JP2007292483A - Instrument transformer for two-way metering and two-way electric power metering system - Google Patents

Instrument transformer for two-way metering and two-way electric power metering system Download PDF

Info

Publication number
JP2007292483A
JP2007292483A JP2006117571A JP2006117571A JP2007292483A JP 2007292483 A JP2007292483 A JP 2007292483A JP 2006117571 A JP2006117571 A JP 2006117571A JP 2006117571 A JP2006117571 A JP 2006117571A JP 2007292483 A JP2007292483 A JP 2007292483A
Authority
JP
Japan
Prior art keywords
phase
transmission line
current transformer
instrument
instrument current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006117571A
Other languages
Japanese (ja)
Other versions
JP4711878B2 (en
Inventor
Kazuyuki Masukawa
一幸 増川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006117571A priority Critical patent/JP4711878B2/en
Publication of JP2007292483A publication Critical patent/JP2007292483A/en
Application granted granted Critical
Publication of JP4711878B2 publication Critical patent/JP4711878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument transformer for two-way metering and a two-way electric power metering system for solving a problem that large installation space is taken up for a CT and a VT in terms of safety and withstand voltage when they are used for high tension or extra high tension. <P>SOLUTION: This instrument transformer 100 for two-way metering used to two-way meter electric energy/reactive energy as to three-phase transmission wires, is equipped with first and second instrument current transformation parts 10 and 20 connected to a first-phase transmission wire of the three-phase transmission wires, third and fourth instrument current transformation parts 30 and 40 connected to a second-phase transmission wire of the three-phase transmission wires, and an interphase voltage transformation means 50 transforming an interphase voltage between the third-phase and first-phase transmission wires of the three-phase transmission wires so that it can be measured between the first and second instrument current transformation parts on electric circuits while transforming an interphase voltage between the third-phase and second-phase transmission wires so that it can be measured between the third and fourth instrument current transformation parts on the electric circuits. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、双方向計量用計器用変成器および双方向電力計量システムに関し、特に600Vをこえ7KV以下の高圧、7KVをこえる特別高圧の双方向の電力系統に使用するものに関する。   The present invention relates to a transformer for bidirectional metering and a bidirectional power metering system, and more particularly to one used for a high-voltage bidirectional power system having a high voltage exceeding 600 V and a high voltage of 7 KV or less and exceeding 7 KV.

近年、事業所用の電力販売について自由化が行われ、電力需要者のうち自家用発電設備を持つ電力需要者が余剰電力を電力会社へ売電する需要形態が実施され始めた。このような場合は、受電分と送電分の双方向の潮流の電力量、無効電力量等を計量する必要がある。従来、このような場合は、電力の流れる方向に合わせて図6のように計器用変流器(CT)2台と計器用変圧器(VT)2台で測定回路を構成し、双方向の電力量、無効電力量等を計量する場合はこれらを対称にした2組の図6のような測定回路を構成して使用していた。   In recent years, electric power sales for business establishments have been liberalized, and a demand form in which electric power consumers having private power generation facilities among electric power consumers sell surplus power to electric power companies has begun to be implemented. In such a case, it is necessary to measure the amount of electric power, the amount of reactive power, etc. in the bidirectional power flow for receiving and transmitting power. Conventionally, in such a case, a measurement circuit is configured by two instrument current transformers (CT) and two instrument transformers (VT) as shown in FIG. When measuring the electric energy, reactive electric energy, etc., two sets of measuring circuits as shown in FIG.

従来の関連する技術としては、正方向、逆方向の有効電力と無効電力をパルスにより測定する双方向電力量計量装置が提案されている(参考文献1参照)。
特許第3544466号公報
As a conventional related technique, a bidirectional power metering apparatus that measures active power and reactive power in the forward direction and the reverse direction by pulses has been proposed (see Reference 1).
Japanese Patent No. 3544466

ところが、高圧や特別高圧で使用する場合には、安全上、耐電圧上の点よりCTとVTの設置スペースを大きくとる必要がある。したがって、上記のように2組のこれらの機器は従来の1方向を前提として準備されたキュービクル内に収まらなかったり、設備用にさらに敷地を必要とするなどの問題があった。   However, when used at a high voltage or extra high voltage, it is necessary to make the installation space for CT and VT larger from the viewpoint of withstand voltage for safety. Therefore, as described above, there are problems such that the two sets of these devices cannot be accommodated in a cubicle prepared on the premise of the conventional one direction, and further sites are required for facilities.

また、需要家の発電量と受電量の差が大きい場合がしばしば見られ、需要家の発電量が少ない場合は小電力の測定器とCTまたはVTの選定が難しい場合もあった。さらに、逆潮流側ではVTがCTの負荷側となるため、理論上VTの電力ロスを計量するという問題もあった。   In addition, there are often cases where the difference between the amount of power generated by the customer and the amount of power received is large. When the amount of power generated by the customer is small, it is sometimes difficult to select a low-power measuring instrument and CT or VT. Furthermore, since the VT is on the CT load side on the reverse power flow side, there is a problem that the power loss of the VT is theoretically measured.

本発明は、これらの問題点を解決した双方向計量用計器用変成器および双方向電力計量システムを提供することを目的とする。   It is an object of the present invention to provide a bidirectional metering transformer and a bidirectional power metering system that solve these problems.

本発明者らは、VTを電気回路上でCTの中間に置くことが適切なことを見出し、以下の本発明を完成するに至った。   The present inventors have found that it is appropriate to place VT in the middle of CT on an electric circuit, and have completed the following present invention.

(1) 3相送電線において双方向の電力量・無効電力量の計量に用いられる双方向計量用計器用変成器であって、前記3相送電線の第1相の送電線に接続される第1の計器用変流部および第2の計器用変流部と、前記3相送電線の第2相の送電線に接続される第3の計器用変流部および第4の計器用変流部と、前記3相送電線の第3相の送電線と前記第1相の送電線との相間電圧を、電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間にて測定できるように変圧し、前記第3相の送電線と前記第2相の送電線との相間電圧を、電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間にて測定できるように変圧する相間電圧変圧手段と、を備えた双方向計量用計器用変成器。   (1) A bidirectional measuring instrument transformer used for measuring bidirectional electric energy and reactive electric energy in a three-phase transmission line, and connected to the first-phase transmission line of the three-phase transmission line A first instrument current transformer and a second instrument current transformer, and a third instrument current transformer and a fourth instrument transformer connected to the second phase transmission line of the three-phase transmission line. The interphase voltage between the flow section and the third-phase transmission line of the three-phase transmission line and the first-phase transmission line is converted into the first instrument current transformer section and the second instrument transformer section on the electric circuit. The voltage between the third phase power transmission line and the second phase power transmission line is converted into a voltage that can be measured between the third current transmission section and the third current transmission section on the electric circuit. A bidirectional measuring instrument transformer comprising: an inter-phase voltage transforming means for transforming so as to be measured between the four instrument current transformers.

