JP2000035457A - High voltage test method - Google Patents

High voltage test method

Info

Publication number
JP2000035457A
JP2000035457A JP10203664A JP20366498A JP2000035457A JP 2000035457 A JP2000035457 A JP 2000035457A JP 10203664 A JP10203664 A JP 10203664A JP 20366498 A JP20366498 A JP 20366498A JP 2000035457 A JP2000035457 A JP 2000035457A
Authority
JP
Japan
Prior art keywords
voltage
phase
transformer
test
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10203664A
Other languages
Japanese (ja)
Inventor
Takashi Nakazawa
隆 中澤
Kazutaka Kadokawa
和孝 門川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10203664A priority Critical patent/JP2000035457A/en
Publication of JP2000035457A publication Critical patent/JP2000035457A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To verify interface insulation easily and simply without impressing higher voltage than voltage to ground by impressing antiphase power of 50% of fixed power on power conductors of the other two phases, when fixed voltage is impressed on a power conductor of one phase of a three-phase package electrical machinery and apparatus. SOLUTION: Fixed voltage V is generated between the terminals U-E on the secondary side of a transformer 1 for testing the single phase. At this time, because voltage V/2 is generated between the terminals V-E on the secondary side, and the exciting direction of a coil is reverse, it becomes voltage of different phase by 180 degrees. Then the voltage V of the U-terminal is impressed on the R-phase impressed terminal 3a of a three-phase batch electrical machinery and apparatus 2 through an impressing line 4a, simultaneously with it, the voltage V/2 of the V-terminal is respectively impressed on a S-phase impressed terminal 3b and a T-phase impressed terminal 3c through an impressing line 4b. Hereby, the voltage V is impressed between the terminal 3a and the chest of the machinery and apparatus 2, the voltage V/2 of antiphase is impressed between the terminals 3b, 3c and the chest, and voltage V+(-V/2) is impressed between the terminal 3a and the terminals 3b, 3c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、3相導体を一括収
納した電気機器の絶縁性の信頼性向上に寄与する高電圧
試験方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high voltage test method which contributes to improving the reliability of insulation of an electric device containing three-phase conductors.

【0002】[0002]

【従来の技術】図6は例えばJEC−2350−199
4に示された従来の高電圧試験方法を説明する図であ
る。図において、1は単相試験用変圧器、2は3相導体
を一括収納した3相一括電気機器、3は3相一括電気機
器2に収納した導体に印加線4を通して単相試験用変圧
器1より試験用高電圧を印加する印加端子である。図8
は図6に示す印加端子3a,3b,3cのそれぞれに電
圧を印加した場合の電気力線の分布を示す図である。図
において、7は密閉容器6内において充電部5を中心に
発生する電気力線である。
2. Description of the Related Art FIG. 6 shows, for example, JEC-2350-199.
FIG. 5 is a diagram for explaining the conventional high voltage test method shown in FIG. In the drawing, 1 is a single-phase test transformer, 2 is a three-phase batch electric device containing three-phase conductors collectively, and 3 is a single-phase test transformer through a conductor 4 contained in the three-phase collective electrical device 2 through an application wire 4. 1 is an application terminal for applying a test high voltage. FIG.
FIG. 7 is a diagram showing a distribution of lines of electric force when a voltage is applied to each of the application terminals 3a, 3b, 3c shown in FIG. In the figure, reference numeral 7 denotes lines of electric force generated around the charging unit 5 in the closed container 6.

【0003】図7は図6に示す単相変圧器1より印加線
4を通して課電される電圧の時間的変化を示す電圧波形
である。図9は実際に各印加端子に三相交流電圧を課電
した場合の三相交流電圧の時間的変化を示す電圧波形で
ある。
FIG. 7 is a voltage waveform showing a temporal change of a voltage applied from the single-phase transformer 1 shown in FIG. FIG. 9 is a voltage waveform showing a temporal change of the three-phase AC voltage when a three-phase AC voltage is actually applied to each application terminal.

【0004】次に高電圧試験方法について説明する。3
相一括電気機器2の印加端子S(3b)、T(3c)及
び密閉容器5が接地してある状態において、印加端子R
(3a)に単相試験用変圧器1より印加線4を通して高
電圧を課電する。そして、課電されている印加端子R
(3a)と接地されている印加端子S(3b)間、印加
端子T(3c)間、或いは密閉容器6間の絶縁を検証す
る。
Next, a high voltage test method will be described. Three
In a state where the application terminals S (3b) and T (3c) of the phase collective electric device 2 and the closed container 5 are grounded, the application terminal R
(3a) A high voltage is applied from the single-phase test transformer 1 through the application line 4. And the applied terminal R
Insulation between (3a) and the grounded application terminal S (3b), between the application terminals T (3c), or between the closed containers 6 is verified.

