voltage can be applied to the secondary side. Further, a compensation reactor 4 is connected to the primary side of the test AC voltage generator 1, and acts to reduce the primary current by generating LC resonance by adjusting the reactor capacity.

試験用交流電圧発生装置2の1次側には直接発電機5が接続されているので、発電機5
の出力電圧で試験用交流電圧発生装置2の2次側出力電圧を制御することができる。試験
用交流電圧発生装置2が補償リアクトル4を接続しない回路構成をとるため、1次側電流
は大きくなるが、回路が低インピーダンス構成となるため、発電機出力の変動や試験用交
流電圧発生装置1を含む他方の試験回路の影響を非常に受けにくく、また他方の回路に影
響を与えにくくなるので、試験用交流電圧発生装置1および試験用交流電圧発生装置2の
電圧制御を容易に行うことができる。
Since the generator 5 is directly connected to the primary side of the test AC voltage generator 2, the generator 5
It is possible to control the secondary output voltage of the test AC voltage generator 2 with the output voltage. Since the test AC voltage generator 2 has a circuit configuration in which the compensation reactor 4 is not connected, the primary current is increased, but the circuit has a low impedance configuration, so that the generator output fluctuations and the test AC voltage generator are 1 is very difficult to be influenced by the other test circuit including 1 and hardly affects the other circuit, so that the voltage control of the test AC voltage generator 1 and the test AC voltage generator 2 can be easily performed. Can do.

(1−3.効果)
以上の通り、第1実施形態では、試験用交流電圧発生装置1と試験用交流電圧発生装置
2の1次側電源が共通なため、接続を替えることで、出力側の電圧位相を約180度ずら
すことが可能になる。したがって、開閉機器6の外部端子間には逆位相の交流電圧を印加
することが可能になる。
(1-3. Effect)
As described above, in the first embodiment, since the primary power supply of the test AC voltage generator 1 and the test AC voltage generator 2 is common, the voltage phase on the output side is changed to about 180 degrees by changing the connection. It becomes possible to shift. Accordingly, it is possible to apply an AC voltage having an opposite phase between the external terminals of the switchgear 6.

試験用交流電圧発生装置1には電圧調整器が設置されているので、試験用交流電圧発生
装置1の出力電圧値と試験用交流電圧発生装置2の出力電圧値を別々に制御することが可
能となる。開閉機器6の端子間に印加される電圧を、逆位相の交流電圧の差電圧として評
価できるので、対地電圧よりも端子間電圧が大きい交流電圧の耐電圧試験を実施すること
が可能になる。
Since the voltage regulator is installed in the test AC voltage generator 1, the output voltage value of the test AC voltage generator 1 and the output voltage value of the test AC voltage generator 2 can be controlled separately. It becomes. Since the voltage applied between the terminals of the switchgear 6 can be evaluated as a difference voltage between the AC voltages having opposite phases, it is possible to carry out a withstand voltage test of an AC voltage having a terminal voltage larger than the ground voltage.

(2.第2実施形態)
(2−1.構成)
次に、本発明に係る交流耐電圧試験装置の第2実施形態を、図2を用いて説明する。図
2において、発電機5は試験用交流電圧発生装置2にのみ接続し、試験用交流電圧発生装
置1の1次側に接続された電圧調整器3には電圧源を接続しない回路構成とする。
(2. Second Embodiment)
(2-1. Configuration)
Next, a second embodiment of the AC withstanding voltage test apparatus according to the present invention will be described with reference to FIG. In FIG. 2, the generator 5 is connected only to the test AC voltage generator 2 and has a circuit configuration in which no voltage source is connected to the voltage regulator 3 connected to the primary side of the test AC voltage generator 1. .

(2−2.作用)
第2実施形態によれば、試験用交流電圧発生装置1の回路を、1次側電流が最小値にな
るような共振状態の回路構成をとり、試験用交流電圧発生装置2から開閉機器6のコンデ
ンサ8を通して試験用交流電圧発生装置1の2次側回路に電流を流すと、試験用交流電圧
発生装置1の1次側に逆励磁された電流が流れる。この1次側に発生した電流が誘導形電
圧調整器3に流れ、電圧調整器3に逆位相の電圧が発生する。電圧調整器3に電圧が発生
したことで試験用電圧調整器1の2次側に逆位相の電圧が発生し、開閉機器6の端子間に
は逆位相の交流高電圧が印加される。
(2-2. Action)
According to the second embodiment, the circuit of the test AC voltage generator 1 has a circuit configuration in a resonance state such that the primary side current becomes the minimum value. When a current is passed through the secondary circuit of the test AC voltage generator 1 through the capacitor 8, a reversely excited current flows through the primary side of the test AC voltage generator 1. The current generated on the primary side flows to the inductive voltage regulator 3, and a voltage having an opposite phase is generated in the voltage regulator 3. When the voltage is generated in the voltage regulator 3, an antiphase voltage is generated on the secondary side of the test voltage regulator 1, and an antiphase AC high voltage is applied between the terminals of the switchgear 6.