(1)の発明の双方向計量用計器用変成器は、3相送電線の第1相の送電線に電気回路上接続されるものとして第1の計器用変流部および第2の計器用変流部を備えている。また、第2相の送電線に接続される、電気回路上接続されるものとして第3の計器用変流部と第4の計器用変流部とが備えられている。   The transformer for bidirectional measuring instrument of the invention of (1) is connected to the first phase transmission line of the three-phase transmission line on the electric circuit, and is used for the first instrument current transformer and the second instrument. A current transformer is provided. A third instrument current transformer and a fourth instrument current transformer are provided on the electric circuit connected to the second-phase power transmission line.

さらに、(1)の発明の双方向計量用計器用変成器は、前記3相送電線の第3相の送電線と前記第1相の送電線との相間電圧を、電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間にて測定できるように変圧し、前記第3相の送電線と前記第2相の送電線との相間電圧を、電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間にて測定できるように変圧する相間電圧変圧手段を備える。   Furthermore, the bidirectional measuring instrument transformer according to the invention of (1) is configured such that the interphase voltage between the third-phase transmission line and the first-phase transmission line of the three-phase transmission line is expressed as the first on the electric circuit. The voltage is transformed so that it can be measured between the second current transformer and the second current transformer, and the interphase voltage between the third phase power line and the second phase power line is An interphase voltage transforming means for transforming the circuit so as to be measured between the third instrument current transformer and the fourth instrument current transformer is provided.

このような(1)の発明の双方向計量用計器用変成器を3相送電線に接続することにより、相間電圧変圧手段を従来のように2セット必要であった場合に比して、1セットで済ますことができる。したがって、設置スペース、ならびにコストを節約することができる。また、相間電圧変圧手段は第3相と電気回路上第1の計器用変流部および第2の計器用変流部の間でかつ第3の計器用変流部と前記第4の計器用変流部との間の電圧を測定するように配置されているため、逆潮流側ではVTがCTの負荷側となるため、理論上VTの電力ロスを計量するという問題も解消することができる。   By connecting such a bidirectional measuring instrument transformer of the invention of (1) to a three-phase power transmission line, compared to the case where two sets of interphase voltage transformers are required as in the prior art, 1 You can do it as a set. Therefore, installation space and cost can be saved. Further, the interphase voltage transformation means is provided between the third phase and the first instrument current transformer and the second instrument current transformer on the third phase and the electric circuit, and between the third instrument current transformer and the fourth instrument. Since it is arranged to measure the voltage between the current transformer and the VT is on the CT load side on the reverse power flow side, the problem of theoretically measuring the power loss of the VT can also be solved. .

なお、第3の計器用変流部は第1の計器用変流部より電気回路上測定しようとする電力の進行方向に対して逆の方向に配する。また、第4の計器用変流部は第2の計器用変流部より電気回路上測定しようとする電力の進行方向に対して逆の方向に配することが望ましい。   Note that the third instrument current transformer is arranged in a direction opposite to the traveling direction of power to be measured on the electric circuit from the first instrument current transformer. Further, it is desirable that the fourth instrument current transformer is arranged in a direction opposite to the traveling direction of the electric power to be measured on the electric circuit from the second instrument current transformer.

(2) (1)に記載の双方向計量用計器用変成器であって、前記第1の計器用変流部と前記第2の計器用変流部と前記第3の計器用変流部と前記第4の計器用変流部とは計測する計量電流に合わせて個別に整定する整定手段を有することを特徴とする双方向計量用計器用変成器。   (2) The bidirectional measuring instrument transformer according to (1), wherein the first instrument current transformer, the second instrument current transformer, and the third instrument current transformer. And the fourth instrument current transformer has a settling means for individually setting in accordance with a measured current to be measured.

(2)の発明によれば、双方向の電力量を測定する場合に測定する電力の大きさが大幅に異なることが多い。電気事業者では電力量の計器の検定を定期的に行っており、変成器の変成比と計器の乗率を合わせて検定を行っている。通常は、測定する電力の幅が大きくなると変成器が線形である範囲は限られるので誤差が大きくなり正確な値を測定することが難しくなる。(2)の発明によれば、電力の流れる方向により個別の計器と適切な変成比を持った変成部を選ぶことができる。したがって、双方向とも測定誤差を少なくすることができる。   According to the invention of (2), the magnitude of the power to be measured when measuring the bidirectional power is often greatly different. Electricity providers regularly calibrate the meter for electric energy, and calibrate the transformation ratio of the transformer and the multiplication factor of the meter. Normally, when the width of the power to be measured is increased, the range in which the transformer is linear is limited, so that the error increases and it is difficult to measure an accurate value. According to the invention of (2), it is possible to select a metamorphic section having an appropriate metamorphosis ratio with an individual instrument depending on the direction of power flow. Therefore, measurement errors can be reduced in both directions.

(3) 3相送電線において双方向の電力量・無効電力量の双方向電力計量システムであって、前記3相送電線の第1相の送電線に接続される第1の計器用変流部および第2の計器用変流部と、前記3相送電線の第2相の送電線に接続される第3の計器用変流部および第4の計器用変流部と、前記3相送電線の第3相の送電線と前記第1相の送電線との相間電圧を、電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間にて測定できるように変圧し、前記第3相の送電線と前記第2相の送電線との相間電圧を、電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間にて測定できるように変圧する相間電圧変圧手段と、を備えた双方向電力計量システム。   (3) A bidirectional power metering system for bidirectional power and reactive power in a three-phase transmission line, wherein the first current transformer is connected to the first-phase transmission line of the three-phase transmission line And the second instrument current transformer, the third instrument current transformer and the fourth instrument current transformer connected to the second phase power transmission line of the three-phase power transmission line, and the three-phase power transformer An interphase voltage between the third-phase power transmission line and the first-phase power transmission line is transmitted between the first instrument current transformer and the second instrument current transformer on the electric circuit. Transform so that it can be measured, and the interphase voltage between the third-phase power transmission line and the second-phase power transmission line is converted into the third instrument current transformer and the fourth instrument current transformer on the electric circuit. A bidirectional power metering system, comprising:

(3)の発明は、双方向電力計量システムの発明である。(1)の発明の双方向計量用計器用変成器と同じ機能を持った個別の計器用変流部と相間電圧変圧手段備え、(1)の発明の双方向計量用計器用変成器と電気回路上同様に配置し接続することにより、(1)の発明と同様な効果が得られる。なお、計器用変流部は個別にシステムを構成するので計器用変流器に置き替えることができる。   The invention of (3) is an invention of a bidirectional power metering system. (1) The invention includes a separate measuring instrument current transformer having the same function as the bidirectional measuring instrument transformer and an interphase voltage transforming means. By arranging and connecting in the same manner on the circuit, the same effect as the invention of (1) can be obtained. In addition, since the current transformer part for an instrument comprises an individual system, it can be replaced with the current transformer for an instrument.