【0005】[0005]

【発明が解決しようとする課題】従来の高電圧試験は、
以上のように行われるため、相間の絶縁を検証するため
には対地電圧より高い電圧を印加端子に印加する必要が
ある。すなわち、550kV送電系を例にとると、R〜
S相間(S〜T間、T〜R間も同様)の線間電圧を55
0kVRMSとするためには、R相(S相、T相も同
様)の電圧が印加されている。この電圧はR相〜密閉容
器間の電圧であり、対地は550/√3=318kV
RMS電圧と称する。この時のS相(T相も同様)は電
圧位相が120°ずれているので、対地電圧は半分の3
18kV/2の電圧となる。
The conventional high voltage test is:
As described above, in order to verify the insulation between phases, it is necessary to apply a voltage higher than the ground voltage to the application terminal. That is, taking a 550 kV transmission system as an example,
The line voltage between S phases (same between S and T and between T and R) is 55
To achieve 0 kV RMS , a voltage of the R phase (same for the S phase and the T phase) is applied. This voltage is the voltage between the R phase and the closed container, and the ground is 550 / √3 = 318 kV.
It is called RMS voltage. At this time, the voltage phase of the S phase (same for the T phase) is shifted by 120 °, so that the ground voltage is reduced by half to 3
The voltage is 18 kV / 2.

【0006】ここで、従来の試験方法である、1端子に
電圧を印加し、他の端子及び密閉容器を接地とする方法
で試験電圧を印加すれば、例えば、R相に線間電圧の5
50kVを印加すれば、R相〜S相間(R〜T相間を同
時に)は正当な絶縁性の検証となる。しかし、R相〜密
閉容器間は本来の対地電圧である318kVの1.73
倍の電圧が印加されていて、対地間に重大なダメージを
与えるおそれがある。
Here, if a test voltage is applied by a conventional test method in which a voltage is applied to one terminal and the other terminal and the sealed container are grounded, for example, a line voltage of 5% is applied to the R phase.
When 50 kV is applied, the insulation between the R and S phases (at the same time, between the R and T phases) is verified as proper insulation. However, between the R phase and the closed container, 1.73 of 318 kV which is the original ground voltage is applied.
The doubled voltage is applied, and there is a possibility that serious damage may be caused to the ground.

【0007】又、R相の印加電圧を対地電圧(318k
V)までとすれば、R相〜S相間は同様に318KVで
あって、通常の電圧である550kVまで印加されず、
正当な絶縁性の検証とはならない。更に従来の試験方法
の電圧印加形態での電界分布(図8)は実使用時(図
9)の電界分布(図5)と異なり、実使用時に対応して
いないことは明白である。従って、従来の高電圧試験方
法は実使用時に対応した絶縁性の検証方法となっていな
いという問題点があった。
Further, the applied voltage of the R phase is changed to a ground voltage (318 k
V), the voltage between the R phase and the S phase is similarly 318 KV, and is not applied to the normal voltage of 550 kV.
This is not a valid verification of insulation. Further, it is apparent that the electric field distribution (FIG. 8) in the voltage application mode of the conventional test method is different from the electric field distribution (FIG. 5) at the time of actual use (FIG. 9) and does not correspond to the actual use. Therefore, there is a problem that the conventional high voltage test method is not a method for verifying insulation properties corresponding to actual use.

【0008】この発明は、上記のような問題点を解消す
るためになされたもので、対地電圧より高い電圧を印加
することなく、相間の電位分布も実使用状態に即した印
加形態を与える単相試験用変圧器を用いて正当な絶縁の
検証が可能となる高電圧試験方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a simple and simple method of applying a voltage distribution between phases without applying a voltage higher than a ground voltage, and in accordance with an actual use state. It is an object of the present invention to provide a high-voltage test method capable of verifying proper insulation using a phase test transformer.