(2−3.効果)
以上の通り、第2実施形態によれば、開閉機器6の端子間に逆位相の交流電圧を印加す
る耐電圧試験を、2台の試験用交流電圧発生装置のうち1台に発電機5を接続した回路構
成をとることで、簡単に交流耐電圧試験ができる。回路構成がシンプルになるため、通常
1台の試験用交流電圧発生装置しか所有していないところでも、大規模な電源工事をしな
くても2台目の試験用交流電圧発生装置の設置が可能になる。また、電圧源を接続しなく
ても誘導電圧調整器3により電圧制御が可能なため、端子間には任意の差電圧を印加する
ことができる。
(2-3. Effect)
As described above, according to the second embodiment, the withstand voltage test in which an AC voltage having an opposite phase is applied between the terminals of the switchgear 6 is applied to the generator 5 in one of the two test AC voltage generators. By taking a connected circuit configuration, an AC withstand voltage test can be easily performed. Because the circuit configuration is simple, it is possible to install a second test AC voltage generator even if only one test AC voltage generator is usually owned, without requiring large-scale power supply construction. become. In addition, since the voltage can be controlled by the induced voltage regulator 3 without connecting a voltage source, an arbitrary difference voltage can be applied between the terminals.

本発明の第1実施形態の交流耐電圧試験方法の回路構成を示す図。The figure which shows the circuit structure of the alternating current withstand voltage test method of 1st Embodiment of this invention. 本発明の第2実施形態の交流耐電圧試験方法の回路構成を示す図。The figure which shows the circuit structure of the alternating current withstand voltage test method of 2nd Embodiment of this invention. 従来の対地間交流耐電圧試験回路構成を示す図。The figure which shows the conventional earth-to-ground alternating voltage withstand voltage test circuit structure. 従来の端子間交流耐電圧試験回路構成を示す図。The figure which shows the conventional inter-terminal alternating voltage withstand voltage test circuit structure.

符号の説明Explanation of symbols

1…試験用交流電圧発生装置
2…試験用交流電圧発生装置
3…電圧調整器
4…補償リアクトル
5…発電機
6…開閉機器
7…スイッチ
8…コンデンサ
DESCRIPTION OF SYMBOLS 1 ... Test AC voltage generator 2 ... Test AC voltage generator 3 ... Voltage regulator 4 ... Compensation reactor 5 ... Generator 6 ... Switching device 7 ... Switch 8 ... Capacitor

Claims (7)

