JP5033898B2 - Power receiving equipment - Google Patents

Power receiving equipment Download PDF

Info

Publication number
JP5033898B2
JP5033898B2 JP2010128825A JP2010128825A JP5033898B2 JP 5033898 B2 JP5033898 B2 JP 5033898B2 JP 2010128825 A JP2010128825 A JP 2010128825A JP 2010128825 A JP2010128825 A JP 2010128825A JP 5033898 B2 JP5033898 B2 JP 5033898B2
Authority
JP
Japan
Prior art keywords
winding
phase
balancer
power receiving
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010128825A
Other languages
Japanese (ja)
Other versions
JP2011254686A (en
Inventor
修康 佐藤
邦夫 島津
Original Assignee
株式会社ローレンツ
修康 佐藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ローレンツ, 修康 佐藤 filed Critical 株式会社ローレンツ
Priority to JP2010128825A priority Critical patent/JP5033898B2/en
Priority to CN2010102661725A priority patent/CN102270533A/en
Priority to KR1020100083832A priority patent/KR101137316B1/en
Priority to SG2010063311A priority patent/SG176351A1/en
Publication of JP2011254686A publication Critical patent/JP2011254686A/en
Application granted granted Critical
Publication of JP5033898B2 publication Critical patent/JP5033898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

本発明は三相受電設備に係り、特に不平衡負荷であっても平衡した電圧を安定して負荷に供給することのできる三相受電設備に関する。   The present invention relates to a three-phase power receiving facility, and more particularly to a three-phase power receiving facility that can stably supply a balanced voltage to a load even in an unbalanced load.

工場、大規模店舗、オフィスビル等、大電力を消費する需要家に対しては、6kV以上の高電圧の三相交流電圧が配電されている。一方、一般家庭、小規模店舗、小規模オフィスビル等の小電力を消費する需要家に対しては、単相三線式の低圧配電線路で配電されている。   High-voltage three-phase AC voltages of 6 kV or more are distributed to consumers who consume large amounts of power such as factories, large-scale stores, and office buildings. On the other hand, for consumers who consume low power, such as ordinary households, small stores, and small office buildings, power is distributed through single-phase three-wire low-voltage distribution lines.

図4は、単相3線式配電方式における受電設備を説明する図である。受電設備は、高圧の三相交流電圧を受電し、受電した三相交流電圧を前記受電設備内に配設された受電変圧器により、単相200Vおよび単相100Vに変換して、単相200V負荷L3あるいは単相100V負荷L1,L2に供給している。   FIG. 4 is a diagram for explaining power receiving equipment in the single-phase three-wire power distribution system. The power receiving facility receives a high-voltage three-phase AC voltage, and converts the received three-phase AC voltage into a single-phase 200V and a single-phase 100V by a power receiving transformer disposed in the power-receiving facility. Supplying to load L3 or single phase 100V load L1, L2.

単相三線式配電系統においては、接続されている負荷は全て単相であり、しかも、これら多数の単相負荷は単相三線式配電線の線間にランダムに接続されている。 更に、これらの単相負荷は需要家の都合で任意の時点でオン・オフされる。このため、前記単相三線式の線路に流れる電流は平衡するとは限らない。極端な場合、一方の線路と中性線に接続された負荷のみが稼働し、他方の線路と中性線に接続された負荷は休止状態となることもある。   In the single-phase three-wire distribution system, all connected loads are single-phase, and many of these single-phase loads are randomly connected between the lines of the single-phase three-wire distribution line. Furthermore, these single-phase loads are turned on and off at any time for the convenience of the customer. For this reason, the current flowing through the single-phase three-wire line is not always balanced. In an extreme case, only the load connected to one line and the neutral line operates, and the load connected to the other line and the neutral line may be in a dormant state.

このため、現在、単相三線式配電系統の末端にバランサと呼ばれる変圧器を設置して、線路電流の平衡をとる方式が採用されている。   For this reason, currently, a system is adopted in which a transformer called a balancer is installed at the end of the single-phase three-wire distribution system to balance the line current.