【0009】[0009]

【課題を解決するための手段】請求項1の発明に係る高
電圧試験方法は、各相対応の電力導体を1つの密閉容器
中に絶縁を保って収納した絶縁電気機器のAC高電圧試
験を行う際に、試験用変圧器で1つの相の電力導体に所
定の電圧を印加した時、他の2つの相に対応する電力導
体に前記所定の電圧の50%の電圧が逆位相で同時に印
加するようにしたものである。
According to a first aspect of the present invention, there is provided a high-voltage test method for performing an AC high-voltage test on an insulated electric device in which power conductors corresponding to respective phases are housed in a single closed container while maintaining insulation. When performing the test, when a predetermined voltage is applied to the power conductor of one phase by the test transformer, a voltage of 50% of the predetermined voltage is simultaneously applied to the power conductors corresponding to the other two phases in opposite phases. It is something to do.

【0010】請求項2の発明に係る高電圧試験方法は、
試験用変圧器の2次側巻線に、巻線比が1:2のところ
に中性点を設け、巻線比が2となる巻線より発生する電
圧を1つの相の電力導体に印加し、巻線比が1となる巻
線より発生した逆相の電圧を他の2つの相に対応する電
力導体に同時に印加するようにしたものである。
[0010] The high voltage test method according to the invention of claim 2 comprises:
A neutral point is provided on the secondary winding of the test transformer where the winding ratio is 1: 2, and the voltage generated from the winding having the winding ratio of 2 is applied to the power conductor of one phase. Then, voltages of opposite phases generated by windings having a winding ratio of 1 are simultaneously applied to power conductors corresponding to the other two phases.

【0011】請求項3の発明に係る高電圧試験方法は、
試験用変圧器として、1次側電圧仕様が同一で、各2次
側電圧仕様の比例関係が1:2となる2台の変圧器を設
け、2次側電圧仕様が2となる変圧器より発生する電圧
を1つの相の電力導体に印加し、2次側電圧仕様が1と
なる変圧器より発生する逆相の電圧を他の2つの相に対
応する電力導体に同時に印加するようにしたものであ
る。
According to a third aspect of the present invention, there is provided a high voltage test method comprising:
Two transformers having the same primary-side voltage specification and a proportional relationship of 1: 2 for each secondary-side voltage specification are provided as test transformers. The generated voltage is applied to the power conductor of one phase, and the opposite-phase voltage generated from the transformer having the secondary voltage specification of 1 is simultaneously applied to the power conductors corresponding to the other two phases. Things.

【0012】請求項4の発明に係る高電圧試験方法は、
試験用変圧器として、各1次側電圧仕様が同一で、各2
次側電圧仕様が同一の3台の変圧器を設けると共に、2
台の変圧器の2次巻線を縦続接続し、この縦続接続した
巻線に発生する電圧を1つの相の電力導体に印加し、他
の1台の変圧器の2次巻線に発生する逆相の電圧を他の
2つの相に対応する電力導体に同時に印加するようにし
たものである。
According to a fourth aspect of the present invention, there is provided a high voltage test method comprising:
As the test transformer, each primary side voltage specification is the same,
Provide three transformers with the same
The secondary windings of one transformer are cascaded, and the voltage generated in the cascaded windings is applied to the power conductor of one phase, and is generated in the secondary winding of another transformer. In this configuration, voltages of opposite phases are simultaneously applied to power conductors corresponding to the other two phases.

【0013】請求項5の発明に係る高電圧試験方法は、
1次側への入力電圧の入力端子を1台目と2台目の変圧
器で逆転して接続するようにしたものである。
According to a fifth aspect of the present invention, there is provided a high voltage test method comprising:
The input terminals of the input voltage to the primary side are reversed and connected by the first and second transformers.

【0014】[0014]

【発明の実施の形態】実施の形態1.以下、この発明の
一実施の形態を図について説明する。図1において、1
は2次巻線を分割比を2:1として発生電圧比を2:1
とし、その2次巻線の分割部分を接地端子とした単相試
験用変圧器、2は3相導体を一括収納した3相一括電気
機器、3は印加線4を通して3相導体に単相試験用変圧
器1より試験用高電圧を印加する印加端子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, 1
Sets the division ratio of the secondary winding to 2: 1 and the generated voltage ratio to 2: 1
A single-phase test transformer having a divided part of the secondary winding as a ground terminal; a two-phase electrical device containing three-phase conductors; Terminal for applying a test high voltage from the transformer 1 for testing.

