WO2009090889A1 - Three-phase four-cable power distribution system and method for installing balancer in the system - Google Patents

Three-phase four-cable power distribution system and method for installing balancer in the system Download PDF

Info

Publication number
WO2009090889A1
WO2009090889A1 PCT/JP2009/000158 JP2009000158W WO2009090889A1 WO 2009090889 A1 WO2009090889 A1 WO 2009090889A1 JP 2009000158 W JP2009000158 W JP 2009000158W WO 2009090889 A1 WO2009090889 A1 WO 2009090889A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
balancer
line
power
distribution system
Prior art date
Application number
PCT/JP2009/000158
Other languages
French (fr)
Japanese (ja)
Inventor
Sadatsugu Toribami
Original Assignee
Sadatsugu Toribami
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sadatsugu Toribami filed Critical Sadatsugu Toribami
Priority to JP2009549993A priority Critical patent/JPWO2009090889A1/en
Publication of WO2009090889A1 publication Critical patent/WO2009090889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Definitions

  • the present invention relates to a balancer disposition method that effectively utilizes an unbalanced current flowing in a neutral wire in a three-phase four-wire distribution system.
  • FIG. 13 shows a configuration example of a three-phase four-wire power distribution system.
  • the three-phase four-wire distribution system is composed of four electric wires of three-phase power lines U, V, W and a neutral line N.
  • a device with relatively high power such as a motor
  • a device with relatively high power such as a motor
  • a device with relatively low power such as a light
  • the three-phase power lines U, V, W and the neutral line N are electrically connected to the U-phase, V-phase, W-phase and N-phase of the three-phase four-wire transformer, respectively.
  • the power lines U, V, W and the neutral line N are electrically connected to the distribution board 10.
  • Symbols r U , r V , r W , r N in the figure indicate the electric resistances of the power lines U, V, W and the neutral line N, respectively.
  • the motor M is electrically connected to the three-phase power lines R, S, and T connected to the distribution board 10.
  • An electric lamp (not shown) is electrically connected to one of the three-phase power lines R, S, T and the neutral line N.
  • each customer's equipment is connected between the neutral line N and the three-phase power lines U, V, and W, so the load state of each phase Are always different and an imbalance occurs.
  • surplus power in a phase with a small load flows through the neutral line N as an unbalanced current, and power is consumed wastefully.
  • This three-phase four-wire power-saving transformer is a three-phase four-wire low-voltage distribution circuit composed of R-phase, S-phase, and T-phase power lines and neutral wires, and is composed of U-phase, V-phase, and W-phase.
  • the first forward winding coil and the first reverse winding coil having the same number of coil windings and different electrical winding directions are provided, and the number of coil windings is equal and the electrical winding direction is the same.
  • Different second forward winding coils and second reverse winding coils are wound around the long sides of the U phase, V phase, and W phase, and one end of the first forward winding coil of each phase is connected to the first reverse winding coil of the next phase.
  • Connect to one end to form three first absorption coils connect one end of the second forward winding coil of each phase to one end of the second reverse winding coil of the next phase to form three second absorption coils, Connect the other end of the first reverse winding coil of each phase and the other end of the second forward winding coil of the previous phase, and combine the first absorption coil and the second absorption coil
  • the first absorption coil side ends are connected to the corresponding power lines
  • the second absorption coil side ends are connected to the neutral lines
  • the unbalanced current flowing through the neutral lines is reduced to the power lines. It is.
  • the first absorption coil and the second absorption coil can absorb the unbalanced current generated in the neutral line due to the unbalanced load and reduce it to the power line.
  • a method for arranging this three-phase four-wire power-saving transformer on an actual power distribution system has not been established.
  • a three-phase four-wire system capable of appropriately arranging a balancer as described in Patent Document 1 in a three-phase four-wire power distribution system and efficiently achieving energy efficiency at low cost.
  • An object is to provide a power distribution system and a method of arranging a balancer in the system.
  • the balancer is arranged in such a way that an unbalanced current flowing in the neutral line is applied to the three-phase four-wire distribution system consisting of a three-phase power line and a neutral line.
  • the balancer is arranged to provide a balancer that returns to the power line of the balancer, measuring the neutral line current of the line connecting the balancer, the maximum value of the measured neutral line current and the maximum working voltage of the line Calculating the capacity of the balancer connected to the end of the line from the line, and connecting the balancer having the calculated capacity to the end of the line.
  • the capacity of the balancer connected to the end of the line from the maximum value of the neutral current of the line connecting the balancer and the maximum working voltage of the line.
  • the balancer arrangement method in the three-phase four-wire distribution system of the present invention further includes measuring the power at a plurality of locations including a line branched from the line, and connecting the balancer to the line where the measured power is maximum. It is desirable to include a line to be used. As a result, even when the power of the line branched from the line is large, the balancer can be connected to the end of the line where the power is the largest among the branched lines, thereby reducing the unbalanced current efficiently by the balancer. Can be done.
  • the method of arranging the balancer in the three-phase four-wire distribution system according to the present invention is such that the balancer is connected via a switch that opens and closes intermittently at a predetermined time interval, and the switch is opened and closed intermittently at a predetermined time interval.
  • the balancer is connected via a switch that opens and closes intermittently at a predetermined time interval, and the switch is opened and closed intermittently at a predetermined time interval.
  • the time interval for opening and closing the switch is preferably 5 to 30 minutes. Thereby, it becomes difficult to be influenced by the change of the power usage state according to the time zone, and it becomes possible to calculate a more accurate power saving amount. If it is less than 5 minutes, there is a possibility that the amount of time during which the action of reducing the unbalanced current by the balancer works is too short to calculate the power saving amount accurately. In addition, if it exceeds 30 minutes, the influence of the change in the usage state of the power due to the time zone becomes large, and it becomes difficult to calculate an accurate power saving amount.
  • the three-phase four-wire power distribution system of the present invention includes a three-phase power line, a neutral line, and a balancer that reduces unbalanced current flowing through the neutral line to the three-phase power line. It has a capacity determined by the maximum value of the neutral current flowing through the line to which the balancer is connected and the maximum voltage applied to the power line, and the balancer is connected to the end of the line.
  • the balancer is connected to a line to which the maximum power is applied among powers measured at a plurality of locations including a line branched from the line.
  • the three-phase four-wire distribution system opens and closes intermittently at predetermined time intervals for measuring the power applied to the line to which the balancer is connected in order to obtain a comparative day load curve. It further includes a switch, and the balancer is connected to the termination via the switch, and the power saving power is calculated from the comparative daily load curve.
  • the time interval for opening and closing the switch is preferably 5 to 30 minutes.
  • the balancer is composed of, for example, a zigzag star connection transformer.
  • a line branched from the line by measuring power at a plurality of locations including the line branched from the line, and including a line connecting the balancer as the line having the maximum measured power. Even when the power of the balancer is large, it is possible to efficiently reduce the unbalanced current by the balancer by connecting the balancer to the end of the line where the power is maximum among the branched lines.