(4) 3相4線式送電線において双方向の電力量・無効電力量の計量に用いられる双方向計量用計器用変成器であって、前記3相4線式送電線の第1相の送電線に接続される第1の計器用変流部および第2の計器用変流部と、前記3相4線式送電線の第2相の送電線に接続される第3の計器用変流部および第4の計器用変流部と、前記3相4線式送電線の第3相の送電線に接続される第5の計器用変流部および第6の計器用変流部と、前記3相4線式送電線の中性線と電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間の前記第1相の送電線との間の電圧と、前記中性線と電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間の前記第2相の送電線との間の電圧と、前記中性線と電気回路上前記第5の計器用変流部と前記第6の計器用変流部との間の前記第3相の送電線と間の電圧とを、測定できるように変圧する電圧変圧手段と、を備えた双方向計量用計器用変成器。   (4) A bidirectional measuring instrument transformer used for measuring bidirectional electric energy and reactive electric energy in a three-phase four-wire transmission line, wherein the first phase of the three-phase four-wire transmission line A first instrument current transformer and a second instrument current transformer connected to the transmission line, and a third instrument transformer connected to the second phase power transmission line of the three-phase four-wire transmission line. And a fifth instrument current transformer and a sixth instrument current transformer connected to the third phase power transmission line of the three-phase four-wire transmission line. Between the neutral line of the three-phase four-wire transmission line and the first-phase transmission line between the first instrument current transformer and the second instrument current transformer on the electric circuit. And the voltage between the neutral wire and the second phase power transmission line between the third instrument current transformer and the fourth instrument current transformer on the electrical circuit, and 5th instrument on neutral wire and electrical circuit Voltage measuring means for transforming the voltage between the third phase transmission line between the current transformer and the sixth instrument current transformer so as to measure the bidirectional metering instrument Transformer.

(4)の発明は3相4線式送電線の送電線に関するものである。3相4線式の送電方式は中容量の単相と三相負荷が混在する地域や需要家に供給する場合に適する。中性線があり、単相分の電力量・無効電力量も測定する必要があるため上記のような構成となるが、作用効果は(1)の発明と同様である。   The invention of (4) relates to a transmission line of a three-phase four-wire transmission line. The three-phase four-wire power transmission method is suitable for supplying to regions and customers where medium-capacity single-phase and three-phase loads are mixed. Since there is a neutral line and it is necessary to measure the electric energy and reactive electric energy for a single phase, the configuration is as described above, but the effect is the same as in the invention of (1).

(5) 3相4線式送電線において双方向の電力量・無効電力量の計量に用いられる双方向電力計量システムであって、前記3相4線式送電線の第1相の送電線に接続される第1の計器用変流部および第2の計器用変流部と、前記3相4線式送電線の第2相の送電線に接続される第3の計器用変流部および第4の計器用変流部と、前記3相4線式送電線の第3相の送電線に接続される第5の計器用変流部および第6の計器用変流部と、前記3相4線式送電線の中性線と電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間の前記第1相の送電線との間の電圧と、前記中性線と電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間の前記第2相の送電線との間の電圧と、前記中性線と電気回路上前記第5の計器用変流部と前記第6の計器用変流部との間の前記第3相の送電線との間の電圧とを、測定できるように変圧する電圧変圧手段と、を備えた双方向電力計量システム。   (5) A bidirectional power metering system used for metering bidirectional power and reactive energy in a three-phase four-wire transmission line, wherein the first-phase transmission line of the three-phase four-wire transmission line A first instrument current transformer and a second instrument current transformer connected, a third instrument current transformer connected to the second phase power transmission line of the three-phase four-wire transmission line; and A fourth instrument current transformer, a fifth instrument current transformer and a sixth instrument current transformer connected to the third phase transmission line of the three-phase four-wire transmission line, and the 3 A voltage between a neutral line of a phase 4-wire transmission line and the first phase transmission line between the first instrument current transformer and the second instrument current transformer on the electric circuit; A voltage between the neutral wire and the second phase power transmission line between the third instrument current transformer and the fourth instrument current transformer on the electrical circuit, and the neutral wire. And for the fifth instrument on the electrical circuit A bi-directional power metering system comprising voltage transforming means for transforming the voltage between the flow section and the third phase power transmission line between the sixth instrument current transformer section so that the voltage can be measured .

(5)の発明は、3相4線式送電線についての双方向電力計量システムの発明である。(4)の発明と同様な作用効果が得られる。(3)の発明の場合と同様に、計器用変流部は計器用変流器に置き替えることができる。   The invention of (5) is an invention of a bidirectional power metering system for a three-phase four-wire transmission line. The same effect as the invention of (4) can be obtained. As in the case of the invention of (3), the current transformer for the instrument can be replaced with a current transformer for the instrument.

本発明によれば、設置スペース、ならびにコストを節約することができる、双方向の電力量を測定する場合に、双方向ともVTはCTの電源側となるので、VTの電力ロスを計量するという問題も解消することができる。   According to the present invention, it is possible to save installation space as well as cost. When measuring bidirectional power consumption, VT is on the CT power supply side in both directions, so that the VT power loss is measured. The problem can be solved.

以下、本発明を実施するための最良の形態について図を参照しながら説明する。なお、これはあくまでも一例であって、本発明の技術的範囲はこれに限られるものではない。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. This is merely an example, and the technical scope of the present invention is not limited to this.

[第1の実施例]
図1は、本発明の双方向計量用計器用変成器のブロック図と3相送電線に接続した例を示す図である。図2は、計器用変流部の原理を示す図である。図3は、計器用変圧部の原理を示す図である。図4は、コンデンサ形の計器用変圧部の原理を示す図である。以下これらの図を参照して説明をする。
[First embodiment]
FIG. 1 is a block diagram of a bidirectional measuring instrument transformer according to the present invention and an example of connection to a three-phase transmission line. FIG. 2 is a diagram illustrating the principle of the current transformer for the instrument. FIG. 3 is a diagram showing the principle of the instrument transformer. FIG. 4 is a diagram illustrating the principle of a capacitor-type instrument transformer. Hereinafter, description will be made with reference to these drawings.