バランサBLは、図4に示すように巻数比が1対1の変圧器であって、通常単相3線式の線路の配線の末端に設けられる。バランサを設けることにより、一方の線路(外線A)に流れる電流と他方の線路(外線B)に流れる電流が異なる場合(すなわち負荷L1とL2の容量が異なる場合)において、バランサは外線A及びBに補償電流ioを供給して、外線A,Bに流れる電流の不平衡をを解消する。   The balancer BL is a transformer having a turns ratio of 1: 1 as shown in FIG. 4 and is usually provided at the end of the wiring of a single-phase three-wire line. By providing the balancer, when the current flowing through one line (outer line A) and the current flowing through the other line (outer line B) are different (that is, when the capacities of the loads L1 and L2 are different), the balancer is connected to the outer lines A and B. Is supplied with the compensation current io to eliminate the unbalance of the currents flowing in the external lines A and B.

例えば、外線Aに流れる電流が外線Bに流れる電流より大きい場合には、中性線Cからバランサに補償電流2ioが流入し、流入した電流の一部i0は巻線n1を通して負荷L1に供給される。また、前記流入した電流の残部i0は巻線n2を通して電源変圧器Tに流入する。   For example, when the current flowing in the outer line A is larger than the current flowing in the outer line B, the compensation current 2io flows from the neutral line C to the balancer, and a part i0 of the flowing current is supplied to the load L1 through the winding n1. The Further, the remainder i0 of the inflowing current flows into the power transformer T through the winding n2.

このように、バランサを設けると、外線A,Bはバランサを通して誘導的に結合されるため、外線Aと中性線C、あるいは外線Bと中性線Cとの間に接続した負荷に不均衡があっても、また中性線Cが電源側で遮断されても、外線Aと中性線Cとの間の電圧と、外線Bと中性線Cの間の電圧は常にバランスするように作用する。   As described above, when the balancer is provided, the external lines A and B are inductively coupled through the balancer, and therefore, the load connected between the external line A and the neutral line C or between the external line B and the neutral line C is imbalanced. Even if there is a fault or the neutral line C is cut off on the power source side, the voltage between the outer line A and the neutral line C and the voltage between the outer line B and the neutral line C are always balanced. Works.

このようにバランサは、単相3線式の配電路の両側の電圧(外線Aと中性線および外線Bと中性線との間の電圧)および外線の電源側にに流れる電流がバランスするように、補償電流を流す。   In this way, the balancer balances the voltage on both sides of the single-phase three-wire distribution line (voltage between the outer line A and the neutral line and the voltage between the outer line B and the neutral line) and the current flowing to the power source side of the outer line. As shown in FIG.

図5は、三相交流変圧器と単相単巻き変圧器(バランサ)を備えた従来の受電設備を説明する図である。   FIG. 5 is a diagram for explaining a conventional power receiving facility including a three-phase AC transformer and a single-phase single-winding transformer (balancer).

図において、51,52,53はそれぞれ三相変圧器の1次巻線であり、デルタ結線されている。51’、52’,53’は、それぞれ前記1次巻線と電磁結合する2次巻線でありスター結線されている。   In the figure, 51, 52 and 53 are primary windings of a three-phase transformer, respectively, and are delta-connected. Reference numerals 51 ′, 52 ′, and 53 ′ are secondary windings that are electromagnetically coupled to the primary winding and are star-connected.

R,S,T,はそれぞれa相、b相、c相の配電線であり、この配電線を介して三相負荷Lに三相電力を供給する。   R, S, and T are a-phase, b-phase, and c-phase distribution lines, respectively, and supply three-phase power to the three-phase load L through the distribution lines.

BLは前記配電線R,S,Tの線間に設置したバランサである。バランサBLは、鉄心54に巻回した第1の巻線55および第2の巻線56を備え、前記第1の巻線55と第2の巻線56とはそれらから発生する磁束の方向が一致するように直列接続し、該直列接続点からは中点タップnが導出される。   BL is a balancer installed between the distribution lines R, S, T. The balancer BL includes a first winding 55 and a second winding 56 wound around the iron core 54, and the first winding 55 and the second winding 56 have directions of magnetic flux generated from them. A series connection is made so as to match, and a midpoint tap n is derived from the series connection point.

このようにして形成されたバランサBLは前記a相の配電線Rとb相の配電線S間に接続される。   The balancer BL thus formed is connected between the a-phase distribution line R and the b-phase distribution line S.

58,59,60は単相負荷であり、単相負荷58,59,60は配電線RあるいはSと中性線C間、あるいは配電線R,S間に接続される。   58, 59, 60 are single-phase loads, and the single-phase loads 58, 59, 60 are connected between the distribution line R or S and the neutral line C or between the distribution lines R, S.