  • a balancer is connected via a switch that opens and closes intermittently at a predetermined time interval, and the switch is intermittently opened and closed at a predetermined time interval, and the amount of power on the line to which the balancer is connected is measured. Even if there is no daily load curve by obtaining a load curve and calculating the power saving amount from the comparative daily load curve, the switch is closed, that is, the balancer is connected and the switch is open That is, it is possible to confirm the power saving effect by the balancer by obtaining the comparative daily load curve with the state where the balancer is not connected and calculating the power saving amount.
  • FIG. 1 is a schematic configuration diagram of a three-phase four-wire power distribution system in an embodiment of the present invention. It is a figure which shows the connection location and measured value of an integrating watt-hour meter. It is a figure which shows the zigzag star connection transformer as a balance transformer. It is a figure which shows the example of a daily load curve. It is a figure which shows the relationship between the power consumption and the apparent power saving amount in the state without a balance transformer and the state with a balance transformer. It is a figure which shows the positional relationship of a measurement point.
  • FIG. 1 is a schematic configuration diagram of a three-phase four-wire power distribution system according to an embodiment of the present invention.
  • the balancer disposition method of the three-phase four-wire distribution system in the embodiment of the present invention includes three-phase power lines (U phase, V phase, W phase) and neutral wires (N phase).
  • a three-phase four-wire power-saving transformer (hereinafter referred to as “balance transformer”) 1 serving as a balancer is disposed at an appropriate location on a main line, a branch line, or the like of a three-phase four-wire distribution system comprising:
  • the balance transformer 1 for example, a three-phase four-wire power saving transformer described in Japanese Patent Application Laid-Open No. 2007-48859 can be used.
  • the three-phase power lines U, V, W and the neutral line N are electrically connected to the U-phase, V-phase, W-phase and N-phase of the three-phase four-wire transformer, respectively.
  • the power lines U, V, W and the neutral line N are electrically connected to the distribution board 10.
  • Symbols r U , r V , r W , and r N in the figure indicate the electric resistances of the power lines U, V, W and the neutral line N, respectively.
  • the motor M is electrically connected to the three-phase power lines R, S, T connected to the distribution board 10.
  • An electric lamp (not shown) is electrically connected to one of the three-phase power lines R, S, T and the neutral line N.
  • the motor M When the motor M is in operation, electric power is supplied to the motor M through the three-phase power lines U, V, and W.
  • the lamp When the lamp is turned on, power is supplied to the lamp through one of the three-phase power lines R, S, T and the neutral line N.
  • FIG. 2 is a diagram illustrating an arrangement example of the balance transformer 1.
  • the balance transformer 1 is connected to the end of the line.
  • the balance transformer 1 is connected to the end of the trunk line.
  • the branch line having the maximum power is used as the line connecting the balance transformer 1.
  • the balance transformer 1 is connected to the end.
  • the zigzag star connection (staggered connection) transformer shown in FIG. 3 is used for the balance transformer 1 in the present embodiment.
  • a zigzag star-connected transformer the magnetomotive force due to the zero-phase current cancels out at each leg of the transformer core, so no zero-phase magnetic flux is generated and the zero-phase impedance is very small.
  • the zero phase portion of the terminal voltage is short-circuited, and a zero phase current equal to each phase flows, thereby acting as a balancer.
  • the secondary winding impedance, balancer impedance, and balancer circuit reactance components of the transformer (TR) of the substation shown at the left end of FIG. 2 are small and ignored.
  • the line resistance R L of each phase and the line resistance R n of the neutral line are canceled by the current (balancer current) I B from the balance transformer 1, and the power saving amount P ′ is expressed by the following equation.
  • P ′ 3R L ⁇ (I B ) 2 + R n ⁇ (3I B ) 2 ...
  • the balancer current I B that cancels the zero-phase current of each phase is It becomes.
  • Z T transformer impedance
  • Z L low-voltage distribution line impedance
  • Z n neutral wire impedance
  • Z B Balancer impedance
  • Z L ' the balancer connecting line impedance
  • the capacity of the balance transformer 1 to be installed measures the neutral current of the line connecting the balance transformer 1 (zero-phase current I n), the maximum operating voltage of the maximum value and the line of the measured neutral current From the above, the following formula can be used.
  • Balance transformer capacity maximum neutral wire current x maximum operating voltage (3)
  • an integrated watt-hour meter (WHM) 2 as a measuring instrument capable of measuring the electric energy (WH) is connected to a plurality of locations on the line to which the balance transformer 1 is connected.
  • the integrated watt-hour meter 2 is connected to several points on the main line including the point immediately before the balance transformer 1, the transmission point from the substation to the main line, and the intermediate point of the main line.
  • a clamp wattmeter (model number: 3169) manufactured by Hioki Electric Co., Ltd. can be used.
  • This integrated watt-hour meter 2 can measure voltage, current, active / reactive / apparent power, active / reactive power, power factor, frequency, and harmonics. Via a computer (not shown).
  • the balance transformer 1 whose capacity is determined by measuring the neutral line current is connected to the end of the line of the three-phase four-wire distribution system.
  • the switch of the balance transformer 1 is intermittently opened and closed at predetermined time intervals, and the power amount, each phase current, and each phase voltage of the line to which the balance transformer 1 is connected are measured and compared as shown in FIG. Obtain a daily load curve.
  • the measurement is performed for at least about one week.
  • the comparative day load curve shows that the wattmeter reading in the state where the switch of the balance transformer 1 is opened, that is, the state where the balance transformer 1 is not used is a continuous line, and the switch of the balance transformer 1 is closed In this state, the accumulator reading in the state with the balance transformer 1 is a continuous line.
  • the apparent power saving amount B is calculated on the computer from the difference between these two daily load curves.
  • FIG. 5 shows the relationship between the power consumption and the apparent power saving amount when the balance transformer 1 is not present and when it is present.
  • the reading of the power meter represents the sum of the consumed power [1] of the consumer and the line loss [2].
  • the reading of the wattmeter is the sum of the power used by the customer (1) (the power used increases by voltage compensation), the line loss (2), and the balancer loss (3).
  • the power saving amount of the entire target area is estimated from this power saving amount, and the power consumption per substation is calculated from the power consumption (kWH) and power saving amount (kWH) of the substation.
  • the power saving amount (kWH / kWH) is calculated.
  • the annual power saving amount is calculated from the daily total power amount of the substation, and the connection location of the balance transformer 1 is determined from the power saving amount.
  • FIG. 6 is a diagram showing the positional relationship of measurement points. As shown in FIG. 6, the measurement is performed at the distribution line terminal position, that is, the position of the final power pole (measurement point A) and the position of the balance transformer 1 (measurement point B) connected by extending 8 m wiring from the final power pole. Connected the vessel.
  • FIG. 7 is a graph showing an average value of currents in the R phase, S phase, T phase, and N phase when the balance transformer 1 is opened and closed at the measurement point A in FIG. 6, and FIG. 8 is an average voltage value.
  • FIG. 9 is a diagram showing a graph of average values of currents in the R phase, S phase, T phase and N phase when the switch of the balance transformer 1 is opened and closed at the measurement point B in FIG. 10 is a graph showing an average value of voltage.
  • FIG. 12 shows the result of analyzing a simulation test on the optimum mounting position of the balance transformer 1 using the circuit shown in FIG. 11 and analyzing the measured data.
  • B is a balance transformer 1.
  • the power saving amount is maximized when the balance transformer 1 is installed at the end.
  • the method of arranging the balancer in the three-phase four-wire distribution system of the present invention is useful as a method for saving power and energy in the three-phase four-wire distribution system.
  • the three-phase four-wire power distribution system of the present invention is also useful for power saving and energy saving.