ガス絶縁開閉機器の端子間の交流耐電圧試験方法において、
2台の試験用交流電圧発生装置を用い、交流電圧発生装置の1次側の電源電圧を共通に
し、それぞれ逆位相になるように接続を変えて、ガス絶縁開閉機器の端子間に逆位相の交
流電圧を印加して耐電圧試験を行うことを特徴とする交流耐電圧試験方法。
In the AC withstanding voltage test method between terminals of gas insulated switchgear,
Two AC voltage generators for testing are used, the power supply voltage on the primary side of the AC voltage generator is shared, the connection is changed so that each has an opposite phase, and the opposite phase is between the terminals of the gas insulated switchgear. An AC withstand voltage test method, comprising applying an AC voltage to perform a withstand voltage test.
前記ガス絶縁開閉機器が、端子間と並列にコンデンサを接続したものであることを特徴
とする請求項1に記載の交流耐電圧試験方法。
2. The AC withstanding voltage test method according to claim 1, wherein the gas-insulated switchgear has a capacitor connected in parallel with the terminals.
2台の試験用交流電圧発生装置から成る2つの試験回路のうち、一方は共通の1次側の
電源電圧に関係なく電圧調整器により2次側出力電圧を制御することができる試験回路と
し、他方は共通の1次側の電源電圧で直接2次側出力電圧を制御する試験回路としたこと
を特徴とする請求項1または請求項2に記載の交流耐電圧試験方法。
Of the two test circuits consisting of two test AC voltage generators, one is a test circuit that can control the secondary output voltage by the voltage regulator regardless of the common primary power supply voltage. 3. The AC withstanding voltage test method according to claim 1, wherein the other is a test circuit that directly controls the secondary output voltage with a common primary power supply voltage.
2台の交流電圧発生装置に共通の1次側電圧源として、大電流を流すことができ、出力
電圧が可変できる大容量発電機を用いたことを特徴とする請求項1から請求項3のいずれ
か1項に記載の交流耐電圧試験方法。
4. A large-capacity generator capable of flowing a large current and having a variable output voltage is used as a primary side voltage source common to two AC voltage generators. The AC withstanding voltage test method according to any one of the above items.
2台の試験用交流電圧発生装置から成る2つの試験回路のうち、一方の試験用交流電圧
発生装置で構成される試験回路については、1次側電源電流が最小となるように補償する
補償リアクトルを設け、他方の発電機出力の電圧で直接2次側出力電圧を制御する試験回
路は、補償リアクトルを設けないことを特徴とする請求項1から請求項4のいずれか1項
に記載の交流耐電圧試験方法。
Compensation reactor that compensates for the primary power supply current to be minimized for a test circuit composed of one test AC voltage generator out of two test circuits composed of two test AC voltage generators 5. The AC circuit according to claim 1, wherein the test circuit that directly controls the secondary output voltage with the voltage of the other generator output does not include a compensation reactor. Withstand voltage test method.
2台の試験用交流電圧発生装置から成る2つの試験回路のうち、一方の誘導形電圧調整
器を用いて出力電圧値を制御する試験回路の交流電圧発生装置の1次側には電圧源を接続
せず、他方の発電機出力で交流電圧発生装置の2次側出力電圧を制御する側の試験回路に
のみ電圧源を接続したことを特徴とする請求項1から請求項5のいずれか1項に記載の交
流耐電圧試験方法。
Of the two test circuits comprising two test AC voltage generators, a voltage source is provided on the primary side of the AC voltage generator of the test circuit that controls the output voltage value using one inductive voltage regulator. The voltage source is connected only to the test circuit on the side that controls the secondary side output voltage of the AC voltage generator with the other generator output without being connected. AC withstanding voltage test method according to item.
スイッチの内部端子と並列にコンデンサを接続したガス絶縁開閉機器の端子間の交流電
圧試験装置において、
前記スイッチの2つの端子に、各交流電圧発生装置の1次側の電源電圧を共通にし、そ
れぞれ逆位相になるように前記端子間に逆位相の交流電圧を印加する2台の試験用交流電
圧発生装置を接続し、
2台の試験用交流電圧発生装置のうち、一方は共通の1次側の電源電圧に関係なく電圧
調整器により2次側出力電圧を制御することができる試験回路とし、他方は共通の1次側
の電源電圧で直接2次側出力電圧を制御する試験回路としたことを特徴とする交流耐電圧
試験装置。
In the AC voltage test device between the terminals of gas insulated switchgear with a capacitor connected in parallel with the internal terminal of the switch,
Two test AC voltages that apply a common power supply voltage on the primary side of each AC voltage generator to the two terminals of the switch and apply an AC voltage of opposite phase between the terminals so that they have opposite phases. Connect the generator,
Of the two test AC voltage generators, one is a test circuit that can control the secondary output voltage by a voltage regulator regardless of the common primary power supply voltage, and the other is a common primary. An AC withstanding voltage test apparatus characterized in that the test circuit directly controls the secondary output voltage with the power supply voltage on the side.
JP2008169859A 2008-06-30 2008-06-30 Method and device for ac withstand voltage test Pending JP2010008304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008169859A JP2010008304A (en) 2008-06-30 2008-06-30 Method and device for ac withstand voltage test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008169859A JP2010008304A (en) 2008-06-30 2008-06-30 Method and device for ac withstand voltage test

Publications (1)

Publication Number Publication Date
JP2010008304A true JP2010008304A (en) 2010-01-14

Family

ID=41588984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008169859A Pending JP2010008304A (en) 2008-06-30 2008-06-30 Method and device for ac withstand voltage test

Country Status (1)