特開2005−197623号公報JP 2005-197623 A

前記従来技術によれば、高圧受電設備を構成する三相変圧器の出力端子a−b間、出力端子b−c間、出力端子c−a間にそれぞれバランサBLを接続し、バランサBLの両端子と中性点間に単相負荷を接続するとともに、前記三相変圧器の各出力端子間に三相負荷を接続することができる。また、前記三相変圧器の中性点は接地することができる。   According to the prior art, the balancer BL is connected between the output terminals a-b, the output terminals bc, and the output terminals c-a of the three-phase transformer constituting the high-voltage power receiving facility, and both ends of the balancer BL are connected. A single-phase load can be connected between the child and the neutral point, and a three-phase load can be connected between the output terminals of the three-phase transformer. The neutral point of the three-phase transformer can be grounded.

三相変圧器の中性点を接地すると、前記三相変圧器を小型化することが可能であり、軽量で省スペース型電源変圧器とすることが可能である。さらに対地電圧の上昇を抑制することができる。   When the neutral point of the three-phase transformer is grounded, the three-phase transformer can be reduced in size, and a light-weight and space-saving power transformer can be obtained. Furthermore, an increase in ground voltage can be suppressed.

しかし、前記三相変圧器の1次巻線51,52,53はデルタ結線されていても、この1次巻線と電磁結合する2次巻線51’,52’,53’はスター結線されている。このため、三相変圧器の2次巻線には第3高調波が発生し、発生した第3高調波の影響は前記配電線R,S,Tに現れる。   However, even if the primary windings 51, 52, 53 of the three-phase transformer are delta-connected, the secondary windings 51 ', 52', 53 'that are electromagnetically coupled to the primary winding are star-connected. ing. For this reason, the third harmonic is generated in the secondary winding of the three-phase transformer, and the influence of the generated third harmonic appears in the distribution lines R, S, and T.

前記2次巻線の中性点を接地しない場合には中性点電位が変動する。中性点を接地する場合には、対地を帰路として第3高調波電流などがが前記配電線を流れ、電磁誘導障害が発生する。このため、これの対策が必要となる。   When the neutral point of the secondary winding is not grounded, the neutral point potential varies. When the neutral point is grounded, a third harmonic current or the like flows through the distribution line as a return path to the ground, and an electromagnetic induction failure occurs. For this reason, it is necessary to take measures against this.

本発明はこれらの問題点に鑑みてなされたもので、第3高調波等のノイズの発生を抑制することが可能であり、軽量で省スペース型の電源変圧器を使用することのできる三相受電設備を提供するものである。   The present invention has been made in view of these problems, and is capable of suppressing the generation of noise such as third harmonics, and is capable of using a light-weight and space-saving power transformer. Provide power receiving equipment.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

少なくとも2次巻線をデルタ結線した三相変圧器と、鉄心に巻回した第1の巻線および第2の巻線を有し、前記第1の巻線と第2の巻線とをそれらから発生する磁束の方向が一致するように直列接続してなる複数のバランサを備え、前記バランサを前記三相変圧器の2次側の各相の出力端子間にそれぞれ接続し、前記それぞれのバランサの第1の巻線と第2の巻線の直列接続点をインピーダンスを介して接地すると共に前記三相変圧器の2次側の各相に接続される三相負荷、および前記バランサの第1の巻線および第2の巻線の少なくとも何れかの巻線に並列接続される単相負荷に電力を供給する。   A three-phase transformer in which at least a secondary winding is delta-connected, a first winding and a second winding wound around an iron core, wherein the first winding and the second winding are A plurality of balancers connected in series so that the directions of the magnetic fluxes generated from each other coincide with each other, and the balancers are respectively connected between the output terminals of the respective phases on the secondary side of the three-phase transformer, A three-phase load connected to each phase on the secondary side of the three-phase transformer, and a first connection point of the balancer. Power is supplied to a single-phase load connected in parallel to at least one of the second winding and the second winding.

本発明は、以上の構成を備えるため、第3高調波などのノイズの発生を抑制することが可能であり、軽量で省スペース型の電源変圧器を使用して三相受電設備を構成することができる。   Since the present invention has the above-described configuration, it is possible to suppress generation of noise such as third harmonics, and to configure a three-phase power receiving facility using a light-weight and space-saving power transformer. Can do.