Abstract

Provided is a method for appropriately installing a balancer in a three-phase four-cable power distribution system, thereby effectively obtaining energy at a low cost. A balance transformer (1) for reducing an unbalanced current flowing in a neutral conductor into a three-phase power line is installed in a line of the three-phase four-cable power distribution system having a three-phase power line and a neutral conductor as follows. A neutral line current in the line connecting the balance transformer (1) is measured. A capacity of the balance transformer (1) connected to the end of the line is calculated from a maximum value of the measured neutral conductor current and a maximum use voltage of the line. A balance transformer (1) having the calculated capacity is connected to the end of the line.

Description

三相4線式配電システムおよびそのシステムにおけるバランサの配設方法Three-phase four-wire power distribution system and method of arranging balancer in the system
 本発明は、三相4線式配電システムにおいて中性線に流れる不平衡電流を有効活用するバランサの配設方法に関する。 The present invention relates to a balancer disposition method that effectively utilizes an unbalanced current flowing in a neutral wire in a three-phase four-wire distribution system.
 発展途上国では、配電方式として、三相交流電力を4本の電線を用いて供給する三相4線式が利用されている。図13は、三相4線式配電システムの構成例を示している。図13に示されているように、三相4線式配電システムは、三相のそれぞれの電力線U,V,Wと中性線Nとの4本の電線から構成されている。例えばモータ等の比較的電力の大きな機器を負荷とする場合には三相の電力線U,V,Wを使用(三相3線)し、電灯等の比較的電力の小さな機器を負荷とする場合には中性線Nとそれぞれの相の電力線U,V,Wとを使用(単相2線)する共用が可能となっている。 In developing countries, a three-phase four-wire system that supplies three-phase AC power using four wires is used as a power distribution method. FIG. 13 shows a configuration example of a three-phase four-wire power distribution system. As shown in FIG. 13, the three-phase four-wire distribution system is composed of four electric wires of three-phase power lines U, V, W and a neutral line N. For example, when using a device with relatively high power, such as a motor, as a load, use three-phase power lines U, V, W (three-phase, three wire) and using a device with relatively low power, such as a light, as a load. Can be used by using the neutral line N and the power lines U, V, and W of the respective phases (single-phase two lines).
 図13に示されているように、三相電力線U,V,Wおよび中性線Nは、それぞれ三相4線式変圧器のU相、V相、W相およびN相に電気的に接続されている。また、電力線U,V,Wおよび中性線Nは、分電盤10に電気的に接続されている。なお、図中の記号rU,rV,rW,rNは、電力線U,V,Wおよび中性線Nのそれぞれの電気抵抗を示している。また、モータMは、分電盤10に接続された三相の電力線R,S,Tに電気的に接続さる。電灯(図示せず。)は、三相の電力線R,S,Tのうちの一つと中性線Nに電気的に接続される。そして、上述したように、モータMの稼動時には、電力は三相の電力線U,V,Wを通してモータMに供給される。電灯がオンになるときには、電力は三相の電力線R,S,Tのうちのいずれか一つと中性線Nを通して電灯に供給される。 As shown in FIG. 13, the three-phase power lines U, V, W and the neutral line N are electrically connected to the U-phase, V-phase, W-phase and N-phase of the three-phase four-wire transformer, respectively. Has been. Further, the power lines U, V, W and the neutral line N are electrically connected to the distribution board 10. Symbols r U , r V , r W , r N in the figure indicate the electric resistances of the power lines U, V, W and the neutral line N, respectively. The motor M is electrically connected to the three-phase power lines R, S, and T connected to the distribution board 10. An electric lamp (not shown) is electrically connected to one of the three-phase power lines R, S, T and the neutral line N. As described above, when the motor M is in operation, electric power is supplied to the motor M through the three-phase power lines U, V, and W. When the lamp is turned on, power is supplied to the lamp through one of the three-phase power lines R, S, T and the neutral line N.
 このように、三相4線式配電システムでは、2種類の電力が同一の配線設備で利用できるため、設備コストのメリットが大きく、発展途上国の電力供給施設で採用されることが多い。一方で、この三相4線式配電システムでは、中性線Nと三相のそれぞれの電力線U,V,Wとの間に各需要家の機器が接続されるため、各相の負荷の状態が常に異なり、不平衡が発生する。不平衡が発生すると、負荷の小さい相の余剰電力が不平衡電流として中性線Nに流れ、無駄に電力を消費してしまう。 Thus, in the three-phase four-wire distribution system, two types of power can be used in the same wiring equipment, so the merit of equipment cost is great, and it is often adopted in power supply facilities in developing countries. On the other hand, in this three-phase four-wire distribution system, each customer's equipment is connected between the neutral line N and the three-phase power lines U, V, and W, so the load state of each phase Are always different and an imbalance occurs. When an unbalance occurs, surplus power in a phase with a small load flows through the neutral line N as an unbalanced current, and power is consumed wastefully.
 そこで、本発明者は、この不平衡電流を電力線U,V,Wに還元することにより、無駄に消費されていた不平衡電流を有効活用することが可能な三相4線式省電力変圧器を開発している(特許文献1参照。)。この三相4線式省電力変圧器は、R相、S相およびT相の電力線と中性線とからなる三相4線式低圧配電回路において、U相、V相およびW相からなる3つの長辺部を有する鉄心を設け、コイル捲数が等しく、かつ電気的巻線方向が異なる第一順巻コイルおよび第一逆巻コイルと、コイル捲数が等しく、かつ電気的巻線方向が異なる第二順巻コイルおよび第二逆巻コイルをU相、V相およびW相の各長辺部に巻回し、各相の第一順巻コイルの一端を次相の第一逆巻コイルの一端と接続して3つの第一吸収コイルを形成し、各相の第二順巻コイルの一端を次相の第二逆巻コイルの一端と接続して3つの第二吸収コイルを形成し、各相の第一逆巻コイルの他端と前相の第二順巻コイルの他端を接続して第一吸収コイルと第二吸収コイルを結合してあり、第一吸収コイル側端をそれぞれ対応する電力線に接続し、第二吸収コイル側端を中性線に接続し、中性線に流れる不平衡電流を電力線に還元するようにした、いわゆるバランサである。 Therefore, the present inventor has reduced the unbalanced current to the power lines U, V, and W, thereby effectively utilizing the unbalanced current that has been wasted. (See Patent Document 1). This three-phase four-wire power-saving transformer is a three-phase four-wire low-voltage distribution circuit composed of R-phase, S-phase, and T-phase power lines and neutral wires, and is composed of U-phase, V-phase, and W-phase. The first forward winding coil and the first reverse winding coil having the same number of coil windings and different electrical winding directions are provided, and the number of coil windings is equal and the electrical winding direction is the same. Different second forward winding coils and second reverse winding coils are wound around the long sides of the U phase, V phase, and W phase, and one end of the first forward winding coil of each phase is connected to the first reverse winding coil of the next phase. Connect to one end to form three first absorption coils, connect one end of the second forward winding coil of each phase to one end of the second reverse winding coil of the next phase to form three second absorption coils, Connect the other end of the first reverse winding coil of each phase and the other end of the second forward winding coil of the previous phase, and combine the first absorption coil and the second absorption coil The first absorption coil side ends are connected to the corresponding power lines, the second absorption coil side ends are connected to the neutral lines, and the unbalanced current flowing through the neutral lines is reduced to the power lines. It is.
特開2007-48859号公報JP 2007-48859 A
 上記三相4線式省電力変圧器によれば、第一吸収コイルおよび第二吸収コイルが不平衡な負荷によって中性線に生じる不平衡電流を吸収し、電力線に還元することができるから、無駄に消費されていた不平衡電流を有効利用することが可能であるが、この三相4線式省電力変圧器を実際の配電システム上に配設する方法については確立していない。 According to the three-phase four-wire power saving transformer, the first absorption coil and the second absorption coil can absorb the unbalanced current generated in the neutral line due to the unbalanced load and reduce it to the power line. Although it is possible to effectively use the unbalanced current that has been consumed in vain, a method for arranging this three-phase four-wire power-saving transformer on an actual power distribution system has not been established.
 そこで、本発明においては、特許文献1に記載のようなバランサを三相4線式配電システムへ適切に配設し、低コストで効率良くエネルギ効率化を図ることが可能な三相4線式配電システムおよびそのシステムにおけるバランサの配設方法を提供することを目的とする。 Therefore, in the present invention, a three-phase four-wire system capable of appropriately arranging a balancer as described in Patent Document 1 in a three-phase four-wire power distribution system and efficiently achieving energy efficiency at low cost. An object is to provide a power distribution system and a method of arranging a balancer in the system.
 本発明の三相4線式配電システムにおけるバランサの配設方法は、三相の電力線および中性線からなる三相4線式配電システムの線路に、中性線に流れる不平衡電流を三相の電力線に還元するバランサを配設するバランサの配設方法であって、バランサを接続する線路の中性線電流を測定すること、測定した中性線電流の最大値と線路の最大使用電圧とから線路の終端に接続するバランサの容量を算出すること、算出した容量のバランサを線路の終端に接続することを含む。 In the three-phase four-wire distribution system according to the present invention, the balancer is arranged in such a way that an unbalanced current flowing in the neutral line is applied to the three-phase four-wire distribution system consisting of a three-phase power line and a neutral line. The balancer is arranged to provide a balancer that returns to the power line of the balancer, measuring the neutral line current of the line connecting the balancer, the maximum value of the measured neutral line current and the maximum working voltage of the line Calculating the capacity of the balancer connected to the end of the line from the line, and connecting the balancer having the calculated capacity to the end of the line.