Country Link
JP (1) JP2010008304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785238A (en) * 2016-03-04 2016-07-20 云南电网有限责任公司电力科学研究院 AC voltage resistance testing method for switch equipment fracture
CN112345938A (en) * 2020-12-01 2021-02-09 中广核工程有限公司 Test method for emergency diesel generator set of nuclear power plant
CN113049924A (en) * 2021-03-01 2021-06-29 国网甘肃省电力公司电力科学研究院 Extra-high voltage extra-large capacitance test article alternating current voltage withstand test device
CN116699346A (en) * 2023-08-08 2023-09-05 西安高压电器研究院股份有限公司 Power frequency withstand voltage test loop and power frequency withstand voltage test method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843418Y1 (en) * 1968-07-08 1973-12-14
JPS58177880U (en) * 1982-05-24 1983-11-28 株式会社東芝 Withstand voltage test equipment for gas insulated equipment
JPS59148887A (en) * 1983-02-15 1984-08-25 Ngk Insulators Ltd Testing device for alternating current high voltage
JPS61161458A (en) * 1985-01-11 1986-07-22 Toshiba Corp Circuit for testing charging current breaking performance of gaseous sf6 disconnecting switch
JP2000035457A (en) * 1998-07-17 2000-02-02 Mitsubishi Electric Corp High voltage test method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843418Y1 (en) * 1968-07-08 1973-12-14
JPS58177880U (en) * 1982-05-24 1983-11-28 株式会社東芝 Withstand voltage test equipment for gas insulated equipment
JPS59148887A (en) * 1983-02-15 1984-08-25 Ngk Insulators Ltd Testing device for alternating current high voltage
JPS61161458A (en) * 1985-01-11 1986-07-22 Toshiba Corp Circuit for testing charging current breaking performance of gaseous sf6 disconnecting switch
JP2000035457A (en) * 1998-07-17 2000-02-02 Mitsubishi Electric Corp High voltage test method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785238A (en) * 2016-03-04 2016-07-20 云南电网有限责任公司电力科学研究院 AC voltage resistance testing method for switch equipment fracture
CN112345938A (en) * 2020-12-01 2021-02-09 中广核工程有限公司 Test method for emergency diesel generator set of nuclear power plant
CN112345938B (en) * 2020-12-01 2022-05-31 中广核工程有限公司 Test method for emergency diesel generator set of nuclear power plant
CN113049924A (en) * 2021-03-01 2021-06-29 国网甘肃省电力公司电力科学研究院 Extra-high voltage extra-large capacitance test article alternating current voltage withstand test device
CN116699346A (en) * 2023-08-08 2023-09-05 西安高压电器研究院股份有限公司 Power frequency withstand voltage test loop and power frequency withstand voltage test method

Similar Documents

Publication Publication Date Title
US9264008B2 (en) Filter apparatus, a method for filtering harmonics in an electrical power transmission or distribution system, and such a system
US9923483B2 (en) Method for operating an inverter and inverter comprising a switch between a center point of a DC link and a connection for a neutral conductor of an AC grid
EP1565975B1 (en) A device and a method for control of power flow in a transmission line
KR100384766B1 (en) Apparatus for controlling power flow
Baitha et al. A comparative analysis of passive filters for power quality improvement
EP1817829B1 (en) Device for watt and blind current component compensation in the earth fault point and phase-to-ground voltage equalization under failure-free network condition
Kuchanskyy The application of controlled switching device for prevention resonance overvoltages in nonsinusoidal modes
JP2010008304A (en) Method and device for ac withstand voltage test
KR20170022243A (en) Static var compensator apparatus and operating method thereof
CN101646985A (en) Method and apparatus for mitigation of dynamic overvoltage
AU2009341480A1 (en) Poly-phase reactive power compensator
Parikh et al. Challenges in field implementation of controlled energization for various equipment loads with circuit breakers considering diversified dielectric and mechanical characteristics
WO2018087603A4 (en) Method of continuous power supply
KR20220069116A (en) transformer device
RU2632185C2 (en) Three-point valve converter
JP5935554B2 (en) Iron resonance prevention device and receiving / transforming equipment using the same
CN112204494B (en) Magnetically controllable choke for reactive power compensation using capacitively connected additional winding
US20190043680A1 (en) Direct current switching device and use thereof
JP2000164441A (en) Potential transformer device
RU2549974C2 (en) Device for compensation of capacitor currents of single-phase short circuits to earth in electric networks with insulated neutral line
WO2017098594A1 (en) Power switch control device
KR20190019764A (en) Neutral ground reactor for preventing harmonics and manufacture method thereof
RU2507623C2 (en) Method to determine moment of time of switching of electric switching device
KR101978347B1 (en) Electric power system for preventing ferro-resonance
Kumar et al. Evaluation of controlled switching of transformer in the presence of large capacitive component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925