本実施形態にかかる受電設備を含む給電系統を説明する図である。It is a figure explaining the electric power feeding system containing the power receiving installation concerning this embodiment. 本実施形態にかかる受電設備を説明する図であるIt is a figure explaining the power receiving equipment concerning this embodiment. 単相3線式配電方式を説明する図である。It is a figure explaining a single phase 3 wire type power distribution system. バランサを示す図である。It is a figure which shows a balancer. 従来の受電設備を説明する図である。It is a figure explaining the conventional power receiving equipment.

以下、本発明の実施形態を添付図面を参照しながら説明する。図1は、本実施形態にかかる受電設備を含む給電系統を説明する図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram illustrating a power supply system including a power receiving facility according to the present embodiment.

図1において、1は三相交流発電機、2は送電用変圧器、3は受電用変圧器を含む受電設備、4は三相交流負荷である。   In FIG. 1, 1 is a three-phase AC generator, 2 is a power transmission transformer, 3 is a power receiving facility including a power receiving transformer, and 4 is a three-phase AC load.

三相交流発電機で発電された交流電力は、送電用変圧器によって昇圧した後、送配電網を介して受電用変圧器を含む受電設備に給電される。受電用変圧器を含む受電設備は受電した三相交流電圧を降圧した後、三相配電線を介して三相負荷14あるいは単相負荷に給電する。   The AC power generated by the three-phase AC generator is boosted by a power transmission transformer, and then supplied to power receiving equipment including the power receiving transformer via the power transmission and distribution network. The power receiving facility including the power receiving transformer steps down the received three-phase AC voltage and then supplies power to the three-phase load 14 or the single-phase load via the three-phase distribution line.

図2は、受電用変圧器を含む受電設備の詳細を説明する図である。   FIG. 2 is a diagram illustrating the details of the power receiving facility including the power receiving transformer.

これらの図において、11,12,13はそれぞれ三相変圧器(受電用変圧器)の1次巻線であり、スター結線されている。11’、12’,13’は、それぞれ前記1次巻線と電磁結合する2次巻線でありデルタ結線されている。   In these figures, 11, 12, and 13 are primary windings of a three-phase transformer (power receiving transformer) and are star-connected. Reference numerals 11 ′, 12 ′, and 13 ′ are secondary windings that are electromagnetically coupled to the primary winding, and are delta-connected.

R,S,T、はそれぞれa相、b相、c相の配電線であり、この配電線を介して三相負荷14に三相電力を供給する。   R, S, and T are a-phase, b-phase, and c-phase distribution lines, respectively, and supply three-phase power to the three-phase load 14 through the distribution lines.

BL1、BL2,BL3は、それぞれ前記配電線R,S,Tの線間に設置したバランサである。   BL1, BL2, and BL3 are balancers installed between the lines of the distribution lines R, S, and T, respectively.

バランサBL1、BL2,BL3は、それぞれ鉄心21に巻回した第1の巻線22および第2の巻線23を備え、前記第1の巻線22と第2の巻線23とはそれらから発生する磁束の方向が一致するように直列接続し、該直列接続点からは中点タップnが導出される。   The balancers BL1, BL2, and BL3 each include a first winding 22 and a second winding 23 wound around the iron core 21, and the first winding 22 and the second winding 23 are generated therefrom. Are connected in series so that the directions of the magnetic fluxes to coincide with each other, and a midpoint tap n is derived from the series connection point.

25,26は、受電用変圧器の2次巻線11’を電源とする単相3線式配電線路の外線A、及び外線Bであり、前記中点タップnに接続した中性線Cとの間には、それぞれ単相負荷(100V負荷)27、28、及び単相負荷(200V負荷)29が接続される。   25 and 26 are the external line A and the external line B of the single-phase three-wire distribution line using the secondary winding 11 ′ of the power receiving transformer as a power source, and the neutral line C connected to the midpoint tap n Are connected to single-phase loads (100V load) 27, 28 and single-phase loads (200V load) 29, respectively.

図1に示すように、受電設備を構成する受電用変圧器の1次巻線11,12,13はスター結線され、また、スター結線された前記1次巻線と電磁結合する2次巻線11’,12’,13’はデルタ結線されている。このため、受電用変圧器を構成する鉄心の磁気飽和等に基づいて、受電用変圧器を構成する三相変圧器の2次巻線にそれぞれ第3高調波が発生しても、この高調波はデルタ結線された2次巻線11’,12’、13’内を循環する。このため、第3高調波による誘導障害の問題は殆ど無視することができる。   As shown in FIG. 1, primary windings 11, 12, and 13 of a power receiving transformer constituting power receiving equipment are star-connected, and secondary windings electromagnetically coupled to the star-connected primary windings. 11 ', 12', and 13 'are delta-connected. For this reason, even if the third harmonic is generated in the secondary winding of the three-phase transformer constituting the power receiving transformer based on the magnetic saturation of the iron core constituting the power receiving transformer, this harmonic is generated. Circulates in the secondary windings 11 ', 12' and 13 'connected in delta connection. For this reason, the problem of inductive disturbance due to the third harmonic can be almost ignored.