 本発明の三相4線式配電システムにおけるバランサの配設方法によれば、バランサを接続する線路の中性線電流の最大値と線路の最大使用電圧とから線路の終端に接続するバランサの容量を算出し、算出した容量のバランサを線路の終端に接続することで、バランサによる不平衡電流の還元を効率良く行うことが可能となる。 According to the balancer disposition method in the three-phase four-wire distribution system of the present invention, the capacity of the balancer connected to the end of the line from the maximum value of the neutral current of the line connecting the balancer and the maximum working voltage of the line. By connecting the balancer having the calculated capacity to the end of the line, it is possible to efficiently reduce the unbalanced current by the balancer.
 本発明の三相4線式配電システムにおけるバランサの配設方法は、さらに、線路から分岐する線路を含めて複数箇所の電力を測定すること、測定した電力が最大となる線路を、バランサを接続する線路とすることを含むことが望ましい。これにより、線路から分岐する線路の電力が大きい場合であっても、その分岐する線路のうち電力が最大となる線路の終端にバランサを接続することで、バランサによる不平衡電流の還元を効率良く行うことが可能となる。 The balancer arrangement method in the three-phase four-wire distribution system of the present invention further includes measuring the power at a plurality of locations including a line branched from the line, and connecting the balancer to the line where the measured power is maximum. It is desirable to include a line to be used. As a result, even when the power of the line branched from the line is large, the balancer can be connected to the end of the line where the power is the largest among the branched lines, thereby reducing the unbalanced current efficiently by the balancer. Can be done.
 また、本発明の三相4線式配電システムにおけるバランサの配設方法は、所定の時間間隔で断続的に開閉するスイッチを介してバランサを接続し、スイッチを所定の時間間隔で断続的に開閉させて、バランサを接続した線路の電力量を測定して比較日負荷曲線を得ること、比較日負荷曲線から節電量を算出することが望ましい。 In addition, the method of arranging the balancer in the three-phase four-wire distribution system according to the present invention is such that the balancer is connected via a switch that opens and closes intermittently at a predetermined time interval, and the switch is opened and closed intermittently at a predetermined time interval. Thus, it is desirable to measure the power amount of the line connected to the balancer to obtain a comparative daily load curve, and to calculate the power saving amount from the comparative daily load curve.
 これにより、日負荷曲線がない場合であっても、スイッチが閉の状態、すなわちバランサが接続された状態と、スイッチが開の状態、すなわちバランサが接続されていない状態との比較日負荷曲線を得て節電量を算出することで、バランサによる節電効果を確認することが可能となる。 As a result, even if there is no daily load curve, a comparison daily load curve between the switch being closed, that is, the state where the balancer is connected, and the state where the switch is open, that is, the state where the balancer is not connected, is obtained. By obtaining and calculating the power saving amount, it is possible to confirm the power saving effect by the balancer.
 ここで、スイッチの開閉の時間間隔は、5~30分であることが望ましい。これにより、時間帯による電力の使用状態の変化の影響を受けにくくなり、より正確な節電量を算出することが可能となる。なお、5分未満では、バランサによる不平衡電流の還元作用が働く時間が少なすぎ、正確な節電量の算出ができなくなる可能性がある。また、30分超では、時間帯による電力の使用状態の変化の影響が大きくなり、正確な節電量を算出することが困難となる。 Here, the time interval for opening and closing the switch is preferably 5 to 30 minutes. Thereby, it becomes difficult to be influenced by the change of the power usage state according to the time zone, and it becomes possible to calculate a more accurate power saving amount. If it is less than 5 minutes, there is a possibility that the amount of time during which the action of reducing the unbalanced current by the balancer works is too short to calculate the power saving amount accurately. In addition, if it exceeds 30 minutes, the influence of the change in the usage state of the power due to the time zone becomes large, and it becomes difficult to calculate an accurate power saving amount.
 本発明の三相4線式配電システムは、三相の電力線と、中性線と、前記中性線に流れる不平衡電流を前記三相の電力線に還元するバランサとからなり、前記バランサは、該バランサが接続されている線路を通して流れる中性線電流の最大値と前記電力線に印加される最大電圧とから決まる容量を持ち、前記バランサは前記線路の終端に接続されていることを含む。
 好ましくは、前記バランサは、前記線路から分岐する線路を含めて複数箇所で測定された電力のうち、最大の電力が印加された線路に接続されている。
The three-phase four-wire power distribution system of the present invention includes a three-phase power line, a neutral line, and a balancer that reduces unbalanced current flowing through the neutral line to the three-phase power line. It has a capacity determined by the maximum value of the neutral current flowing through the line to which the balancer is connected and the maximum voltage applied to the power line, and the balancer is connected to the end of the line.
Preferably, the balancer is connected to a line to which the maximum power is applied among powers measured at a plurality of locations including a line branched from the line.
 前記三相4線式配電システムは、比較日負荷曲線を得るために、前記バランサが接続されている前記線路に印加された電力を測定するための予め定められた時間間隔で断続的に開閉するスイッチをさらに含み、前記バランサは前記スイッチを介して前記終端に接続され、節電電力が、前記比較日負荷曲線から算出されることを含む。
 前記スイッチの開閉の時間間隔は、好ましくは5~30分である。
 前記バランサは例えば、ジグザグスター結線変圧器からなる。
The three-phase four-wire distribution system opens and closes intermittently at predetermined time intervals for measuring the power applied to the line to which the balancer is connected in order to obtain a comparative day load curve. It further includes a switch, and the balancer is connected to the termination via the switch, and the power saving power is calculated from the comparative daily load curve.
The time interval for opening and closing the switch is preferably 5 to 30 minutes.
The balancer is composed of, for example, a zigzag star connection transformer.
(1)バランサを接続する線路の中性線電流を測定すること、測定した中性線電流の最大値と線路の最大使用電圧とから線路の終端に接続するバランサの容量を算出すること、算出した容量のバランサを線路の終端に接続することにより、バランサを三相4線式配電システムへ適切に配置し、低コストで効率良くエネルギ効率化を図ることができる。また、本発明では、エネルギ効率化を図ることによって、温室効果ガス排出量を削減することができるので、クリーン開発メカニズム(CDM:Clean Development Mechanism)を適用することが可能となる。 (1) Measure the neutral current of the line connecting the balancer, calculate the capacity of the balancer connected to the end of the line from the measured maximum value of the neutral current and the maximum voltage used for the line, By connecting the balancer having the capacity to the end of the line, the balancer can be appropriately arranged in the three-phase four-wire distribution system, and energy efficiency can be improved efficiently at low cost. Further, in the present invention, greenhouse gas emissions can be reduced by improving energy efficiency, so that it is possible to apply a clean development mechanism (CDM: Clean Development Mechanism).
(2)さらに、線路から分岐する線路を含めて複数箇所の電力を測定すること、測定した電力が最大となる線路を、バランサを接続する線路とすることを含むことにより、線路から分岐する線路の電力が大きい場合であっても、その分岐する線路のうち電力が最大となる線路の終端にバランサを接続することで、バランサによる不平衡電流の還元を効率良く行うことが可能となる。 (2) Further, a line branched from the line by measuring power at a plurality of locations including the line branched from the line, and including a line connecting the balancer as the line having the maximum measured power. Even when the power of the balancer is large, it is possible to efficiently reduce the unbalanced current by the balancer by connecting the balancer to the end of the line where the power is maximum among the branched lines.
(3)所定の時間間隔で断続的に開閉するスイッチを介してバランサを接続し、スイッチを所定の時間間隔で断続的に開閉させて、バランサを接続した線路の電力量を測定して比較日負荷曲線を得ること、比較日負荷曲線から節電量を算出することにより、日負荷曲線がない場合であっても、スイッチが閉の状態、すなわちバランサが接続された状態と、スイッチが開の状態、すなわちバランサが接続されていない状態との比較日負荷曲線を得て節電量を算出することで、バランサによる節電効果を確認することが可能となる。 (3) A balancer is connected via a switch that opens and closes intermittently at a predetermined time interval, and the switch is intermittently opened and closed at a predetermined time interval, and the amount of power on the line to which the balancer is connected is measured. Even if there is no daily load curve by obtaining a load curve and calculating the power saving amount from the comparative daily load curve, the switch is closed, that is, the balancer is connected and the switch is open That is, it is possible to confirm the power saving effect by the balancer by obtaining the comparative daily load curve with the state where the balancer is not connected and calculating the power saving amount.
(4)スイッチの開閉の時間間隔が、5~30分であることによって、時間帯による電力の使用状態の変化の影響を受けにくくなり、より正確な節電量を算出することが可能となる。 (4) Since the time interval for opening and closing the switch is 5 to 30 minutes, it is less affected by the change in the power usage state depending on the time zone, and a more accurate power saving amount can be calculated.
本発明の実施の形態における三相4線式配電システムの概略構成図である。1 is a schematic configuration diagram of a three-phase four-wire power distribution system in an embodiment of the present invention. 積算電力量計の接続箇所および計測値を示す図である。It is a figure which shows the connection location and measured value of an integrating watt-hour meter. バランストランスとしてのジグザグスター結線変圧器を示す図である。It is a figure which shows the zigzag star connection transformer as a balance transformer. 日負荷曲線の例を示す図である。It is a figure which shows the example of a daily load curve. バランストランス無しの状態と有りの状態とにおける消費電力と見かけ節電量との関係を示す図である。It is a figure which shows the relationship between the power consumption and the apparent power saving amount in the state without a balance transformer and the state with a balance transformer. 計測ポイントの位置関係を示す図である。It is a figure which shows the positional relationship of a measurement point. 図6の計測ポイントAにおけるバランストランスのスイッチ開閉時のR相、S相、T相およびN相の各相の電流の平均値のグラフを示す図である。It is a figure which shows the graph of the average value of the electric current of each phase of R phase, S phase, T phase, and N phase at the time of the switch opening and closing of the balance transformer in the measurement point A of FIG. 図6の計測ポイントAにおけるバランストランスのスイッチ開閉時のR相、S相、T相およびN相の各相の電圧の平均値のグラフを示す図である。It is a figure which shows the graph of the average value of the voltage of each phase of R phase, S phase, T phase, and N phase at the time of the switch opening and closing of the balance transformer in the measurement point A of FIG. 図6の計測ポイントBにおけるバランストランス1のスイッチ開閉時のR相、S相、T相およびN相の各相の電流の平均値のグラフを示す図である。It is a figure which shows the graph of the average value of the electric current of each phase of R phase, S phase, T phase, and N phase at the time of the switch opening and closing of the balance transformer 1 in the measurement point B of FIG. 図6の計測ポイントBにおけるバランストランス1のスイッチ開閉時のR相、S相、T相およびN相の各相の電圧の平均値のグラフを示す図である。It is a figure which shows the graph of the average value of the voltage of each phase of R phase, S phase, T phase, and N phase at the time of the switch opening and closing of the balance transformer 1 in the measurement point B of FIG. シミュレーション試験回路を示す図である。It is a figure which shows a simulation test circuit. 図11に示すシミュレーション試験回路による試験結果を示す図である。It is a figure which shows the test result by the simulation test circuit shown in FIG. 従来の三相4線式配電システムの概略構成図である。It is a schematic block diagram of the conventional three-phase four-wire type power distribution system.
 図1は本発明の実施の形態における三相4線式配電システムの概略構成図である。
 図1に示すように、本発明の実施の形態における三相4線式配電システムのバランサ配設方法は、三相の電力線(U相、V相、W相)および中性線(N相)からなる三相4線式配電システムの幹線や分岐線等の線路の適切な箇所に、バランサとしての三相4線式省電力変圧器(以下、「バランストランス」と称す。)1を配置することにより、中性線に流れる不平衡電流を三相の電力線に還元し、低コストで効率良くエネルギ効率化を図るものである。バランストランス1としては、例えば、特開2007-48859号公報に記載の三相4線式省電力変圧器を使用することができる。
FIG. 1 is a schematic configuration diagram of a three-phase four-wire power distribution system according to an embodiment of the present invention.
As shown in FIG. 1, the balancer disposition method of the three-phase four-wire distribution system in the embodiment of the present invention includes three-phase power lines (U phase, V phase, W phase) and neutral wires (N phase). A three-phase four-wire power-saving transformer (hereinafter referred to as “balance transformer”) 1 serving as a balancer is disposed at an appropriate location on a main line, a branch line, or the like of a three-phase four-wire distribution system comprising: Thus, the unbalanced current flowing in the neutral line is reduced to the three-phase power line, and the energy efficiency is efficiently achieved at a low cost. As the balance transformer 1, for example, a three-phase four-wire power saving transformer described in Japanese Patent Application Laid-Open No. 2007-48859 can be used.
 図1に示されているように、三相電力線U,V,Wおよび中性線Nは、それぞれ三相4線式変圧器のU相、V相、W相およびN相に電気的に接続されている。また、電力線U,V,Wおよび中性線Nは、分電盤10に電気的に接続されている。なお、図中の記号rU,rV,rW,rNは、電力線U,V,Wおよび中性線Nのそれぞれの電気抵抗を示している。 As shown in FIG. 1, the three-phase power lines U, V, W and the neutral line N are electrically connected to the U-phase, V-phase, W-phase and N-phase of the three-phase four-wire transformer, respectively. Has been. Further, the power lines U, V, W and the neutral line N are electrically connected to the distribution board 10. Symbols r U , r V , r W , and r N in the figure indicate the electric resistances of the power lines U, V, W and the neutral line N, respectively.
 また、モータMは、分電盤10に接続された三相の電力線R,S,Tに電気的に接続さる。電灯(図示せず。)は、三相の電力線R,S,Tのうちの一つと中性線Nに電気的に接続される。そして、モータMの稼動時には、電力は三相の電力線U,V,Wを通してモータMに供給される。電灯がオンになるときには、電力は三相の電力線R,S,Tのうちのいずれか一つと中性線Nを通して電灯に供給される。 Also, the motor M is electrically connected to the three-phase power lines R, S, T connected to the distribution board 10. An electric lamp (not shown) is electrically connected to one of the three-phase power lines R, S, T and the neutral line N. When the motor M is in operation, electric power is supplied to the motor M through the three-phase power lines U, V, and W. When the lamp is turned on, power is supplied to the lamp through one of the three-phase power lines R, S, T and the neutral line N.
 図2はバランストランス1の配置例を示す図である。本実施形態におけるバランサ配設方法では、バランストランス1を線路の終端に接続する。なお、図2の例では、幹線の終端にバランストランス1を接続しているが、分岐線の電力が最大となる場合にはその電力が最大となる分岐線をバランストランス1を接続する線路とし、その終端にバランストランス1を接続する。 FIG. 2 is a diagram illustrating an arrangement example of the balance transformer 1. In the balancer disposition method in the present embodiment, the balance transformer 1 is connected to the end of the line. In the example of FIG. 2, the balance transformer 1 is connected to the end of the trunk line. However, when the power of the branch line is maximum, the branch line having the maximum power is used as the line connecting the balance transformer 1. The balance transformer 1 is connected to the end.
 ここで、バランストランス1による不平衡電流の還元原理について説明する。三相4線式配電システムでは、前述のようにある程度の不平衡は避けられない。負荷の不平衡が甚だしくなるほど、電圧降下および線路損失が増加するが、零相分によって中性線に生ずる電圧降下および線路損失が大きな部分を占めているので、バランストランス1を設置してこの零相分を除去すれば、負荷の不平衡を取り除くことができる。 Here, the principle of reducing the unbalanced current by the balance transformer 1 will be described. In the three-phase four-wire distribution system, a certain degree of unbalance is inevitable as described above. The voltage drop and the line loss increase as the load unbalance becomes more serious. However, the voltage drop and the line loss generated in the neutral line due to the zero phase occupy a large part. If the phase is removed, the load imbalance can be removed.
 本実施形態におけるバランストランス1には、図3に示すジグザグスター結線(千鳥結線)変圧器を使用する。ジグザグスター結線変圧器では、零相電流による起磁力は変圧器鉄心各脚で打ち消し合うため零相磁束を生じず、零相インピーダンスが非常に小さい。ジグザグスター結線変圧器では、その端子電圧のうち零相分は短絡され、各相に相等しい零相電流が流れることにより、バランサとして作用する。 The zigzag star connection (staggered connection) transformer shown in FIG. 3 is used for the balance transformer 1 in the present embodiment. In a zigzag star-connected transformer, the magnetomotive force due to the zero-phase current cancels out at each leg of the transformer core, so no zero-phase magnetic flux is generated and the zero-phase impedance is very small. In the zigzag star connection transformer, the zero phase portion of the terminal voltage is short-circuited, and a zero phase current equal to each phase flows, thereby acting as a balancer.
 ここで、図2の左端に示す変電所の変圧器(TR)の2次巻線インピーダンス、バランサインピーダンスおよびバランサ回路リアクタンス分は小さいので無視する。各相の線路抵抗RL、中性線の線路抵抗Rnは、バランストランス1からの電流(バランサ電流)IBによって打ち消すことになり、節電量P’は次式によって表される。
 P’=3RL×(IB2+Rn×(3IB2 ・・・式(1)
 また、各相の零相電流を打ち消すバランサ電流IBは、
Figure JPOXMLDOC01-appb-I000001
となる。ここで、
 ZT :変圧器インピーダンス
 ZL :低圧配電線インピーダンス
 Zn :中性線インピーダンス
 ZB :バランサインピーダンス
 ZL’:バランサ接続線インピーダンス
 Zn’:バランサ中性点接続線インピーダンス
 In :零相電流
である。なお、ZB、ZL’、Zn’が小さく無視できれば、
 IB=1/3×(In
となる。
Here, the secondary winding impedance, balancer impedance, and balancer circuit reactance components of the transformer (TR) of the substation shown at the left end of FIG. 2 are small and ignored. The line resistance R L of each phase and the line resistance R n of the neutral line are canceled by the current (balancer current) I B from the balance transformer 1, and the power saving amount P ′ is expressed by the following equation.
P ′ = 3R L × (I B ) 2 + R n × (3I B ) 2 ... Formula (1)
The balancer current I B that cancels the zero-phase current of each phase is
Figure JPOXMLDOC01-appb-I000001
It becomes. here,
Z T: transformer impedance Z L: low-voltage distribution line impedance Z n: neutral wire impedance Z B: Balancer impedance Z L ': the balancer connecting line impedance Z n': balancer neutral point connecting line impedance I n: zero-phase current It is. If Z B , Z L ′ and Z n ′ are small and can be ignored,
I B = 1/3 × (I n )
It becomes.
 したがって、設置するバランストランス1の容量は、バランストランス1を接続する線路の中性線電流(零相電流In)を測定し、この測定した中性線電流の最大値と線路の最大使用電圧とから次式により算出すれば良い。
 バランストランス容量=最大中性線電流×最大使用電圧 ・・・式(3)
Therefore, the capacity of the balance transformer 1 to be installed measures the neutral current of the line connecting the balance transformer 1 (zero-phase current I n), the maximum operating voltage of the maximum value and the line of the measured neutral current From the above, the following formula can be used.
Balance transformer capacity = maximum neutral wire current x maximum operating voltage (3)