図1に示すように、本発明の双方向計量用計器用変成器100は、3相送電線の第1相の送電線(図1ではU相)に接続される第1の計器用変流部10および第2の計器用変流部20と、3相送電線の第2相の送電線(図1ではV相)に接続される第3の計器用変流部30と第4の計器用変流部40と、3相送電線の第3相の送電線(図1ではW相)と第1相の送電線若しくは第2相の送電線との各々の相間電圧を測定できるように変圧する相間電圧変圧手段50とを備えている。   As shown in FIG. 1, the bidirectional measuring instrument transformer 100 of the present invention is a first instrument current transformer connected to a first-phase transmission line (a U-phase in FIG. 1) of a three-phase transmission line. Unit 10 and second instrument current transformer 20 and third instrument current transformer 30 and fourth instrument connected to the second phase power transmission line (V phase in FIG. 1) of the three-phase power transmission line The interphase voltage of the current transformer 40, the third-phase transmission line of the three-phase transmission line (W-phase in FIG. 1), and the first-phase transmission line or the second-phase transmission line can be measured. And an interphase voltage transforming means 50 for transforming.

これらの各計器用変流部および相間電圧変圧手段50は、図1に示すように潮流1の電力量・無効電力量を測定する計器1(70)と潮流2の電力量・無効電力量を測定する計器2(80)に接続されている。   As shown in FIG. 1, each of these current transformers and interphase voltage transforming means 50 is used to measure power 1 and reactive power of meter 1 (70) that measures power and reactive power of power 1. It is connected to the measuring instrument 2 (80).

図2は、計器用変流部10、20、30、40の原理を示す図である。高電圧・大電流の負荷の電気使用量は、電気計器では直接計量できない。そのために、計器用変流部は電気計器とともに使用され、大電流を電気計器が扱えるレベルに正確に下げる役割をしている。計器用変流部は、大電流の負荷電流を流す巻き数の少ない一次巻線12と、電気計器で計量できるほど小さく変換した電流を得ることができる巻数の多い二次巻線14を鉄心15に巻いた構造である。計器用変流部は、負荷電流を変流比分の1に正確に変流する。   FIG. 2 is a diagram showing the principle of the current transformers 10, 20, 30, 40 for instruments. The electricity consumption of high voltage and large current loads cannot be directly measured with an electric meter. For this purpose, the current transformer for an instrument is used together with an electric instrument, and serves to accurately reduce a large current to a level that can be handled by the electric instrument. The current transformer for an instrument includes an iron core 15 having a primary winding 12 having a small number of turns through which a large load current flows and a secondary winding 14 having a large number of turns capable of obtaining a current converted as small as can be measured by an electric meter. It is a structure wound around. The current transformer for the instrument accurately transforms the load current to a fraction of the current transformation ratio.

二次巻線の巻数を一次巻線の巻数で除した値を巻数比という。理想的な計器用変流部では、変流比は巻数比とほぼ同一である。しかし、実際の計器用変流部では、巻線インピーダンス、励磁電流、二次側の負担(接続導線と電気計器の電流回路)を無視できないので誤差が発生する。   A value obtained by dividing the number of turns of the secondary winding by the number of turns of the primary winding is called a turns ratio. In an ideal instrument current transformer, the current ratio is almost the same as the turns ratio. However, in an actual current transformer for an instrument, an error occurs because the winding impedance, the excitation current, and the burden on the secondary side (current circuit of the connecting conductor and the electric instrument) cannot be ignored.

図1に示すように、第1の計器用変流部10の一次巻線12は、3相送電線の第1相の送電線(図1ではU相)に接続され、二次巻線14は計器1(70)の電流計測端子に接続されている。同様に、第2の計器用変流部20の一次巻線22は、3相送電線の第1相の送電線(図1ではU相)に接続され、二次巻線24は計器2(80)の電流計測端子に接続されている。また、第3の計器用変流部30の一次巻線32は、3相送電線の第2相の送電線(図1ではW相)に接続され、二次巻線34は計器1(70)の電流計測端子に接続されている。さらに、第4の計器用変流部40の一次巻線42は、3相送電線の第2相の送電線(図1ではW相)に接続され、二次巻線44は計器2(80)の電流計測端子に接続されている。   As shown in FIG. 1, the primary winding 12 of the first instrument current transformer 10 is connected to the first-phase transmission line (the U-phase in FIG. 1) of the three-phase transmission line, and the secondary winding 14. Is connected to the current measurement terminal of the meter 1 (70). Similarly, the primary winding 22 of the second instrument current transformer 20 is connected to the first-phase transmission line (the U-phase in FIG. 1) of the three-phase transmission line, and the secondary winding 24 is connected to the instrument 2 ( 80) current measurement terminal. The primary winding 32 of the third instrument current transformer 30 is connected to the second-phase transmission line of the three-phase transmission line (W-phase in FIG. 1), and the secondary winding 34 is connected to the instrument 1 (70 ) Is connected to the current measurement terminal. Further, the primary winding 42 of the fourth instrument current transformer 40 is connected to the second phase transmission line (W phase in FIG. 1) of the three-phase transmission line, and the secondary winding 44 is connected to the instrument 2 (80 ) Is connected to the current measurement terminal.

図3は、電磁形の計器用変圧部の原理を示す図である。600Vをこえ7KV以下の高圧、7KVをこえる特別高圧も電気計器で直接測定することができない。そのため、計器用変圧部は電気計器とともに使用され、高電圧、特別高圧を電気計器が扱えるレベルに正確に下げる役割をしている。図1の本発明の実施例では相間電圧変圧手段50は電磁形に描かれている。   FIG. 3 is a diagram showing the principle of an electromagnetic instrument transformer. High voltage exceeding 600V and below 7KV, and special high voltage exceeding 7KV cannot be measured directly with an electric meter. For this reason, the instrument transformer is used together with an electric meter to accurately lower the high voltage and extra high voltage to a level that can be handled by the electric meter. In the embodiment of the present invention shown in FIG. 1, the interphase voltage transforming means 50 is depicted as an electromagnetic type.

相間電圧変圧手段50は計器用変圧部51と計器用変圧部55とからなる。電磁形の計器用変圧部51は、負荷電圧(一次電圧)を印加する一次巻線52と、電気計器で計量できるほど小さく変換した電圧を得ることができる巻数の少ない二次巻線53を鉄心54に巻いた構造である。計器用変圧部は、負荷電圧を変圧比分の1に正確に変圧する。   The interphase voltage transformer 50 includes an instrument transformer 51 and an instrument transformer 55. The electromagnetic-type instrument transformer 51 includes a primary winding 52 for applying a load voltage (primary voltage) and a secondary winding 53 having a small number of turns that can obtain a voltage converted to be small enough to be measured by an electric meter. 54. The instrument transformer transforms the load voltage accurately to a ratio of the transformation ratio.