図3は、バランサの他の例を説明する図である。図に示すように、ロ字型鉄心Fの一方の脚に巻回した第1の巻線n1および第2の巻線n2、並びにロ字型鉄心の他方の脚に巻回した第3の巻線n3および第4の巻線n4を備え、第3の巻線n3、第1の巻線n1、第2の巻線n2および第4の巻線n4をそれらから発生する磁束の方向が一致するように直列接続してなる。このようにして形成したバランサは前記三相変圧器のデルタ結線された2次巻線の各相の出力端子間にそれぞれ接続される。また、前記三相変圧器のデルタ結線された2次巻線の各出力端子、および前記バランサの第1の巻線と第2の巻線との接続端子を配電線の給電端とすることができる。   FIG. 3 is a diagram for explaining another example of the balancer. As shown in the figure, the first winding n1 and the second winding n2 wound around one leg of the square iron core F, and the third winding wound around the other leg of the square iron core. A line n3 and a fourth winding n4 are provided, and the third winding n3, the first winding n1, the second winding n2, and the fourth winding n4 have the same direction of the magnetic flux generated therefrom. As shown in FIG. The balancer formed in this way is connected between the output terminals of each phase of the secondary winding of the three-phase transformer connected in delta. Further, each output terminal of the secondary winding of the three-phase transformer, which is delta-connected, and a connection terminal between the first winding and the second winding of the balancer may be used as a feeding end of the distribution line. it can.

バランサBL1、BL2,BL3は、それぞれ巻数比が1対1の変圧器であって、それぞれ前記2次巻線11’,12’,13’に並列に接続する。   The balancers BL1, BL2, and BL3 are transformers having a turns ratio of 1: 1, and are connected in parallel to the secondary windings 11 ', 12', and 13 ', respectively.

各相を構成する2次巻線と並列にバランサを設けることにより、単相負荷22と23が不平衡の場合であっても、単相負荷22,23に中性点24から補償電流ioを供給することにより外線A,Bに流れる電流の不平衡を解消することができる。   By providing a balancer in parallel with the secondary winding constituting each phase, even when the single-phase loads 22 and 23 are unbalanced, the compensation current io is applied to the single-phase loads 22 and 23 from the neutral point 24. By supplying, the unbalance of the current flowing through the external lines A and B can be eliminated.

例えば、負荷27に流れる電流が負荷28に流れる電流より大きい場合には、中性点nからバランサに補償電流ioが流入し、巻線22,23を介して流出する。このように、バランサを設けると、負荷27,28は巻線22,23を通して誘導的に結合されるから、外線Aと中性線Cあるいは外線Bと中性線Cとの間に接続した負荷に不均衡があっても、また、中性線Cを電源電源側(変圧器2次巻線11’の中点)に接続しなくとも、外線Aと中性線Cとの間の電圧と、外線Bと中性線Cの間の電圧は常にバランスするように作用する。同様に、バランサBL2,BL3の中性線Cを2次巻線12’、13’の中点に接続しなくとも、外線Aと中性線Cとの間の電圧と、外線Bと中性線Cの間の電圧は常にバランスするように作用する。   For example, when the current flowing through the load 27 is larger than the current flowing through the load 28, the compensation current io flows into the balancer from the neutral point n and flows out through the windings 22 and 23. When the balancer is provided in this way, the loads 27 and 28 are inductively coupled through the windings 22 and 23. Therefore, the load connected between the external line A and the neutral line C or between the external line B and the neutral line C. The voltage between the external line A and the neutral line C can be obtained without connecting the neutral line C to the power supply side (the middle point of the transformer secondary winding 11 '). The voltage between the outer line B and the neutral line C always acts to balance. Similarly, even if the neutral line C of the balancers BL2 and BL3 is not connected to the midpoint of the secondary windings 12 ′ and 13 ′, the voltage between the external line A and the neutral line C, the external line B and the neutral line C The voltage between lines C always acts to balance.