 そこで、バランストランス1の設置に際しては、まず、バランストランス1を接続する線路の複数箇所に、電力量(WH)を測定可能な測定器としての積算電力量計(WHM)2を接続する。図2に示す例では、積算電力量計2は、バランストランス1の直前と、変電所から幹線への送出点と、幹線の中間点とを含む幹線上の数箇所に接続している。積算電力量計2としては、例えば、日置電機社製のクランプ電力計(型番:3169)を使用することができる。この積算電力量計2では、電圧、電流、有効・無効・皮相電力、有効・無効電力量、力率、周波数、高調波を測定することが可能であり、測定値はメモリカードまたは通信ケーブルを介してコンピュータ(図示せず。)へ転送可能である。 Therefore, when installing the balance transformer 1, first, an integrated watt-hour meter (WHM) 2 as a measuring instrument capable of measuring the electric energy (WH) is connected to a plurality of locations on the line to which the balance transformer 1 is connected. In the example shown in FIG. 2, the integrated watt-hour meter 2 is connected to several points on the main line including the point immediately before the balance transformer 1, the transmission point from the substation to the main line, and the intermediate point of the main line. As the integrated watt-hour meter 2, for example, a clamp wattmeter (model number: 3169) manufactured by Hioki Electric Co., Ltd. can be used. This integrated watt-hour meter 2 can measure voltage, current, active / reactive / apparent power, active / reactive power, power factor, frequency, and harmonics. Via a computer (not shown).
 こうして中性線電流の測定により容量が決定されたバランストランス1は、三相4線式配電システムの線路の終端に接続するものである。 Thus, the balance transformer 1 whose capacity is determined by measuring the neutral line current is connected to the end of the line of the three-phase four-wire distribution system.
 そして、バランストランス1のスイッチを所定の時間間隔で断続的に開閉させて、バランストランス1を接続した線路の電力量、各相電流、各相電圧をそれぞれ測定して図4に示すような比較日負荷曲線を得る。なお、測定は最低1週間程度行う。図4に示すように、比較日負荷曲線は、バランストランス1のスイッチを開いた状態、すなわちバランストランス1無しの状態での電力計の読みを連続線とするとともに、バランストランス1のスイッチを閉じた状態、すなわちバランストランス1有りの状態での積算計の読みを連続線としたものである。 Then, the switch of the balance transformer 1 is intermittently opened and closed at predetermined time intervals, and the power amount, each phase current, and each phase voltage of the line to which the balance transformer 1 is connected are measured and compared as shown in FIG. Obtain a daily load curve. The measurement is performed for at least about one week. As shown in FIG. 4, the comparative day load curve shows that the wattmeter reading in the state where the switch of the balance transformer 1 is opened, that is, the state where the balance transformer 1 is not used is a continuous line, and the switch of the balance transformer 1 is closed In this state, the accumulator reading in the state with the balance transformer 1 is a continuous line.
 これら2つの日負荷曲線の差から見かけ上の節電量Bをコンピュータ上で算出する。図5はバランストランス1無しの状態と有りの状態とにおける消費電力と見かけ節電量との関係を示している。図5に示すように、バランストランス1が無い場合、電力計の読みは、需要家の使用電力[1]と線路損失[2]との合計を表す。一方、バランストランス1が有る場合、電力計の読みは需要家の使用電力(1)(電圧補償により使用電力がA増加する。)と線路損失(2)とバランサ損失(3)との合計を表す。 The apparent power saving amount B is calculated on the computer from the difference between these two daily load curves. FIG. 5 shows the relationship between the power consumption and the apparent power saving amount when the balance transformer 1 is not present and when it is present. As shown in FIG. 5, when the balance transformer 1 is not provided, the reading of the power meter represents the sum of the consumed power [1] of the consumer and the line loss [2]. On the other hand, when the balance transformer 1 is provided, the reading of the wattmeter is the sum of the power used by the customer (1) (the power used increases by voltage compensation), the line loss (2), and the balancer loss (3). To express.
 そして、対象地域の配電ネットワーク数を元にこの節電量から対象地域全体の節電量を推定し、変電所の消費電力量(kWH)と節電量(kWH)とから変電所の消費電力量あたりの節電量(kWH/kWH)を算出する。また、変電所の日々の合計電力量から年間の節電量を算出し、節電量からバランストランス1の接続箇所を決定する。 Based on the number of power distribution networks in the target area, the power saving amount of the entire target area is estimated from this power saving amount, and the power consumption per substation is calculated from the power consumption (kWH) and power saving amount (kWH) of the substation. The power saving amount (kWH / kWH) is calculated. Also, the annual power saving amount is calculated from the daily total power amount of the substation, and the connection location of the balance transformer 1 is determined from the power saving amount.
 上記バランストランス1を用いて節電量の計測を行った。図6は計測ポイントの位置関係を示す図である。図6に示すように、計測は、配電線端末位置、すなわち最終電柱位置(計測ポイントA)と、最終電柱から8m配線を延長して接続したバランストランス1の位置(計測ポイントB)とに計測器を接続して行った。 The power saving amount was measured using the balance transformer 1. FIG. 6 is a diagram showing the positional relationship of measurement points. As shown in FIG. 6, the measurement is performed at the distribution line terminal position, that is, the position of the final power pole (measurement point A) and the position of the balance transformer 1 (measurement point B) connected by extending 8 m wiring from the final power pole. Connected the vessel.
 図7は図6の計測ポイントAにおけるバランストランス1のスイッチ開閉時のR相、S相、T相およびN相の各相の電流の平均値のグラフを示す図、図8は電圧の平均値のグラフを示す図、図9は図6の計測ポイントBにおけるバランストランス1のスイッチ開閉時のR相、S相、T相およびN相の各相の電流の平均値のグラフを示す図、図10は電圧の平均値のグラフを示す図である。 FIG. 7 is a graph showing an average value of currents in the R phase, S phase, T phase, and N phase when the balance transformer 1 is opened and closed at the measurement point A in FIG. 6, and FIG. 8 is an average voltage value. FIG. 9 is a diagram showing a graph of average values of currents in the R phase, S phase, T phase and N phase when the switch of the balance transformer 1 is opened and closed at the measurement point B in FIG. 10 is a graph showing an average value of voltage.
 図9から分かるように、バランストランス1のスイッチを閉じたとき(CB ON)、N相電流はR相、S相およびT相にそれぞれ案分されて返流される。その結果、図8に示すようにスイッチを開いたとき(CB OFF)に190V~270Vと大きくアンバランスしているR相、S相およびT相の各相の電圧は、互いに近づいて230V付近で安定し、不平衡状態が改善されることが分かる。 As can be seen from FIG. 9, when the switch of the balance transformer 1 is closed (CB ON), the N-phase current is divided and returned to the R-phase, S-phase, and T-phase. As a result, as shown in FIG. 8, when the switch is opened (CB OFF), the voltages of the R phase, S phase, and T phase, which are greatly unbalanced from 190V to 270V, are close to each other and around 230V. It can be seen that it is stable and the unbalanced state is improved.
 次に、バランストランス1の最適取り付け位置と適正容量について検証した。
 理論計算模擬回路による実験の結果、バランストランス1の取り付け位置は、配電システムの幹線サイズが同一のとき、平等分布負荷回路の場合は終端取り付けが最適であることが分かった。末端集中負荷回路の場合も終端取り付けが最適であった。バランストランス1の最適取り付け位置について、図11に示す回路によってシミュレーション試験を実施し、計測したデータを元に分析した結果を図12に示す。図11中、Bはバランストランス1である。図12から分かるように、終端にバランストランス1を設置すると節電量が最大となる。
Next, the optimal mounting position and appropriate capacity of the balance transformer 1 were verified.
As a result of an experiment using a theoretical calculation simulation circuit, it was found that the balance transformer 1 is installed at the optimum position when the distribution line system has the same trunk line size and when the distribution system is an evenly distributed load circuit. In the case of a concentrated load circuit at the end, the end installation was optimal. FIG. 12 shows the result of analyzing a simulation test on the optimum mounting position of the balance transformer 1 using the circuit shown in FIG. 11 and analyzing the measured data. In FIG. 11, B is a balance transformer 1. As can be seen from FIG. 12, the power saving amount is maximized when the balance transformer 1 is installed at the end.
 本発明の三相4線式配電システムにおけるバランサの配設方法は、三相4線式配電システムにおいて省電力および省エネルギを図る方法として有用である。
 本発明の三相4線式配電システムは、また省電力および省エネルギに有用である。
 本願は2008年1月17日出願の特願2008-007888号に基づく優先権を主張するものであり、その明細書、特許請求の範囲、図面および要約書の全ての開示が参照によりそっくりそのまま本明細書に組み込まれる。
 本発明は特定の実施の形態に関して説明してきたが、本発明の主題はそれらの特定の実施の形態に限定されないことは当然である。逆に、本発明の主題は、本願の特許請求の範囲の主旨及び範囲内の全ての代替物、変形物、均等物が含まれることを意図している。
The method of arranging the balancer in the three-phase four-wire distribution system of the present invention is useful as a method for saving power and energy in the three-phase four-wire distribution system.
The three-phase four-wire power distribution system of the present invention is also useful for power saving and energy saving.
The present application claims priority based on Japanese Patent Application No. 2008-007888 filed on Jan. 17, 2008, and the entire disclosure of the specification, claims, drawings and abstract is incorporated by reference in its entirety. Incorporated in the description.
Although the invention has been described with reference to particular embodiments, it is to be understood that the subject matter of the invention is not limited to those particular embodiments. On the contrary, the subject matter of the present invention is intended to include all alternatives, modifications and equivalents within the spirit and scope of the appended claims.
符号の説明Explanation of symbols
 1 バランストランス
 2 積算電力量計(WHM)
1 Balance transformer 2 Integrated watt-hour meter (WHM)

Claims (18)

  1.  三相の電力線および中性線からなる三相4線式配電システムの線路に、前記中性線に流れる不平衡電流を前記三相の電力線に還元するバランサを配設するバランサの配設方法であって、
     前記バランサを接続する線路の中性線電流を測定すること、
     前記測定した中性線電流の最大値と前記線路の最大使用電圧とから前記線路の終端に接続するバランサの容量を算出すること、
     前記算出した容量のバランサを前記線路の終端に接続すること
    を含む三相4線式配電システムにおけるバランサの配設方法。
    A balancer disposing method comprising disposing a balancer for reducing an unbalanced current flowing in the neutral line to the three-phase power line on a line of a three-phase four-wire distribution system including a three-phase power line and a neutral line. There,
    Measuring the neutral current of the line connecting the balancers;
    Calculating the capacity of the balancer connected to the end of the line from the measured maximum value of the neutral line current and the maximum working voltage of the line;
    A balancer disposition method in a three-phase four-wire power distribution system including connecting the balancer having the calculated capacity to the end of the line.
  2.  前記線路から分岐する線路を含めて複数箇所の電力を測定すること、
     前記測定した電力が最大となる線路を、バランサを接続する線路とすること
    を含む請求項1記載の三相4線式配電システムにおけるバランサの配設方法。
    Measuring power at multiple locations including a line that branches off from the line;
    The balancer disposing method in the three-phase four-wire power distribution system according to claim 1, wherein the line having the maximum measured power is a line connecting a balancer.
  3.  所定の時間間隔で断続的に開閉するスイッチを介して前記バランサを接続すること、
     前記スイッチを所定の時間間隔で断続的に開閉させて、前記バランサを接続した線路の電力量を測定して比較日負荷曲線を得ること、
     前記比較日負荷曲線から節電量を算出すること
    を含む請求項1記載の三相4線式配電システムにおけるバランサの配設方法。
    Connecting the balancer via a switch that opens and closes intermittently at predetermined time intervals;
    Intermittently opening and closing the switch at a predetermined time interval, and measuring a power amount of a line connected to the balancer to obtain a comparative day load curve;
    The balancer disposition method in the three-phase four-wire distribution system according to claim 1, comprising calculating a power saving amount from the comparative daily load curve.
  4.  所定の時間間隔で断続的に開閉するスイッチを介して前記バランサを接続すること、
     前記スイッチを所定の時間間隔で断続的に開閉させて、前記バランサを接続した線路の電力量を測定して比較日負荷曲線を得ること、
     前記比較日負荷曲線から節電量を算出すること
    を含む請求項2記載の三相4線式配電システムにおけるバランサの配設方法。
    Connecting the balancer via a switch that opens and closes intermittently at predetermined time intervals;
    Intermittently opening and closing the switch at a predetermined time interval, and measuring a power amount of a line connected to the balancer to obtain a comparative day load curve;
    The balancer disposition method in the three-phase four-wire power distribution system according to claim 2, comprising calculating a power saving amount from the comparative daily load curve.
  5.  前記スイッチの開閉の時間間隔は、5~30分である請求項3記載の三相4線式配電システムにおけるバランサの配設方法。 The method of arranging a balancer in a three-phase four-wire power distribution system according to claim 3, wherein the time interval for opening and closing the switch is 5 to 30 minutes.
  6.  前記スイッチの開閉の時間間隔は、5~30分である請求項4記載の三相4線式配電システムにおけるバランサの配設方法。 The method of arranging a balancer in a three-phase four-wire distribution system according to claim 4, wherein the time interval for opening and closing the switch is 5 to 30 minutes.
  7.  三相の電力線と、
     中性線と、
     前記中性線に流れる不平衡電流を前記三相の電力線に還元するバランサと
    からなり、
     前記バランサは、該バランサが接続されている線路を通して流れる中性線電流の最大値と前記電力線に印加される最大電圧とから決まる容量を持ち、
     前記バランサは前記線路の終端に接続されていることを含む
    三相4線式配電システム。
    Three-phase power lines,
    Neutral line,
    A balancer that reduces the unbalanced current flowing through the neutral line to the three-phase power line;
    The balancer has a capacity determined by the maximum value of the neutral current flowing through the line to which the balancer is connected and the maximum voltage applied to the power line,
    The three-phase four-wire power distribution system including the balancer being connected to the end of the line.
  8.  前記バランサは、前記線路から分岐する線路を含めて複数箇所で測定された電力のうち、最大の電力が印加された線路に接続されている請求項7記載の三相4線式配電システム。 The three-phase four-wire distribution system according to claim 7, wherein the balancer is connected to a line to which maximum power is applied among power measured at a plurality of locations including a line branched from the line.
  9.  比較日負荷曲線を得るために、前記バランサが接続されている前記線路に印加された電力を測定するための予め定められた時間間隔で断続的に開閉するスイッチをさらに含み、
     前記バランサは前記スイッチを介して前記終端に接続され、
     節電電力が、前記比較日負荷曲線から算出されることを含む
    請求項7記載の三相4線式配電システム。
    In order to obtain a comparative day load curve, further comprising a switch that opens and closes intermittently at a predetermined time interval for measuring the power applied to the line to which the balancer is connected,
    The balancer is connected to the termination via the switch;
    The three-phase four-wire power distribution system according to claim 7, wherein power saving power is calculated from the comparative daily load curve.
  10.  比較日負荷曲線を得るために、前記バランサが接続されている前記線路に印加された電力を測定するための予め定められた時間間隔で断続的に開閉するスイッチをさらに含み、
     前記バランサは前記スイッチを介して前記終端に接続され、
     節電電力が、前記比較日負荷曲線から算出されることを含む
    請求項8記載の三相4線式配電システム。
    In order to obtain a comparative day load curve, further comprising a switch that opens and closes intermittently at a predetermined time interval for measuring the power applied to the line to which the balancer is connected,
    The balancer is connected to the termination via the switch;
    The three-phase four-wire power distribution system according to claim 8, wherein power saving power is calculated from the comparative daily load curve.
  11.  前記スイッチの開閉の時間間隔は、5~30分である請求項9記載の三相4線式配電システム。 The three-phase four-wire power distribution system according to claim 9, wherein the time interval for opening and closing the switch is 5 to 30 minutes.
  12.  前記スイッチの開閉の時間間隔は、5~30分である請求項10記載の三相4線式配電システム。 The three-phase four-wire distribution system according to claim 10, wherein the time interval for opening and closing the switch is 5 to 30 minutes.
  13.  前記バランサはジグザグスター結線変圧器からなる請求項7記載の三相4線式配電システム。 The three-phase four-wire distribution system according to claim 7, wherein the balancer comprises a zigzag star connection transformer.
  14.  前記バランサはジグザグスター結線変圧器からなる請求項8記載の三相4線式配電システム。 The three-phase four-wire power distribution system according to claim 8, wherein the balancer comprises a zigzag star connection transformer.
  15.  前記バランサはジグザグスター結線変圧器からなる請求項9記載の三相4線式配電システム。 The three-phase four-wire power distribution system according to claim 9, wherein the balancer comprises a zigzag star connection transformer.
  16.  前記バランサはジグザグスター結線変圧器からなる請求項10記載の三相4線式配電システム。 The three-phase four-wire distribution system according to claim 10, wherein the balancer comprises a zigzag star connection transformer.
  17.  前記バランサはジグザグスター結線変圧器からなる請求項11記載の三相4線式配電システム。 The three-phase four-wire distribution system according to claim 11, wherein the balancer comprises a zigzag star connection transformer.
  18.  前記バランサはジグザグスター結線変圧器からなる請求項12記載の三相4線式配電システム。 The three-phase four-wire power distribution system according to claim 12, wherein the balancer comprises a zigzag star connection transformer.
PCT/JP2009/000158 2008-01-17 2009-01-16 Three-phase four-cable power distribution system and method for installing balancer in the system WO2009090889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009549993A JPWO2009090889A1 (en) 2008-01-17 2009-01-16 Three-phase four-wire power distribution system and method of arranging balancer in the system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008007888 2008-01-17
JP2008-007888 2008-01-17

Publications (1)

Publication Number Publication Date
WO2009090889A1 true WO2009090889A1 (en) 2009-07-23

Family

ID=40885280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000158 WO2009090889A1 (en) 2008-01-17 2009-01-16 Three-phase four-cable power distribution system and method for installing balancer in the system

Country Status (3)

Country Link
JP (1) JPWO2009090889A1 (en)
CN (1) CN101557109A (en)
WO (1) WO2009090889A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683299A (en) * 2013-12-31 2014-03-26 温州市图盛科技有限公司 Branch load monitoring device for distribution transformer
CN105990841A (en) * 2015-04-17 2016-10-05 长沙理工大学 Resonant injection type power distribution line three-phase unbalance overvoltage suppression device
US10587119B2 (en) * 2018-06-27 2020-03-10 Schneider Electric USA, Inc. Active power filter with adjustable neutral current limit
CN113641205A (en) * 2021-08-18 2021-11-12 国网北京市电力公司 Method and device for processing three-phase-to-ground voltage

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010045349A2 (en) * 2008-10-14 2010-04-22 Black Hawk Energy Products Llc Electrical energy saving system
JP5033898B2 (en) * 2010-06-04 2012-09-26 株式会社ローレンツ Power receiving equipment
US20130218497A1 (en) * 2012-02-22 2013-08-22 Schneider Electric USA, Inc. Systems, methods and devices for detecting branch circuit load imbalance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047691U (en) * 1997-07-08 1998-04-24 株式会社アイン Distribution transformer in three-phase four-wire low-voltage distribution circuit
JP2794405B2 (en) * 1995-12-28 1998-09-03 義明 隠岐 Shunt type transformer unit and single-phase three-wire power supply system
JPH1132437A (en) * 1997-07-08 1999-02-02 Ain:Kk Three-phase four-wire low voltage distribution system
JP2007048859A (en) * 2005-08-09 2007-02-22 Teiji Toribami Three-phase four wire system power transformer and three-phase four wire system low voltage power distribution system using same
JP2007235014A (en) * 2006-03-03 2007-09-13 Osami Nasuno Split balanced winding type transformer and single-phase three-wired power distribution system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536813B2 (en) * 1993-10-22 1996-09-25 光也 松村 Three-phase autotransformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794405B2 (en) * 1995-12-28 1998-09-03 義明 隠岐 Shunt type transformer unit and single-phase three-wire power supply system
JP3047691U (en) * 1997-07-08 1998-04-24 株式会社アイン Distribution transformer in three-phase four-wire low-voltage distribution circuit
JPH1132437A (en) * 1997-07-08 1999-02-02 Ain:Kk Three-phase four-wire low voltage distribution system
JP2007048859A (en) * 2005-08-09 2007-02-22 Teiji Toribami Three-phase four wire system power transformer and three-phase four wire system low voltage power distribution system using same
JP2007235014A (en) * 2006-03-03 2007-09-13 Osami Nasuno Split balanced winding type transformer and single-phase three-wired power distribution system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683299A (en) * 2013-12-31 2014-03-26 温州市图盛科技有限公司 Branch load monitoring device for distribution transformer
CN105990841A (en) * 2015-04-17 2016-10-05 长沙理工大学 Resonant injection type power distribution line three-phase unbalance overvoltage suppression device
US10587119B2 (en) * 2018-06-27 2020-03-10 Schneider Electric USA, Inc. Active power filter with adjustable neutral current limit
CN113641205A (en) * 2021-08-18 2021-11-12 国网北京市电力公司 Method and device for processing three-phase-to-ground voltage

Also Published As

Publication number Publication date
JPWO2009090889A1 (en) 2011-05-26
CN101557109A (en) 2009-10-14

Similar Documents

Publication Publication Date Title
WO2009090889A1 (en) Three-phase four-cable power distribution system and method for installing balancer in the system
Emanuel Apparent power definitions for three-phase systems
Arghavani et al. Unbalanced Current Based Tarrif
US8235747B2 (en) Device and method of installing capacitors on a utility company's power meter
Kim et al. Comparison of voltage unbalance factor by line and phase voltage
Marx et al. An introduction to symmetrical components, system modeling and fault calculation
KR100364513B1 (en) Apparatus for reducing the harmonic component in the power line
CA2701669C (en) Various methods and apparatuses for an integrated zig-zag transformer
KR100909284B1 (en) The wattmeter upon phases
KR100990329B1 (en) Regulation apparatus of three phase distribution line for removing the harmonics
JP4711878B2 (en) Bidirectional metering instrument transformer and bidirectional power metering system
CN210323153U (en) Take device of three-phase four-wire electric energy measurement
JP5033898B2 (en) Power receiving equipment
Abdullah et al. The study of triplen harmonics currents produced by salient pole synchronous generator
JP5026029B2 (en) Current balancer and low voltage distribution system
Adesina et al. On-load measurement method for the reliability of distribution transformers
JPH1132437A (en) Three-phase four-wire low voltage distribution system
Chen et al. Case studies of the impact of voltage imbalance on power distribution systems and equipment
Dugan Induction machine modeling for distribution system analysis-test case description
JP6065643B2 (en) AC loss measurement method for superconducting transformers
JP2019082478A (en) Measurement device
CN217385758U (en) Motor thermal test device and system
US20120326679A1 (en) Device for optimizing energy usage in multiphase ac power source
JP3047691U (en) Distribution transformer in three-phase four-wire low-voltage distribution circuit
JP3068992U (en) Transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009549993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/10/2010)

122 Ep: pct application non-entry in european phase

Ref document number: 09701568

Country of ref document: EP

Kind code of ref document: A1