【0015】次に動作について説明する。単相試験用変
圧器1の2次側の端子U−E間に所定の電圧Vを発生さ
せる。この時、2次側の端子V−E間は同時に、端子U
−E間の電圧Vの半分の電圧V/2が生じ、かつ巻線の
励磁方向が逆向きなので、位相が180°異なった電圧
となる。U端子の電圧Vを印加線4aを介して3相一括
電気機器2の印加端子R(3a)へ印加し、同時にV端
子の電圧V/2を他の印加線4bを介して、3相一括電
気機器2の印加端子S(3b)、T(3c)へ印加する。
Next, the operation will be described. A predetermined voltage V is generated between the terminals UE on the secondary side of the single-phase test transformer 1. At this time, the terminal U is simultaneously connected between the terminals VE on the secondary side.
Since a voltage V / 2, which is half of the voltage V between -E, is generated, and the exciting direction of the winding is opposite, the voltages have a phase difference of 180 °. The voltage V at the U terminal is applied to the application terminal R (3a) of the three-phase electric device 2 via the application line 4a, and the voltage V / 2 of the V terminal is simultaneously applied to the three-phase electric device 2 via the other application line 4b. The voltage is applied to the application terminals S (3b) and T (3c) of the electric device 2.

【0016】このようにすれば、印加端子R(3a)と
密閉容器6との間の電圧はV、印加端子S(3b)、印
加端子T(3c)と密閉容器6との間の電圧はV/2が
印加され、且つ、印加端子R(3a)と印加端子S(3
b)、印加端子T(3c)との間の電圧はV+(−V/
2)が印加され、対地間に過大な電圧を印加することな
く、相間に実際に即した電圧を印加し、正当な相間の絶
縁性の検証を行うことができる。
With this arrangement, the voltage between the application terminal R (3a) and the sealed container 6 is V, and the voltage between the application terminal S (3b) and the application terminal T (3c) and the sealed container 6 is V / 2 is applied, and the application terminal R (3a) and the application terminal S (3
b) and the voltage between the application terminal T (3c) and V + (− V /
2) is applied, and a voltage suitable for the actual phase can be applied between the phases without applying an excessive voltage between the ground, and valid insulation between the phases can be verified.

【0017】実施の形態2.なお、上記実施の形態で
は、単相試験用変圧器として2次側の巻線比を2:1で
分割した1台の変圧器を用いた例を示したが、本例では
1次側仕様が同一で、2次側に関しては電圧比が2:1
となっている2台の単相試験用変圧器を用いてもよい。
この時は、励磁方向を逆向きとするために、1台分の単
相試験用変圧器の1次側の入力を逆向きに接続すれば位
相が180°異なった電圧となり、同様の効果が得られ
る。
Embodiment 2 FIG. In the above-described embodiment, an example is shown in which one transformer in which the secondary side winding ratio is divided by 2: 1 is used as the single-phase test transformer. And the voltage ratio on the secondary side is 2: 1
, Two single-phase test transformers may be used.
At this time, if the primary-side input of one single-phase test transformer is connected in the opposite direction in order to reverse the excitation direction, the voltage will be 180 ° different in phase, and the same effect will be obtained. can get.

【0018】図2によれば、単相試験用変圧器1a,1
bの1次巻線の仕様は同様であり、単一の高電圧源に接
続されている。単相試験用変圧器1a,1bの2次巻線
の巻線比は2:1であるため。U1−V1端子間の電圧
Vは印加線4aを介して3相一括電気機器2の印加端子
R(3a)へ印加され、同時にU2−V2端子間の電圧
V/2は他の印加線4bを介して、3相一括電気機器2
の印加端子S(3b)、T(3c)へ印加される。
According to FIG. 2, the single-phase test transformers 1a, 1
The specifications of the primary winding of b are similar and are connected to a single high voltage source. The winding ratio of the secondary winding of the single-phase test transformers 1a and 1b is 2: 1. The voltage V between the U1 and V1 terminals is applied to the application terminal R (3a) of the three-phase collective electric device 2 via the application line 4a, and at the same time, the voltage V / 2 between the U2 and V2 terminals is applied to the other application line 4b. Via the three-phase electrical equipment 2
Are applied to the application terminals S (3b) and T (3c).