このようにバランサを設けることにより、単相負荷27,28に印加される電圧を常にバランスさせることができる。   By providing the balancer in this way, the voltages applied to the single-phase loads 27 and 28 can always be balanced.

ここで、バランサBL1,BL3を介して流れる電流をia、バランサBL1,BL2を介して流れる電流をib、バランサBL2,BL3を介して流れる電流をic、バランサの各巻線の自己インダクタンスをL、相互インダクタンスをMとすると、
2jωL*ia+zi(2ia−ib−ic)=jωM(ib+ic)・・・(1)
2jωL*ib+zi(2ib−ic−ia)=jωM(ic+ia)・・・(2)
2jωL*ic+zi(2ic−ia−ib)=jωM(ia+ib)・・・(3)
が成立する。ここでL≒Mであるから、
式(1)、(2)、(3)より、
(2ia−ib−ic)(jωL+zi)=0 ・・・(4)
(2ib−ic−ia)(jωL+zi)=0 ・・・(5)
(2ic−ia−ib)(jωL+zi)=0 ・・・(6)
が得られる。また、式(4)、(5)、(6)より、
ia=ib=ic・・・(7)が得られる。
Here, the current flowing through the balancers BL1 and BL3 is ia, the current flowing through the balancers BL1 and BL2 is ib, the current flowing through the balancers BL2 and BL3 is ic, and the self-inductance of each winding of the balancer is L, If the inductance is M,
2jωL * ia + zi (2ia−ib−ic) = jωM (ib + ic) (1)
2jωL * ib + zi (2ib−ic−ia) = jωM (ic + ia) (2)
2jωL * ic + zi (2ic−ia−ib) = jωM (ia + ib) (3)
Is established. Here, L≈M, so
From equations (1), (2), (3)
(2ia-ib-ic) (jωL + zi) = 0 (4)
(2ib-ic-ia) (jωL + zi) = 0 (5)
(2ic-ia-ib) (jωL + zi) = 0 (6)
Is obtained. From the equations (4), (5), (6),
ia = ib = ic (7) is obtained.

また、jωL+zi=0となるようにziを選定すると バランサの巻線を低インピーダンスで接地することが可能であり、ノイズを有効に抑制することができる。また、中性点の電位VNは
VN=(Eab+Ebc+Eca)/2=0であるから、中性点Nは接地することができる。
If zi is selected so that jωL + zi = 0, the balancer winding can be grounded with low impedance, and noise can be effectively suppressed. Further, since the potential VN of the neutral point is VN = (Eab + Ebc + Eca) / 2 = 0, the neutral point N can be grounded.

すなわち各バランサの中性点nは、ぞれぞれ接地インピーダンスZiを介して接地することができる。このため、配電線等にノイズが侵入した場合においても、これを接地電位に逃がしてノイズを抑制することができる。   That is, the neutral point n of each balancer can be grounded via the ground impedance Zi. For this reason, even when noise enters the distribution line or the like, it can be released to the ground potential to suppress the noise.

このため、単相3線式配電線路に接続した機器を、外部から侵入するノイズに対して保護することができる。   For this reason, the device connected to the single-phase three-wire distribution line can be protected against noise entering from the outside.

以上説明したように、本実施形態によれば、少なくとも2次巻線をデルタ結線した三相変圧器と、鉄心に巻回した第1の巻線および第2の巻線を備え、前記第1の巻線と第2の巻線とをそれらから発生する磁束の方向が一致するように直列接続してなるバランサを備え、前記三相変圧器の2次側の各相の出力端子間にそれぞれ前記バランサを接続し、前記三相変圧器の2次側の各相に接続される三相負荷、および前記バランサの第1の巻線および第2の巻線の少なくとも何れかの巻線に並列接続される単相負荷に電力を供給する。   As described above, according to the present embodiment, the first winding includes the three-phase transformer in which at least the secondary winding is delta-connected, the first winding and the second winding wound around the iron core, and the first winding And the second winding are connected in series so that the directions of magnetic fluxes generated from them coincide with each other, between the output terminals of the respective phases on the secondary side of the three-phase transformer. The balancer is connected, a three-phase load connected to each phase on the secondary side of the three-phase transformer, and at least one of the first and second windings of the balancer in parallel Power is supplied to the connected single-phase load.