二次巻線の巻数を一次巻線の巻数で除した値を巻数比という。理想的な計器用変圧部では、変圧比は巻数比の逆数とほぼ同一である。しかし、実際の計器用変圧部では、巻線インピーダンス、励磁電流、二次側の負担(接続導線と電気計器の電流回路)を無視できないので誤差が発生する。   A value obtained by dividing the number of turns of the secondary winding by the number of turns of the primary winding is called a turns ratio. In an ideal instrument transformer, the transformation ratio is almost the same as the inverse of the turns ratio. However, in an actual instrument transformer, an error occurs because the winding impedance, the excitation current, and the burden on the secondary side (current circuit of the connecting conductor and the electric instrument) cannot be ignored.

図1に示すように、上述のように相間電圧変圧手段50は計器用変圧部51と計器用変圧部55とからなり、計器用変圧部51の一次巻線52は第3相の送電線(図1ではV相)と第1相の送電線(図1ではU相)との間に接続されている。計器用変圧部51の二次巻線53は計器1(60)と計器2(70)の電圧測定端子に図示のように接続されている。   As shown in FIG. 1, as described above, the interphase voltage transforming means 50 includes the instrument transformer 51 and the instrument transformer 55, and the primary winding 52 of the instrument transformer 51 is a third-phase transmission line ( 1 is connected between the V-phase) and the first-phase power transmission line (U-phase in FIG. 1). The secondary winding 53 of the instrument transformer 51 is connected to the voltage measurement terminals of the instrument 1 (60) and the instrument 2 (70) as shown.

また、計器用変圧部55の一次巻線56は第3相の送電線(図1ではV相)と第2相の送電線(図1ではW相)との間に接続されている。計器用変圧部51の二次巻線58は計器1(60)と計器2(70)の電圧測定端子に図示のように接続されている。図1に示すように、相間電圧変圧手段50は、第1の計器用変流部10と第2の計器用変流部20の中間に配置されている。   The primary winding 56 of the instrument transformer 55 is connected between a third phase transmission line (V phase in FIG. 1) and a second phase transmission line (W phase in FIG. 1). The secondary winding 58 of the instrument transformer 51 is connected to the voltage measurement terminals of the instrument 1 (60) and the instrument 2 (70) as shown. As shown in FIG. 1, the interphase voltage transforming means 50 is disposed between the first instrument current transformer 10 and the second instrument current transformer 20.

以上の様に接続された双方向計量用計器用変成器100を用いることにより、電力の流れに合わせて二つの電力計が設定されていることに相当するので(電気工学ハンドブック、新版P310、参照)、図1に示す潮流1の方向の電力は計器1(60)により測定が可能であり、潮流2の方向の電力は計器2(70)により測定が可能である。   By using the bidirectional measuring instrument transformer 100 connected as described above, this corresponds to the setting of two wattmeters in accordance with the flow of electric power (see Electrical Engineering Handbook, New Edition P310). 1), the power in the direction of tidal current 1 shown in FIG. 1 can be measured by meter 1 (60), and the power in the direction of tidal current 2 can be measured by meter 2 (70).

このような構成の双方向計量用計器用変成器100を用いることにより、計器用変圧部を1セット分従来のより少なくすることができる。これに関連して、特に特別高圧用の場合は、特別高圧に接続するために特別な絶縁等のための碍子等を節約することができる。したがって、コスト、設置スペースを節約することができる。また、相間電圧変圧手段50は計器用変流部の中間に配置されているので、測定しようとする電力の流れに対して電流を測定する計器用変流部の上流側に相間電圧変圧手段50にある。したがって、双方向において、相間電圧変圧手段50で発生する損失を含まれないで計測をすることができる。   By using the bidirectional measuring instrument transformer 100 having such a configuration, the number of measuring transformers can be reduced by one set compared to the conventional one. In this connection, particularly in the case of an extra high voltage, it is possible to save an insulator for special insulation or the like for connection to the extra high voltage. Therefore, cost and installation space can be saved. Further, since the interphase voltage transforming means 50 is disposed in the middle of the current transformer for the meter, the interphase voltage transforming means 50 is disposed upstream of the current transformer for measuring the current with respect to the flow of power to be measured. It is in. Therefore, in both directions, the measurement can be performed without including the loss generated in the interphase voltage transformer 50.

図4は、コンデンサ形の計器用変圧部の原理を示す図である。コンデンサ形の計器用変圧部は図4に示すように、静電容量分圧器の作用を利用し、2個の静電容量がC1、C2のコンデンサを直列に接続した構造である。コンデンサ形の計器用変圧部は、コンデンサの静電容量を利用して、負荷電圧を電圧分比の一に正確に変圧することができる。   FIG. 4 is a diagram illustrating the principle of a capacitor-type instrument transformer. As shown in FIG. 4, the capacitor-type instrument transformer has a structure in which two capacitors having capacitances C1 and C2 are connected in series using the action of a capacitance divider. The capacitor-type instrument transformer can accurately transform the load voltage to one voltage ratio by using the capacitance of the capacitor.

相間電圧変圧手段50は、上記で説明した電磁形の計器用変圧部に替えて、コンデンサ形の計器用変圧部を適用することもできる。   The interphase voltage transforming means 50 may be a capacitor-type instrument transformer, instead of the electromagnetic instrument transformer described above.

また、図1に示すよう計器用変流部を潮流の流れる方向に合わせて設けられているので、実際に流れる電流に合わせた計器と変流比を整定することができる。すなわち、電流に合わせた整定手段を有する。特に上述のように、実際の計器用変流部では、巻線インピーダンス、励磁電流、二次側の負担(接続導線と電気計器の電流回路)を無視できなく誤差が発生するので、誤差の少ない整定をすることは意義がある。   Further, as shown in FIG. 1, the current transformer for the instrument is provided in accordance with the flow direction of the tidal current, so that the instrument and the current transformation ratio can be set in accordance with the actually flowing current. That is, it has a settling means adapted to the current. In particular, as described above, in an actual instrument current transformer, the winding impedance, the excitation current, and the burden on the secondary side (current circuit of the connecting conductor and the electric instrument) cannot be ignored, and errors occur, so there are few errors. Setting up is meaningful.

[第2の実施例]
第2の実施例は、本発明の双方向電力計量システムに関するものである。上記の第1の実施例で説明した双方向計量用計器用変成器100を一体で構成したのに対して、個々の計器用変流部、計器用変圧部を個別に準備し、これを図1で示したのと同様な接続をすることにより、同様な作用効果を実現することができる。
[Second Embodiment]
The second embodiment relates to the bidirectional power metering system of the present invention. Whereas the bidirectional measuring instrument transformer 100 described in the first embodiment is integrally configured, individual instrument current transformers and instrument transformer parts are separately prepared and shown in FIG. By performing the same connection as shown in 1, the same effect can be realized.

この場合に、計器用変流部、計器用変圧部は個別で準備されるため、計器用変流器、計器用変圧器としても良い。この場合も同様な、作用効果を期待することができる。   In this case, since the current transformer part for an instrument and the transformer part for an instrument are prepared separately, it may be a current transformer for an instrument and a transformer for an instrument. In this case, the same effect can be expected.