【0019】実施の形態1では、試験用変圧器の高圧側
に2個の高圧端子と1個の接地端子を有する特殊な構造
の変圧器を要したが、本実施の形態では、1次側仕様が
同一で、2次側に関しては電圧比が2:1の変圧器2台
を用いるという簡便な方法を示す。
In the first embodiment, a transformer having a special structure having two high-voltage terminals and one ground terminal on the high-voltage side of the test transformer is required. A simple method using two transformers with the same specifications and a voltage ratio of 2: 1 on the secondary side will be described.

【0020】実施の形態3.実施の形態2では2次側の
電圧比が2:1となっている単相試験用変圧器を2台用
いる簡便な方法であるが、その電圧仕様は1次側が同一
で各2次巻線間における巻線比が2:1であることが必
要である。本実施の形態では、1次側仕様が同一であ
り、2次側仕様も同一である単相試験用変圧器を3台用
い、そのうちの2台の単相試験用変圧器の2次巻線を縦
続接続して行っても実施の形態2と同様の効果がある。
Embodiment 3 In the second embodiment, a simple method using two single-phase test transformers having a secondary side voltage ratio of 2: 1 is used. It is necessary that the turns ratio between them is 2: 1. In the present embodiment, three single-phase test transformers having the same primary-side specification and the same secondary-side specification are used, and the secondary windings of two of the single-phase test transformers are used. The same effects as in the second embodiment can be obtained even if the cascade connection is performed.

【0021】図3は本実施の形態に係る高電圧試験方法
を説明する図である。図に示すように、1次電圧、2次
電圧とも仕様が等しい単相試験用変圧器1a1,1a
2,1a3を備え、単相試験用変圧器1a1,1a2の
1次巻線を高電圧源に接続して例えば6600vの高電
圧を印加する。単相試験用変圧器1a2の2次巻線にお
けるU3端子の電圧V/2(例えば500kV)を印加
線4bを介して、3相一括電気機器2の印加端子S(3
b)、T(3c)へ印加する。
FIG. 3 is a diagram for explaining the high voltage test method according to the present embodiment. As shown in the figure, single-phase test transformers 1a1, 1a having the same specifications for both the primary voltage and the secondary voltage.
2, 1a3. The primary windings of the single-phase test transformers 1a1 and 1a2 are connected to a high voltage source to apply a high voltage of, for example, 6600v. The voltage V / 2 (for example, 500 kV) at the U3 terminal of the secondary winding of the single-phase test transformer 1a2 is applied to the application terminal S (3
b) and T (3c).

【0022】一方、単相試験用変圧器1a1の2次巻線
において,6600Vの高電圧が発生するU2端子とU
2V端子は単相試験用変圧器1a3の1次巻線に接続さ
れる、単相試験用変圧器1a3の2次巻線におけるU1
端子は印加線4aを介して、3相一括電気機器2の印加
端子R(3a)に接続される。単相試験用変圧器1a3の
2次巻線におけるV1端子は単相試験用変圧器1a1の
2次巻線におけるU2端子に接続される。
On the other hand, in the secondary winding of the single-phase test transformer 1a1, a U2 terminal and a U2 terminal where a high voltage of 6600 V is generated.
The 2V terminal is connected to the primary winding of the single-phase test transformer 1a3, U1 in the secondary winding of the single-phase test transformer 1a3.
The terminal is connected to the application terminal R (3a) of the three-phase collective electric device 2 via the application line 4a. The V1 terminal of the secondary winding of the single-phase test transformer 1a3 is connected to the U2 terminal of the secondary winding of the single-phase test transformer 1a1.

【0023】この時、単相試験用変圧器1a1の2次巻
線におけるV2端子は接地されているため単相試験用変
圧器1a3の2次巻線と単相試験用変圧器1a1の2次
巻線とは縦続接続される。この結果、単相試験用変圧器
1a3の2次巻線におけるU1端子の電圧V(例えば1
000kV)は印加線4aを介して、3相一括電気機器
2の印加端子R(3a)に印加される。
At this time, since the V2 terminal of the secondary winding of the single-phase test transformer 1a1 is grounded, the secondary winding of the single-phase test transformer 1a3 and the secondary winding of the single-phase test transformer 1a1 The winding is connected in cascade. As a result, the voltage V (for example, 1) of the U1 terminal in the secondary winding of the single-phase test transformer 1a3.
000 kV) is applied to the application terminal R (3a) of the three-phase batch electric device 2 via the application line 4a.

【0024】本実施の形態は3段カスケード接続試験用
変圧器として普遍的に存在している同一仕様の3台の試
験用変圧器を用いる方法であるため、実施の形態2より
も更に容易に試験装置を揃えることができる。
The present embodiment is a method of using three test transformers of the same specification which are universally present as three-stage cascade connection test transformers, so that the method is easier than in the second embodiment. Test equipment can be provided.

【0025】[0025]

【発明の効果】請求項1の発明によれば、各相対応の電
力導体を1つの密閉容器中に絶縁を保って収納した絶縁
電気機器のAC高電圧試験を行う際に、試験用変圧器で
1つの相の電力導体に所定の電圧を印加した時、他の2
つの相に対応する電力導体に前記所定の電圧の50%の
電圧が逆位相で同時に印加するようにしたので、3相一
括電気機器の相間絶縁の検証を実際に即した状態で容易
に簡単に検証できるため、電気機器の信頼性を高めるこ
とができるという効果がある。
According to the first aspect of the present invention, when performing an AC high voltage test on an insulated electric device in which power conductors corresponding to each phase are housed in one closed container while maintaining insulation, a test transformer is used. When a predetermined voltage is applied to the power conductor of one phase at
Since 50% of the predetermined voltage is applied simultaneously to the power conductors corresponding to the three phases in opposite phases, it is possible to easily and easily verify the inter-phase insulation of the three-phase electrical equipment in a state according to the actual situation. Since the verification can be performed, there is an effect that the reliability of the electric device can be improved.

【0026】請求項2の発明によれば、試験用変圧器の
2次側巻線に、巻線比が1:2のところに中性点を設
け、巻線比が2となる巻線より発生する電圧を1つの相
の電力導体に印加し、巻線比が1となる巻線より発生
し、逆相の電圧を他の2つの相に対応する電力導体に同
時に印加するようにしたので、2種の試験用電圧を単一
の変圧器にて発生できるという効果がある。
According to the second aspect of the present invention, a neutral point is provided in the secondary winding of the test transformer at a turn ratio of 1: 2, and a neutral point is provided at a turn ratio of 2: The generated voltage is applied to the power conductor of one phase, the voltage is generated from the winding having the winding ratio of 1, and the opposite phase voltage is simultaneously applied to the power conductors corresponding to the other two phases. There is an effect that two types of test voltages can be generated by a single transformer.

【0027】請求項3の発明によれば、試験用変圧器と
して、1次側電圧仕様が同一で、各2次側電圧仕様の比
例関係が1:2となる2台の変圧器を設け、2次側電圧
仕様が2となる変圧器より発生する電圧を1つの相の電
力導体に印加し、2次側電圧仕様が1となる変圧器より
発生する逆相の電圧を他の2つの相に対応する電力導体
に同時に印加するようにしたので、簡易な構成の変圧器
の組み合わせにより2種の試験用電圧を発生できる試験
用変圧器を構成できるという効果がある。
According to the third aspect of the present invention, as the test transformer, two transformers having the same primary-side voltage specification and having a proportional relationship of 1: 2 between the respective secondary-side voltage specifications are provided. The voltage generated from the transformer having the secondary voltage specification of 2 is applied to the power conductor of one phase, and the opposite phase voltage generated from the transformer having the secondary voltage specification of 1 is applied to the other two phases. Are applied simultaneously to the power conductors corresponding to the above-described configuration, and there is an effect that a test transformer capable of generating two kinds of test voltages can be configured by combining a transformer having a simple configuration.

【0028】請求項4の発明によれば、各1次側電圧仕
様が同一で、各2次側電圧仕様が同一の3台の変圧器を
設けると共に、2台の変圧器の2次巻線を縦続接続し、
この縦続接続した巻線に発生する電圧を1つの相の電力
導体に印加し、他の1台の変圧器の2次巻線に発生する
逆相の電圧を他の2つの相に対応する電力導体に同時に
印加するようにしたので、同一電圧仕様の変圧器の組み
合わせにより2種の試験用電圧を発生できる試験用変圧
器をより安価に構成できるという効果がある。
According to the fourth aspect of the present invention, three transformers having the same primary-side voltage specifications and the same secondary-side voltage specifications are provided, and the secondary windings of the two transformers are provided. In cascade,
The voltage generated in the cascade-connected windings is applied to the power conductor of one phase, and the voltage of the opposite phase generated in the secondary winding of the other one transformer is converted to power corresponding to the other two phases. Since the voltage is applied to the conductors at the same time, there is an effect that a test transformer capable of generating two kinds of test voltages by a combination of transformers having the same voltage specification can be configured at lower cost.

【0029】請求項5の発明によれば、1次側への入力
電圧の入力端子を1台目と2台目の変圧器で逆転して接
続するようにしたので、逆相電圧の発生が容易になると
いう効果がある。
According to the fifth aspect of the present invention, since the input terminals of the input voltage to the primary side are connected in reverse by the first and second transformers, the generation of the reverse phase voltage is prevented. This has the effect of being easier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の一実施の形態による高電圧試験方
法を示す回路の概念図である。
FIG. 1 is a conceptual diagram of a circuit showing a high voltage test method according to an embodiment of the present invention.

【図2】 この発明の他の実施の形態を示す回路の概念
図である。
FIG. 2 is a conceptual diagram of a circuit showing another embodiment of the present invention.

【図3】 この発明の他の実施の形態を示す回路の概念
図である。
FIG. 3 is a conceptual diagram of a circuit showing another embodiment of the present invention.

【図4】 この発明による3相一括電気機器に印加され
る交流電圧波形を示す図である。
FIG. 4 is a diagram showing an AC voltage waveform applied to the three-phase collective electric device according to the present invention.

【図5】 この発明による3相一括電気機器に印加され
た電界分布を示す図である。
FIG. 5 is a diagram showing an electric field distribution applied to the three-phase collective electric device according to the present invention.

【図6】 従来の高電圧試験方法を示す回路の概念図で
ある。
FIG. 6 is a conceptual diagram of a circuit showing a conventional high voltage test method.

【図7】 従来の高電圧試験方法により3相一括電気機
器に印加される交流電圧波形を示す図である。
FIG. 7 is a diagram showing an AC voltage waveform applied to a three-phase batch electric device by a conventional high-voltage test method.

【図8】 従来の高電圧試験方法により3相一括電気機
器に印加された電界分布を示す図である。
FIG. 8 is a diagram showing a distribution of an electric field applied to a three-phase electric device by a conventional high-voltage test method.

【図9】 実際の3相一括電気機器に印加される交流電
圧波形を示す図である。
FIG. 9 is a diagram showing an AC voltage waveform applied to an actual three-phase collective electric device.

【符号の説明】[Explanation of symbols]

1a,1a1,1a2,1a3,1b 単相試験用変圧
器、 2 3相一括電気機器、 3a,3b 印加端
子、 4a,4b 印加線、 5 充電露出部、6 密
閉容器。
1a, 1a1, 1a2, 1a3, 1b Single-phase test transformer, 2 / 3-phase electrical equipment, 3a, 3b application terminal, 4a, 4b application wire, 5 charging exposed part, 6 closed container.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 各相対応の電力導体を1つの密閉容器中
に絶縁を保って収納した絶縁電気機器のAC高電圧試験
を行う際に、試験用変圧器で1つの相の電力導体に所定
の電圧を印加した時、他の2つの相に対応する電力導体
に前記所定の電圧の50%の電圧を逆位相で同時に印加
することを特徴とする高電圧試験方法。
When conducting an AC high voltage test on an insulated electrical device in which power conductors corresponding to each phase are housed in a single closed container while maintaining insulation, a power transformer for one phase is applied to a power conductor of one phase by a test transformer. Wherein a voltage of 50% of the predetermined voltage is applied simultaneously to the power conductors corresponding to the other two phases in opposite phases.
【請求項2】 試験用変圧器は2次側巻線に、巻線比が
1:2のところに中性点を設け、巻線比が2となる巻線
より発生する電圧を1つの相の電力導体に印加し、巻線
比が1となる巻線より発生した逆相の電圧を他の2つの
相に対応する電力導体に同時に印加することを特徴とす
る請求項1に記載の高電圧試験方法。
2. A test transformer is provided with a neutral point on the secondary winding at a turn ratio of 1: 2, and applies a voltage generated from a winding having a turn ratio of 2 to one phase. 2. The power conductor according to claim 1, wherein the negative voltage is applied to the power conductors corresponding to the other two phases at the same time. Voltage test method.
【請求項3】 試験用変圧器として、1次側電圧仕様が
同一で、各2次側電圧仕様の比例関係が1:2となる2
台の変圧器を設け、2次側電圧仕様が2となる変圧器よ
り発生する電圧を1つの相の電力導体に印加し、2次側
電圧仕様が1となる変圧器より発生する逆相の電圧を他
の2つの相に対応する電力導体に同時に印加することを
特徴とする請求項1に記載の高電圧試験方法。
3. As a test transformer, the primary side voltage specifications are the same, and the proportional relation between the secondary side voltage specifications is 1: 2.
A transformer is provided, and a voltage generated from a transformer having a secondary side voltage specification of 2 is applied to a power conductor of one phase, and an opposite phase generated from the transformer having a secondary side voltage specification of 1 is provided. The high voltage test method according to claim 1, wherein a voltage is simultaneously applied to power conductors corresponding to the other two phases.
【請求項4】 各1次側電圧仕様が同一で、各2次側電
圧仕様が同一の3台の変圧器を設けると共に、2台の変
圧器の2次巻線を縦続接続し、この縦続接続した巻線に
発生する電圧を1つの相の電力導体に印加し、他の1台
の変圧器の2次巻線に発生する逆相の電圧を他の2つの
相に対応する電力導体に同時に印加することを特徴とす
る請求項1に記載の高電圧試験方法。
4. Three transformers having the same primary-side voltage specifications and the same secondary-side voltage specifications are provided, and the secondary windings of the two transformers are cascade-connected. The voltage generated in the connected winding is applied to the power conductor of one phase, and the voltage of the opposite phase generated in the secondary winding of another transformer is applied to the power conductor corresponding to the other two phases. The high voltage test method according to claim 1, wherein the voltage is applied simultaneously.
【請求項5】 1次側への入力電圧の入力端子を1台目
と2台目の変圧器で逆転して接続することを特徴とする
請求項3または4項に記載の高電圧試験方法。
5. The high voltage test method according to claim 3, wherein the input terminals of the input voltage to the primary side are connected in reverse by the first and second transformers. .
JP10203664A 1998-07-17 1998-07-17 High voltage test method Pending JP2000035457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10203664A JP2000035457A (en) 1998-07-17 1998-07-17 High voltage test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10203664A JP2000035457A (en) 1998-07-17 1998-07-17 High voltage test method

Publications (1)

Publication Number Publication Date
JP2000035457A true JP2000035457A (en) 2000-02-02

Family

ID=16477816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10203664A Pending JP2000035457A (en) 1998-07-17 1998-07-17 High voltage test method

Country Status (1)

Country Link
JP (1) JP2000035457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008304A (en) * 2008-06-30 2010-01-14 Toshiba Corp Method and device for ac withstand voltage test

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008304A (en) * 2008-06-30 2010-01-14 Toshiba Corp Method and device for ac withstand voltage test

Similar Documents

Publication Publication Date Title
Das Power system analysis: short-circuit load flow and harmonics
JPH0327762A (en) Higher harmonic attenation of multiple bridge converter
JP5414254B2 (en) Apparatus and method for suppressing magnetizing inrush current of transformer
Bejmert et al. Controlled energization procedures of power transformers
JP2000035457A (en) High voltage test method
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
JP2007292483A (en) Instrument transformer for two-way metering and two-way electric power metering system
Cogbill et al. Analysis of TT connections of two single-phase transformers
Sleva Symmetrical Components for Power System Analysis
Schurig A Miniature AC. Transmission System For the Practical Solution of Network and Transmission-System Problems
JPS6027865A (en) Impulse voltage testing circuit for electric appliance
JP2508107B2 (en) System Charge Discharge Test Method for Three-Phase Grounded Instrument Transformer
Natarajan et al. Starting transient current of induction motors without and with terminal capacitors
Chen et al. Neutral‐grounded structure for delta‐connected windings and method thereof
JPS5920111B2 (en) On-site withstand voltage test method for gas-sealed electrical equipment
Kersting Center tapped wye-delta transformer bank test case
SU1613974A1 (en) Apparatus for measuring currents proportional to modulus of resistance of insulation of three-phase electric power line with insulated neutral
JPH02201277A (en) Device for testing breaking-operation of leading current of switch
JPH05133996A (en) Method for diagnosing insulation of power cable line
SU951551A1 (en) Power supply source
KR20220049774A (en) Transformer wiring device
US611151A (en) System of electrical distribution
JP2602299Y2 (en) Zero-phase voltage detector connected to insulator capacitor
JPS61117474A (en) Method and circuit for testing small leading current of switch
RU1798713C (en) Device for measuring electric power of three-phase supply lines