このため、前記単相負荷に不平衡があっても、前記単相負荷に常にバランスした電源電圧を供給することができる。   For this reason, even if there is an unbalance in the single-phase load, a balanced power supply voltage can always be supplied to the single-phase load.

また、各バランサの中性点24は、ぞれぞれ接地インピーダンスZiを介して接地することができる。このため、配電線等に第3高調波等のノイズが侵入した場合においても、これを接地電位に逃がしてノイズを抑制することができる。   The neutral point 24 of each balancer can be grounded via the ground impedance Zi. For this reason, even when noise such as the third harmonic enters the distribution line or the like, it can be released to the ground potential to suppress the noise.

R,S,T 配電線
4 三相負荷
11,12,13 1次巻線
11’、12’、13’ 2次巻線
BL1,BL2,BL3 バランサ
22 第1の巻線
23 第2の巻線
27,28 単相負荷
R, S, T distribution line 4 Three-phase load
11, 12, 13 Primary winding 11 ', 12', 13 'Secondary winding BL1, BL2, BL3 Balancer 22 First winding 23 Second winding 27, 28 Single-phase load

Claims (3)

少なくとも2次巻線をデルタ結線した三相変圧器と、
鉄心に巻回した第1の巻線および第2の巻線を有し、前記第1の巻線と第2の巻線とをそれらから発生する磁束の方向が一致するように直列接続してなる複数のバランサを備え、
前記バランサを前記三相変圧器の2次側の各相の出力端子間にそれぞれ接続し、前記それぞれのバランサの第1の巻線と第2の巻線の直列接続点をインピーダンスを介して接地すると共に前記三相変圧器の2次側の各相に接続される三相負荷、および前記バランサの第1の巻線および第2の巻線の少なくとも何れかの巻線に並列接続される単相負荷に電力を供給することを特徴とする受電設備。
A three-phase transformer with at least a secondary winding in delta connection;
A first winding and a second winding wound around an iron core, wherein the first winding and the second winding are connected in series so that directions of magnetic fluxes generated from them coincide with each other; With multiple balancers
The balancer is connected between the output terminals of the secondary phases of the three-phase transformer, and the series connection point of the first and second windings of the balancer is grounded via an impedance. And a three-phase load connected to each phase on the secondary side of the three-phase transformer, and a single connected in parallel to at least one of the first and second windings of the balancer. A power receiving facility that supplies power to a phase load.
請求項1記載の受電設備において、
前記インピーダンスはバランサの一方のコイルの自己インダクタンスと共振する値であることを特徴とする受電設備。
The power receiving facility according to claim 1,
The power receiving facility, wherein the impedance is a value that resonates with a self-inductance of one of the coils of the balancer.
請求項1記載の受電設備において、
前記バランサは、
ロ字型鉄心の一方の脚に巻回した第1の巻線および第2の巻線、並びにロ字型鉄心の他方の脚に巻回した第3の巻線および第4の巻線を備え、第3の巻線、第1の巻線、第2の巻線および第4の巻線をそれらから発生する磁束の方向が一致するように直列接続してなり、
前記三相変圧器のデルタ結線された2次巻線の各相の出力端子間にそれぞれ前記バランサを接続し、前記三相変圧器のデルタ結線された2次巻線の各出力端子、および前記バランサの第1の巻線と第2の巻線との接続端子を配電線の給電端としたことを特徴とする受電設備。
The power receiving facility according to claim 1,
The balancer is
A first winding and a second winding wound around one leg of the R-shaped iron core, and a third winding and a fourth winding wound around the other leg of the R-shaped core. The third winding, the first winding, the second winding, and the fourth winding are connected in series so that the directions of the magnetic fluxes generated from them match.
The balancer is connected between the output terminals of each phase of the delta-connected secondary winding of the three-phase transformer, the output terminals of the delta-connected secondary winding of the three-phase transformer, and the A power receiving facility characterized in that a connection terminal between the first winding and the second winding of the balancer is a feeding end of a distribution line.
JP2010128825A 2010-06-04 2010-06-04 Power receiving equipment Expired - Fee Related JP5033898B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010128825A JP5033898B2 (en) 2010-06-04 2010-06-04 Power receiving equipment
CN2010102661725A CN102270533A (en) 2010-06-04 2010-08-27 Electric power receiving equipment
KR1020100083832A KR101137316B1 (en) 2010-06-04 2010-08-30 Power receiving equipment
SG2010063311A SG176351A1 (en) 2010-06-04 2010-08-31 Power receiving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128825A JP5033898B2 (en) 2010-06-04 2010-06-04 Power receiving equipment