[第3の実施例]
第3の実施例は3相4線式送電線の送電線に使用される双方向計量用計器用変成器に関するものである。3相4線式の送電方式は中容量の単相と三相負荷が混在する地域や需要家に供給する場合に適する。中性線があり、単相分の電力量・無効電力量も測定する必要があるため上記のような構成となる。
[Third embodiment]
The third embodiment relates to a bidirectional measuring instrument transformer used for a transmission line of a three-phase four-wire transmission line. The three-phase four-wire power transmission method is suitable for supplying to regions and customers where medium-capacity single-phase and three-phase loads are mixed. Since there is a neutral wire and it is necessary to measure the amount of electric power and reactive power for a single phase, the above configuration is obtained.

図5は、本発明の3相4線式送電線用の双方向計量用計器用変成器のブロック図と3相4線式送電線に接続した例を示す図である。3相4線式送電線の双方向計量用計器用変成器200は、図5に示すように、3相4線式送電線の第1相の送電線(図5のU相)に接続される第1の計器用変流部210および第2の計器用変流部220と、3相4線式送電線の第2相の送電線(図5のV相)に接続される第3の計器用変流部230および第4の計器用変流部240と、3相4線式送電線の第3相の送電線(図5のW相)に接続される第5の計器用変流部250および第6の計器用変流部260との6個の計器用変流部を備える。   FIG. 5 is a block diagram of a bidirectional measuring instrument transformer for a three-phase four-wire transmission line according to the present invention and an example of connection to the three-phase four-wire transmission line. As shown in FIG. 5, the three-phase four-wire transmission line bidirectional measuring instrument transformer 200 is connected to the first-phase transmission line (U phase in FIG. 5) of the three-phase four-wire transmission line. The first instrument current transformer 210 and the second instrument current transformer 220 are connected to the second phase power transmission line (phase V in FIG. 5) of the three-phase four-wire transmission line. The fifth current transformer 230 connected to the third current transmission line (W phase in FIG. 5) of the current transformer 230 and the fourth current transformer 240 and the three-phase four-wire transmission line. 6 instrument current transformers including a part 250 and a sixth instrument current transformer 260.

さらに、3相4線式送電線の中性線(図5のN)と電気回路上第1の計器用変流部210と第2の計器用変流部220との間の第1相の送電線(図5のU相)との間の電圧と、中性線(図5のN)と電気回路上第3の計器用変流部230と第4の計器用変流部240との間の第2相の送電線(図5のV相)との間の電圧と、中性線(図5のN)と電気回路上第5の計器用変流部250と第6の計器用変流部(260)との間の第3相の送電線(図5のW相)と間の電圧とを、測定できるように変圧する電圧変圧手段270とを備える。   Further, the neutral phase (N in FIG. 5) of the three-phase four-wire transmission line and the first phase between the first instrument current transformer 210 and the second instrument current transformer 220 on the electric circuit. The voltage between the transmission line (the U phase in FIG. 5), the neutral line (N in FIG. 5), and the third instrument current transformer 230 and the fourth instrument current transformer 240 on the electric circuit. Between the second phase power transmission line (phase V in FIG. 5), the neutral line (N in FIG. 5), the fifth instrument current transformer 250 and the sixth instrument on the electric circuit Voltage transformation means 270 is provided for transforming the voltage between the third phase power transmission line (the W phase in FIG. 5) between the current transformation section (260) and the voltage transformation means so as to be measured.

このように、三相の場合に対して要素が多いのは、3相4線式送電線の場合は、負荷に単相で使用するものも含まれるため、各相と中性線との間の電圧・電流をも測定する必要があるからである。   In this way, there are many elements compared to the case of three phases. In the case of a three-phase four-wire transmission line, the load includes those used in a single phase. This is because it is necessary to measure the voltage and current.

もっとも、3相4線式送電線の場合に従来方法では図5の電圧変圧手段270に相当するものがさらに一セット必要であった。したがって、図5のように結線することにより、第1の実施例で説明したのと同様の効果が得られる。   However, in the case of a three-phase four-wire transmission line, the conventional method requires one more set corresponding to the voltage transformation means 270 of FIG. Therefore, by connecting as shown in FIG. 5, the same effects as described in the first embodiment can be obtained.

[第4の実施例]
第4の実施例は3相4線式送電線の送電線に使用される双方向電力計量システムに関するものである。
上記の第3の実施例で説明した3相4線式送電線の送電線に使用される双方向計量用計器用変成器200を一体で構成したのに対して、個々の計器用変流部、計器用変圧部を個別に準備し、これを図5で示したのと同様に接続をすることにより、同様の作用効果を実現することができる。
[Fourth embodiment]
The fourth embodiment relates to a bidirectional power metering system used for a transmission line of a three-phase four-wire transmission line.
Whereas the two-way measuring instrument transformer 200 used in the transmission line of the three-phase four-wire transmission line described in the third embodiment is configured integrally, each current transformer part for an instrument The same operation and effect can be realized by separately preparing the instrument transformer and connecting it in the same manner as shown in FIG.

この場合に、計器用変流部、計器用変圧部は個別で準備されるため、計器用変流器、計器用変圧器としても良い。この場合も同様な、作用効果を期待することができる。   In this case, since the current transformer part for an instrument and the transformer part for an instrument are prepared separately, it may be a current transformer for an instrument and a transformer for an instrument. In this case, the same effect can be expected.

以上、本発明の実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更または改良を加えることができる。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。例えば、上記のように計器用変流部、計器用変圧部は同じ性能を持った計器用変流器、計器用変圧器を用いても同様に実現することができる。   As mentioned above, although demonstrated using embodiment of this invention, the technical scope of this invention is not limited to the range as described in the said embodiment. Various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention. For example, as described above, the instrument current transformer and the instrument transformer can be realized in the same manner by using an instrument current transformer and an instrument transformer having the same performance.

本発明の双方向計量用計器用変成器のブロック図と3相送電線に接続した例を示す図である。It is a figure which shows the example connected to the block diagram of the bidirectional | two-way measuring instrument transformer of this invention, and a three-phase power transmission line. 電磁形の計器用変流部の原理を示す図である。It is a figure which shows the principle of the electromagnetic type current transformation part for instruments. 電磁形の計器用変圧部の原理を示す図である。It is a figure which shows the principle of the electromagnetic type transformer part for instruments. コンデンサ形の計器用変圧部の原理を示す図である。It is a figure which shows the principle of the capacitor | condenser type instrument transformer part. 本発明の3相4線式送電線用の双方向計量用計器用変成器のブロック図と3相4線式送電線に接続した例を示す図である。It is a figure which shows the example connected to the block diagram of the bidirectional | two-way measuring instrument transformer for three-phase four-wire type transmission lines of this invention, and a three-phase four-wire type transmission line. 従来の電力量、無効電力量等の計量方法を示す図である。It is a figure which shows the measuring methods, such as the conventional electric energy and reactive electric energy.

符号の説明Explanation of symbols

10 第1の計器用変流部
20 第2の計器用変流部
30 第3の計器用変流部
40 第4の計器用変流部
50 相間電圧変圧手段
100 双方向計量用計器用変成器
200 3相4線式送電線用の双方向計量用計器用変成器
210 第1の計器用変流部
220 第2の計器用変流部
230 第3の計器用変流部
240 第4の計器用変流部
250 第5の計器用変流部
260 第6の計器用変流部
270 電圧変圧手段
DESCRIPTION OF SYMBOLS 10 1st instrument current transformation part 20 2nd instrument current transformation part 30 3rd instrument current transformation part 40 4th instrument current transformation part 50 Interphase voltage transformation means 100 Bidirectional measuring instrument transformer 200 Two-way measuring instrument transformer for three-phase four-wire transmission line 210 First instrument current transformer 220 Second instrument current transformer 230 Third instrument current transformer 240 Fourth instrument Current Transformer 250 Fifth Instrument Current Transformer 260 Sixth Instrument Current Transformer 270 Voltage Transformer

Claims (5)

3相送電線において双方向の電力量・無効電力量の計量に用いられる双方向計量用計器用変成器であって、
前記3相送電線の第1相の送電線に接続される第1の計器用変流部および第2の計器用変流部と、
前記3相送電線の第2相の送電線に接続される第3の計器用変流部および第4の計器用変流部と、
前記3相送電線の第3相の送電線と前記第1相の送電線との相間電圧を、電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間にて測定できるように変圧し、前記第3相の送電線と前記第2相の送電線との相間電圧を、電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間にて測定できるように変圧する相間電圧変圧手段と、
を備えた双方向計量用計器用変成器。
A bidirectional measuring instrument transformer used for measuring bidirectional and reactive energy in a three-phase transmission line,
A first instrument current transformer and a second instrument current transformer connected to the first phase power transmission line of the three-phase power transmission line;
A third instrument current transformer and a fourth instrument current transformer connected to the second phase power transmission line of the three-phase power transmission line;
The interphase voltage between the third-phase transmission line and the first-phase transmission line of the three-phase transmission line is determined by the electric circuit between the first instrument current transformer and the second instrument current transformer. The voltage is transformed so that it can be measured in between, and the interphase voltage between the third-phase power transmission line and the second-phase power transmission line is measured on the electric circuit for the third instrument current transformer and the fourth instrument. An interphase voltage transforming means for transforming so as to be able to measure between the current transformer and
Transformer for two-way measuring instrument equipped with.
請求項1に記載の双方向計量用計器用変成器であって、
前記第1の計器用変流部と前記第2の計器用変流部と前記第3の計器用変流部と前記第4の計器用変流部とは計測する計量電流に合わせて個別に整定する整定手段を有することを特徴とする双方向計量用計器用変成器。
The bidirectional measuring instrument transformer according to claim 1,
The first instrument current transformer, the second instrument current transformer, the third instrument current transformer, and the fourth instrument current transformer are individually adapted to the measurement current to be measured. A bidirectional measuring instrument transformer characterized by comprising settling means for setting.
3相送電線において双方向の電力量・無効電力量の双方向電力計量システムであって、
前記3相送電線の第1相の送電線に接続される第1の計器用変流部および第2の計器用変流部と、
前記3相送電線の第2相の送電線に接続される第3の計器用変流部および第4の計器用変流部と、
前記3相送電線の第3相の送電線と前記第1相の送電線との相間電圧を、電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間にて測定できるように変圧し、前記第3相の送電線と前記第2相の送電線との相間電圧を、電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間にて測定できるように変圧する相間電圧変圧手段と、
を備えた双方向電力計量システム。
A bi-directional power metering system for bidirectional and reactive power in a three-phase transmission line,
A first instrument current transformer and a second instrument current transformer connected to the first phase power transmission line of the three-phase power transmission line;
A third instrument current transformer and a fourth instrument current transformer connected to the second phase power transmission line of the three-phase power transmission line;
The interphase voltage between the third-phase transmission line and the first-phase transmission line of the three-phase transmission line is determined by the electric circuit between the first instrument current transformer and the second instrument current transformer. The voltage is transformed so that it can be measured in between, and the interphase voltage between the third-phase power transmission line and the second-phase power transmission line is measured on the electric circuit for the third instrument current transformer and the fourth instrument. An interphase voltage transforming means for transforming so as to be able to measure between the current transformer and
Two-way power metering system with
3相4線式送電線において双方向の電力量・無効電力量の計量に用いられる双方向計量用計器用変成器であって、
前記3相4線式送電線の第1相の送電線に接続される第1の計器用変流部および第2の計器用変流部と、
前記3相4線式送電線の第2相の送電線に接続される第3の計器用変流部および第4の計器用変流部と、
前記3相4線式送電線の第3相の送電線に接続される第5の計器用変流部および第6の計器用変流部と、
前記3相4線式送電線の中性線と電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間の前記第1相の送電線との間の電圧と、前記中性線と電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間の前記第2相の送電線との間の電圧と、前記中性線と電気回路上前記第5の計器用変流部と前記第6の計器用変流部との間の前記第3相の送電線と間の電圧とを、測定できるように変圧する電圧変圧手段と、
を備えた双方向計量用計器用変成器。
A bidirectional measuring instrument transformer used for measuring bidirectional power and reactive power in a three-phase four-wire transmission line,
A first instrument current transformer and a second instrument current transformer connected to the first phase power transmission line of the three-phase four-wire power transmission line;
A third instrument current transformer and a fourth instrument current transformer connected to the second phase power transmission line of the three-phase four-wire power transmission line;
A fifth instrument current transformer and a sixth instrument current transformer connected to the third phase power transmission line of the three-phase four-wire power transmission line;
Between the neutral line of the three-phase four-wire transmission line and the first-phase transmission line between the first instrument current transformer and the second instrument current transformer on the electric circuit. A voltage, a voltage between the neutral line and the second phase transmission line between the third instrument current transformer and the fourth instrument current transformer on the electrical circuit, and the medium And a voltage to transform the voltage between the third phase power transmission line between the fifth instrument current transformer and the sixth instrument current transformer on the electrical line and the electric circuit so that the voltage can be measured. Transforming means;
Transformer for two-way measuring instrument equipped with.
3相4線式送電線において双方向の電力量・無効電力量の計量に用いられる双方向電力計量システムであって、
前記3相4線式送電線の第1相の送電線に接続される第1の計器用変流部および第2の計器用変流部と、
前記3相4線式送電線の第2相の送電線に接続される第3の計器用変流部および第4の計器用変流部と、
前記3相4線式送電線の第3相の送電線に接続される第5の計器用変流部および第6の計器用変流部と、
前記3相4線式送電線の中性線と電気回路上前記第1の計器用変流部と前記第2の計器用変流部との間の前記第1相の送電線との間の電圧と、前記中性線と電気回路上前記第3の計器用変流部と前記第4の計器用変流部との間の前記第2相の送電線との間の電圧と、前記中性線と電気回路上前記第5の計器用変流部と前記第6の計器用変流部との間の前記第3相の送電線との間の電圧とを、測定できるように変圧する電圧変圧手段と、
を備えた双方向電力計量システム。
A bidirectional power metering system used for metering bidirectional power and reactive power in a three-phase four-wire transmission line,
A first instrument current transformer and a second instrument current transformer connected to the first phase power transmission line of the three-phase four-wire power transmission line;
A third instrument current transformer and a fourth instrument current transformer connected to the second phase power transmission line of the three-phase four-wire power transmission line;
A fifth instrument current transformer and a sixth instrument current transformer connected to the third phase power transmission line of the three-phase four-wire power transmission line;
Between the neutral line of the three-phase four-wire transmission line and the first-phase transmission line between the first instrument current transformer and the second instrument current transformer on the electric circuit. A voltage, a voltage between the neutral line and the second phase transmission line between the third instrument current transformer and the fourth instrument current transformer on the electrical circuit, and the medium And the voltage between the third phase power transmission line between the fifth instrument current transformer and the sixth instrument current transformer on the electrical line and the electric circuit so that they can be measured. Voltage transformation means;
Two-way power metering system with
JP2006117571A 2006-04-21 2006-04-21 Bidirectional metering instrument transformer and bidirectional power metering system Active JP4711878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117571A JP4711878B2 (en) 2006-04-21 2006-04-21 Bidirectional metering instrument transformer and bidirectional power metering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117571A JP4711878B2 (en) 2006-04-21 2006-04-21 Bidirectional metering instrument transformer and bidirectional power metering system

Publications (2)

Publication Number Publication Date
JP2007292483A true JP2007292483A (en) 2007-11-08
JP4711878B2 JP4711878B2 (en) 2011-06-29

Family

ID=38763240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117571A Active JP4711878B2 (en) 2006-04-21 2006-04-21 Bidirectional metering instrument transformer and bidirectional power metering system

Country Status (1)

Country Link
JP (1) JP4711878B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041166B1 (en) 2009-07-08 2011-06-13 전명수 Appratus and method for measuring electric power
WO2012005420A1 (en) * 2010-07-07 2012-01-12 옴니시스템 주식회사 Bi-directional digital power meter
WO2012020857A1 (en) * 2010-08-11 2012-02-16 Jun Myung Soo Apparatus and method for measuring electric power
CN102435791A (en) * 2010-09-08 2012-05-02 株式会社东芝 Transformer device for metrical instrument
CN114137267A (en) * 2021-11-17 2022-03-04 杭州惠嘉信息科技有限公司 Non-power-outage lossless replacement method and lossless replacement device for electric energy meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111725A (en) * 1996-10-08 1998-04-28 Meidensha Corp System for sharing compensation power 0f power line conditioner
JPH11211762A (en) * 1998-01-20 1999-08-06 Mitsubishi Electric Corp Method and device for bi-directional electric energy metering
JP2003294792A (en) * 2002-04-03 2003-10-15 Sunshine Kyushu Honbu:Kk Power generation quantity measuring device for solar battery and power generation quantity guaranteeing device for solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111725A (en) * 1996-10-08 1998-04-28 Meidensha Corp System for sharing compensation power 0f power line conditioner
JPH11211762A (en) * 1998-01-20 1999-08-06 Mitsubishi Electric Corp Method and device for bi-directional electric energy metering
JP2003294792A (en) * 2002-04-03 2003-10-15 Sunshine Kyushu Honbu:Kk Power generation quantity measuring device for solar battery and power generation quantity guaranteeing device for solar battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041166B1 (en) 2009-07-08 2011-06-13 전명수 Appratus and method for measuring electric power
WO2012005420A1 (en) * 2010-07-07 2012-01-12 옴니시스템 주식회사 Bi-directional digital power meter
WO2012020857A1 (en) * 2010-08-11 2012-02-16 Jun Myung Soo Apparatus and method for measuring electric power
CN102435791A (en) * 2010-09-08 2012-05-02 株式会社东芝 Transformer device for metrical instrument
CN114137267A (en) * 2021-11-17 2022-03-04 杭州惠嘉信息科技有限公司 Non-power-outage lossless replacement method and lossless replacement device for electric energy meter

Also Published As

Publication number Publication date
JP4711878B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
CN101069338B (en) Polyphase line filter and its operation method
EP2888639B1 (en) Distribution transformer
CN107677980B (en) Integrated detection platform and method for metering performance of mutual inductor of power distribution network
RU2338217C1 (en) Device for testing sensitivity of electronic electricity supply meter with two current circuits with resistive load and reactive compensation
JP4711878B2 (en) Bidirectional metering instrument transformer and bidirectional power metering system
CN109188057A (en) A kind of phase sequence zero sequence integration voltage sensor
WO2009090889A1 (en) Three-phase four-cable power distribution system and method for installing balancer in the system
JP2015055610A (en) Actual load testing device of watthour meter
CN105990010B (en) Multiphase auto-transformer
Al-duaij Harmonics effects in power system
CN104521129B (en) Inverter in parallel on choke
CN101576583B (en) Method for testing voltage ratio of transformer with phase-shifting winding
EP2382641A1 (en) Winding connection to supply three-phase power from a two-phase feeding and 2x3 distribution transformer
KR102344297B1 (en) Metering system using three-phase three-wire system for neutral grounding customer
WO2008026297A1 (en) Current balancer and low-voltage power distribution system
KR100591437B1 (en) 154KV (2CT, 3PT) Neutral Grounding Method
JP2007082269A (en) Single phase-three phase converter and single phase-three phase converting method
CN113884737A (en) Live test method and device for connection state of high-voltage cable single-ended grounding system
KR102606905B1 (en) Transformer and high voltage switchgear
CN206040415U (en) Many windings voltage transformer
CN109991515A (en) The method and system of a high current are obtained under a kind of low actual load
KR200476192Y1 (en) Current Transformer
KR101565392B1 (en) Three-phase transformer using two-phase
CN215600213U (en) Novel three-phase common-body voltage transformer secondary measurement and protection winding wiring structure
Liao et al. Modelling and analysis of delta-connected distribution transformers with symmetrical neutral-grounding structure for microgrid networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Ref document number: 4711878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250