Publications (2)

Publication Number Publication Date
JP2011254686A JP2011254686A (en) 2011-12-15
JP5033898B2 true JP5033898B2 (en) 2012-09-26

Family

ID=45052786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128825A Expired - Fee Related JP5033898B2 (en) 2010-06-04 2010-06-04 Power receiving equipment

Country Status (4)

Country Link
JP (1) JP5033898B2 (en)
KR (1) KR101137316B1 (en)
CN (1) CN102270533A (en)
SG (1) SG176351A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813822B (en) 2011-09-19 2017-09-01 皇家飞利浦有限公司 Sprayer, the control unit for controlling the sprayer, nebulising element and the method for operating sprayer
WO2015083916A1 (en) * 2013-12-03 2015-06-11 서울대학교산학협력단 Ac electric machine and driving apparatus including same
CN104882899B (en) * 2015-05-28 2017-04-26 国网山西省电力公司电力科学研究院 Same-tower double-circuit line unbalance current compensation device and compensation method thereof
KR102525798B1 (en) 2021-03-29 2023-04-27 주식회사 남전사 High Voltage Powr Receiving Unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989405A (en) * 1982-06-23 1984-05-23 Hitachi Ltd Three-phase transformer
JP2005197623A (en) * 2004-01-01 2005-07-21 Yuichi Hosokawa Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation
JP2006006093A (en) * 2004-06-18 2006-01-05 Yuichi Hosokawa Three-phase ac generator equipped with power/lamp common-use type prime mover
JP4131861B2 (en) * 2004-06-30 2008-08-13 株式会社東芝 Unbalance compensation apparatus and method, power supply circuit
CN2727920Y (en) * 2004-09-06 2005-09-21 汉石节能设备(河北)有限公司 Three-phase transformer with balancing function
JP2007235014A (en) * 2006-03-03 2007-09-13 Osami Nasuno Split balanced winding type transformer and single-phase three-wired power distribution system
JP5026029B2 (en) * 2006-08-30 2012-09-12 陽三 飯田 Current balancer and low voltage distribution system
WO2009090889A1 (en) * 2008-01-17 2009-07-23 Sadatsugu Toribami Three-phase four-cable power distribution system and method for installing balancer in the system

Also Published As

Publication number Publication date
SG176351A1 (en) 2011-12-29
KR20110133400A (en) 2011-12-12
CN102270533A (en) 2011-12-07
KR101137316B1 (en) 2012-04-19
JP2011254686A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US7629786B2 (en) Device for reducing harmonics in three-phase poly-wire power lines
US7609536B2 (en) Autotransformer AC/DC converter
JP2010520636A (en) Transformer structure
US10014791B2 (en) Distribution transformer
KR101398599B1 (en) Eco-friendly energy-saving hybrid transformer and the energy-saving methods
WO2009096642A1 (en) A transformer for attenuating harmonics
KR101540998B1 (en) Eco-friendly energy-saving hybrid transformer
US6166531A (en) Three phase to single phase power protection system with multiple primaries and UPS capability
JP5033898B2 (en) Power receiving equipment
JP2012231567A (en) Three-phase inverter type power generator
KR100990329B1 (en) Regulation apparatus of three phase distribution line for removing the harmonics
KR101655415B1 (en) Hybrid transformer with high-efficiency energy-saving
KR20190125118A (en) Smart hybrid transformer with enhanced harmonic attenuation and large current phase recovery
JP2007048859A (en) Three-phase four wire system power transformer and three-phase four wire system low voltage power distribution system using same
JPH1132437A (en) Three-phase four-wire low voltage distribution system
JP2007235014A (en) Split balanced winding type transformer and single-phase three-wired power distribution system
WO2008026297A1 (en) Current balancer and low-voltage power distribution system
JP2003309033A (en) Method of winding coil and its transformer and the like
JPH10201097A (en) Single-phase three-wire type low voltage distribution system
KR200429523Y1 (en) Power-saving power equipment
KR101337948B1 (en) Generator improving harmonics waveform
KR101746366B1 (en) Eco-friendly energy-saving hybrid transformer
KR101655436B1 (en) Hybrid transformer with high-efficiency energy-saving
KR102710673B1 (en) Balanced 3-phase input-single-phase output transformer
KR20180062586A (en) Transformer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees