JP2003309033A - Method of winding coil and its transformer and the like - Google Patents

Method of winding coil and its transformer and the like

Info

Publication number
JP2003309033A
JP2003309033A JP2002111483A JP2002111483A JP2003309033A JP 2003309033 A JP2003309033 A JP 2003309033A JP 2002111483 A JP2002111483 A JP 2002111483A JP 2002111483 A JP2002111483 A JP 2002111483A JP 2003309033 A JP2003309033 A JP 2003309033A
Authority
JP
Japan
Prior art keywords
line
winding
forming
coil
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111483A
Other languages
Japanese (ja)
Inventor
Kunio Shimazu
邦男 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIKO DENKI KK
Original Assignee
AIKO DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIKO DENKI KK filed Critical AIKO DENKI KK
Priority to JP2002111483A priority Critical patent/JP2003309033A/en
Publication of JP2003309033A publication Critical patent/JP2003309033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of winding a coil with excellent energy-saving properties and stability while being small-sized and lightweight, by reducing the leakage of magnetic flux from the coil and improving the coupling of the magnetic flux through a core and a transformer and balancer using the coil. <P>SOLUTION: One or a few lines forming a primary winding connected with a power supply and one or a few lines forming a secondary winding connected with a load are paired to form an integral pair of lines. By winding a pair of lines, a coil is formed, and the direction of electric current in each primary winding line and secondary winding line constituting a pair of lines is set in a reverse direction. The arrangement of a pair of lines to the core may be stratified by the layer of the line forming the primary winding and the layer of the line forming the secondary winding. The turn ratio of the primary winding to the secondary winding is 1:1 to function as a balancer. In the arrangement of a pair of lines to the core, the line forming the primary winding and the line forming the secondary winding may be alternately arranged. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コイルからの漏洩
磁束を減少させ、コアを介した磁束結合を向上させられ
るコイルの巻回方法、並びに、そのコイルを用いたトラ
ンスやバランサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coil winding method capable of reducing leakage flux from a coil and improving magnetic flux coupling through a core, and a transformer and a balancer using the coil.

【0002】[0002]

【従来の技術】従来のトランスやバランサー(巻線比が
1:1の特殊トランスと見なせられる)は、コアの脚部
(磁性体)にそれぞれ、1次側コイル組立及び2次側コ
イル組立を個別に設ける形態が一般的である。1次側コ
イル組立と2次側コイル組立との配置関係において、1
次側コイル組立の外側に2次コイル組立をかぶせる形態
のものもある。しかし、それは単に配置上の便宜であ
り、1次巻線と2次巻線との電磁気的な関係を考慮した
ものではなかった。単巻コイルにおける磁束洩れは、そ
の配置や電流値により変化する特徴が強い。従来のコイ
ル組立では、巻上げ数(例えば、コイル組立における1
次巻線の積み重ね数や段数)が多ければ多いほど、磁束
結合の低下、漏洩磁束の増加が生じる。これは、従来の
トランス用コイルにとって避けられない本質的な問題で
あった。
2. Description of the Related Art Conventional transformers and balancers (which can be regarded as special transformers having a winding ratio of 1: 1) are provided with a primary coil assembly and a secondary coil assembly, respectively, on a leg portion (magnetic body) of a core. It is a general practice to provide each of them individually. In the positional relationship between the primary coil assembly and the secondary coil assembly, 1
There is also a form in which the secondary coil assembly is covered on the outside of the secondary coil assembly. However, it is merely a matter of arrangement, and does not consider the electromagnetic relationship between the primary winding and the secondary winding. The magnetic flux leakage in a single-turn coil has a strong characteristic that it changes depending on its arrangement and current value. In a conventional coil assembly, the number of windings (for example, 1
The larger the number of stacked secondary windings and the number of stages, the lower the magnetic flux coupling and the greater the leakage magnetic flux. This has been an essential problem inevitable with conventional transformer coils.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、コ
イルからの漏洩磁束を減少させ、コアを介した磁束結合
を向上させることで、小型軽量でありながら省エネ性と
安定性に優れたコイルの巻回方法、並びに、そのコイル
を用いたトランスやバランサーを提供することを課題と
する。
SUMMARY OF THE INVENTION Therefore, the present invention reduces the leakage flux from the coil and improves the magnetic flux coupling through the core, so that the coil is small and lightweight, yet excellent in energy saving and stability. It is an object of the present invention to provide a winding method, a transformer and a balancer using the coil.

【0004】[0004]

【課題を解決するための手段】上記課題を達成するた
め、本発明のコイルの巻回方法は、電源に接続される1
次巻線を形成する線路1または数本と、負荷に接続され
る2次巻線を形成する線路1または数本とをペアにし
て、1体のペア線路を形成し、そのペア線路を巻回する
ことでコイルを形成し、かつ、ペア線路を構成する各1
次巻線線路及び2次巻線線路における電流の向きを逆向
きに設定することを特徴とする。
In order to achieve the above object, the coil winding method of the present invention is connected to a power source.
A pair of lines 1 or several forming the secondary winding and one or several lines forming the secondary winding connected to the load are paired to form one paired line, and the paired line is wound. Each 1 that forms a coil by turning and that forms a pair line
It is characterized in that the directions of currents in the secondary winding line and the secondary winding line are set in opposite directions.

【0005】また、本発明のトランス類は、トランス類
のコアに巻回されるコイルにおいて、電源に接続される
1次巻線を形成する線路1または数本と、負荷に接続さ
れる2次巻線を形成する線路1または数本とをペアにし
て、1体のペア線路を形成し、そのペア線路をコアに単
層または複層巻回することでコイルを形成し、かつ、ペ
ア線路を構成する各1次巻線線路及び2次巻線線路にお
ける電流の向きを逆向きに配線することを特徴とする。
Further, the transformers of the present invention include, in the coil wound around the core of the transformers, one or several lines forming a primary winding connected to a power source and a secondary connected to a load. A line is formed by pairing one or several lines forming a winding to form a single pair line, and the pair line is wound around a core in a single layer or multiple layers to form a coil, and the pair line is also formed. In each of the primary winding line and the secondary winding line constituting the above, the direction of the current is wired in the opposite direction.

【0006】ここで、コアに対するペア線路の配置を、
1次巻線を形成する線路の層と、2次巻線を形成する線
路の層とによって層状にして、構成の簡素さに寄与させ
てもよい。
Here, the arrangement of the pair lines with respect to the core is
The layer of the line forming the primary winding and the layer of the line forming the secondary winding may be layered to contribute to the simplicity of the configuration.

【0007】1次巻線と2次巻線との巻線比を1:1に
して、バランサーとして機能させ、コアに対するペア線
路の配置を、1次巻線を形成する線路と2次巻線を形成
する線路とを交互に並べて、構成の簡素さに寄与させて
もよい。
The winding ratio between the primary winding and the secondary winding is set to 1: 1 so as to function as a balancer, and the pair lines are arranged with respect to the core by forming the primary winding and the secondary winding. Alternatively, the lines forming the may be arranged alternately to contribute to the simplicity of the configuration.

【0008】コアの端部とコイルとの間の空隙に、洩れ
磁束吸収用のペースト状磁性体を設けて、外部領域に対
する影響の抑止にも寄与させてもよい。
A paste-like magnetic material for absorbing the leakage magnetic flux may be provided in the gap between the end portion of the core and the coil to prevent the influence on the external region.

【0009】[0009]

【発明の実施の形態】本発明の実施形態を図面の例に基
づいて説明する。ここでは、本発明の基本原理を詳しく
説明するために、その使用例として単相トランスを用い
る。しかし、本発明は、バランサーを含め、従来の各種
トランス類のコイル組立に適宜用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described based on examples of the drawings. Here, in order to explain the basic principle of the present invention in detail, a single-phase transformer is used as an example of its use. However, the present invention can be appropriately used for coil assembly of various conventional transformers including a balancer.

【0010】本発明者は、従来のトランスに用いるコイ
ル組立の構想を基本から再検討することで、漏洩磁束が
少なく、磁路中の磁束とコイルの相互作用においてその
結合率を向上させる構成を得た。その基本構成は、電源
に接続される1次巻線を形成する線路1または数本と、
負荷に接続される2次巻線を形成する線路1または数本
とをペアにして、1体のペア線路を形成し、そのペア線
路を巻回することでコイルを形成することである。この
コイルに対して、ペア線路を構成する各1次巻線線路及
び2次巻線線路における電流の向きが逆向きになるよう
に電流を流すと、コイルからの漏洩磁束が減少し、コア
を介した磁束結合が向上して、後述のように、従来のト
ランス類に比べて、極めて漏洩磁束の少なく、磁路中の
磁束変化に対して応答性、即ち結合性の良いトランス類
を製造することができた。これに伴い、電波ノイズの大
幅な減少、並びに、トランス用磁路の小型軽量化も達成
された。
The present inventor reexamined the concept of the conventional coil assembly used for the transformer from the basic point of view, thereby reducing the leakage magnetic flux and improving the coupling rate in the interaction between the magnetic flux in the magnetic path and the coil. Obtained. The basic configuration is a line 1 or several lines forming a primary winding connected to a power supply,
It is to form a coil by forming a pair of lines by forming a pair of lines 1 or several lines forming a secondary winding connected to a load and winding the paired lines. When a current is applied to this coil so that the directions of the currents in the primary winding line and the secondary winding line that form the pair line are opposite, the leakage magnetic flux from the coil decreases and the core The magnetic flux coupling through the transformer is improved, and as will be described later, it is possible to manufacture transformers that have much less leakage magnetic flux than conventional transformers and that are responsive to changes in magnetic flux in the magnetic path, that is, have good coupling. I was able to. Along with this, radio noise has been greatly reduced, and the magnetic path for transformers has been made smaller and lighter.

【0011】図1は、本発明の実施例を示す平面説明図
である。電源に接続された1次巻線で構成された電源側
ループ導体の内側に、負荷に接続された2次巻線で構成
された負荷側ループ導体を配して、ペア線路を形成して
いる。このペア線路において、電流の流れる向きは、図
示のように、1次巻線線路での向き(IS)と2次巻線
線路での向き(IL)は逆向きである。そのため、電源
側ループ導体に電流が流れると、これによる磁場を打ち
消すために負荷側ループ導体に起電力が発生し、負荷側
ループ導体に逆向きの電流が流れる。この1次巻線線路
と2次巻線線路との間の直接的な誘導作用は、広義のト
ランス作用と見なせる。これによって、電源側ループ導
体より発生する電波ノイズが打ち消される。
FIG. 1 is a plan view showing an embodiment of the present invention. A load side loop conductor formed of a secondary winding connected to a load is arranged inside a power supply side loop conductor formed of a primary winding connected to a power source to form a pair line. . In this pair line, the direction of current flow is opposite to the direction (IS) in the primary winding line and the direction (IL) in the secondary winding line as shown in the figure. Therefore, when a current flows through the power supply side loop conductor, an electromotive force is generated in the load side loop conductor in order to cancel the magnetic field due to this, and a reverse current flows through the load side loop conductor. The direct inductive action between the primary winding line and the secondary winding line can be regarded as a transformer action in a broad sense. This cancels the radio noise generated from the power supply side loop conductor.

【0012】図2及び3は、別実施例を示す正面説明図
及び平面断面説明図である。コアの脚部に、1次巻線を
形成する線路の層と、2次巻線を形成する線路の層とを
2層積層して、トランス作用に磁路(コア)中の磁束を
用いている。これによると、図1の実施例で説明した1
次巻線線路と2次巻線線路との間の直接的な誘導作用の
他に、1次巻線により生じたコア中の磁束による間接的
な誘導作用によっても、2次巻線に起電力が発生する。
そのため、漏洩磁束やノイズ発生が極めて少なくなり、
従来の単相トランスに比べて、高効率となり、コア中の
磁束値も小さくなる。これに伴い、より小さな断面積の
コアを用いることが可能となり、低コスト軽量化が図れ
る。なお、図2に示したように、ペア線路の組成を、1
次巻線と2次巻線との巻線比を1:2など適宜調節する
ことで変圧率を調整でき、また、そのペア線路を2層な
ど適宜積層してもよい。
2 and 3 are a front explanatory view and a plan cross-sectional explanatory view showing another embodiment. Two layers of the line forming the primary winding and the line forming the secondary winding are laminated on the leg of the core, and the magnetic flux in the magnetic path (core) is used for the transformer action. There is. According to this, 1 described in the embodiment of FIG.
In addition to the direct inductive action between the secondary winding line and the secondary winding line, the electromotive force is generated in the secondary winding by the indirect inductive action by the magnetic flux in the core generated by the primary winding. Occurs.
Therefore, the magnetic flux leakage and noise generation are extremely reduced,
The efficiency is higher and the magnetic flux value in the core is smaller than that of the conventional single-phase transformer. Along with this, it becomes possible to use a core having a smaller cross-sectional area, and it is possible to reduce the cost and weight. In addition, as shown in FIG.
The transformation ratio can be adjusted by appropriately adjusting the winding ratio between the secondary winding and the secondary winding such as 1: 2, and the pair line may be appropriately laminated such as two layers.

【0013】以下に、単相3線式配電線路の問題点を解
消するバランサーの働きについて説明する。配電線路と
して、単相3線式は、電線量(銅量経済)の点で、他の
方式よりも優れたものである。更に、単相2線式に比べ
て、平衡負荷の場合、電圧降下及び電力損失とも1/4
となる。また、外線間は200Vとなり、配電電圧の上
昇にもなり、電力需要の増加に対処することもできる。
そのため、単相3線式用変圧器の使用により、単相3線
式は、低圧電灯負荷に対する標準的な配電方式となって
いる。しかし、次のような問題点もある。
The function of the balancer for solving the problems of the single-phase three-wire type distribution line will be described below. As a power distribution line, the single-phase, three-wire system is superior to other systems in terms of electric wire quantity (copper quantity economy). Furthermore, in the case of a balanced load, both voltage drop and power loss are 1/4 compared to the single-phase two-wire system.
Becomes In addition, the space between the outside lines becomes 200V, which also increases the distribution voltage, and can cope with the increase in power demand.
Therefore, the use of the single-phase three-wire type transformer makes the single-phase three-wire type the standard power distribution system for the low piezoelectric lamp load. However, there are the following problems.

【0014】第1の問題点は、両側の負荷の端子電圧
が、非常な不均衡を生じ、時には致命的な損害を与える
場合が挙げられる。例えば、負荷の電灯や電気機器が全
て切れたり、故障してしまったのでは、大変な損失とな
る。図4において、AN間に100Wの電灯が10個、
BH間に100Wの電灯が2個ついている時、中性線の
切断が生じたとする。AN間の負荷抵抗=100/10
=10[Ω]、BN間の負荷抵抗=100/2=50
[Ω]なので、中性線が切れたことにより中性線電流I
N=0となって、電流は両側の不均衡な負荷を直列に流
れて、IA=IB=Iとなるため、I=210/(10+
50)=3.5[A]となる。従って、AN間の負荷電
圧=3.5×10=35[V]、BN間の負荷電圧=
3.5×50=175[V]と極めて不均衡になる。
The first problem is that the terminal voltages of the loads on both sides cause a great imbalance and sometimes cause fatal damage. For example, if all of the electric lights and electric devices of the load are cut off or have broken down, it will be a great loss. In FIG. 4, ten 100W electric lights are connected between the ANs,
It is assumed that the neutral wire is cut off when two 100 W electric lights are provided between the BHs. Load resistance between AN = 100/10
= 10 [Ω], load resistance between BN = 100/2 = 50
Since it is [Ω], the neutral wire current I
Since N = 0, the current flows through the unbalanced loads on both sides in series, and I A = I B = I, so I = 210 / (10+
50) = 3.5 [A]. Therefore, load voltage between AN = 3.5 × 10 = 35 [V], load voltage between BN =
It is extremely unbalanced with 3.5 × 50 = 175 [V].

【0015】この結果から明らかなように、負荷の少な
いほうの端子電圧が高く、両側の負荷の不平衡が大きい
ほど、電圧の配分には大きな差が生じて、危険度が増大
する。そのため、3線式の中性線には配線用遮断器と
か、ヒューズという類の、回路を開放する装置を一切い
れてはいけないことになっている。中性線の断線は極端
な事故例であるが、中性線の断線でなくても、両側の負
荷に不均衡があると、両側の電圧の配分に、相当の差が
現れるという欠点が単相3線式にはある。現実にはどん
な場合にも、時間的に負荷の不均衡が生じることがある
ので、これは避けられない問題である。
As is clear from this result, the higher the terminal voltage with a lighter load and the larger the imbalance between the loads on both sides, the greater the difference in voltage distribution, and the greater the risk. Therefore, the 3-wire neutral wire must not contain any device such as a circuit breaker for wiring or a fuse for opening the circuit. The disconnection of the neutral wire is an example of an extreme accident, but even if it is not the disconnection of the neutral wire, if there is an imbalance in the loads on both sides, there is the drawback that a considerable difference appears in the voltage distribution on both sides. There is a phase 3-wire system. This is an unavoidable problem, since in any case in reality a load imbalance may occur over time.

【0016】次の問題点は、中性線と外線との短絡(シ
ョート)が起きた場合である。中性線とB外線との間に
ショートが生じた場合に、健全なA外線と中性線との間
に発生する電圧を、図2を用いて求める。変圧器の端子
から故障点までのA、B外線の抵抗をrl、中性線の
N’P間の抵抗をrnとする。A外線の電圧VAは、VA
=V+rnS、B外線の電圧VBは、故障点の抵抗をrp
とすると、VB=V−rnS=rpSとなる。rpが0の
場合には、ISは前式より、IS=V/(rn+re)とな
る。よって、A外線の電圧VAは、VA=V[1+r/
(rn+re)]となる。この結果、外線と中性線に同
じ太さの線を用いた場合(rn=re)、外線の電圧は、
変圧器端子電圧の1.5倍、中性線に外線の半分の断面
積の導線を用いた場合には、1.7倍となる。
The next problem is the case where a short circuit occurs between the neutral line and the external line. The voltage generated between the healthy A outer wire and the neutral wire when a short circuit occurs between the neutral wire and the B outer wire is obtained using FIG. It is assumed that the resistance of the A and B external wires from the terminal of the transformer to the fault point is r l and the resistance between the neutral wires N′P is r n . The external line voltage V A is V A
= V + r n I S, the voltage V B of the B outside line, the fault point resistance r p
Then, V B = V−r n I S = r p I S. When r p is 0, I S is I S = V / (r n + r e ) from the above equation. Therefore, the voltage V A of the external line A is V A = V [1 + r /
(Rn + re)]. As a result, when a wire having the same thickness is used as the external wire and the neutral wire (r n = r e ), the voltage of the external wire is
The voltage is 1.5 times the transformer terminal voltage, and 1.7 times when the neutral wire is a conductor wire having a cross-sectional area half that of the outer wire.

【0017】また、単相3線式配電線において、最も一
般的な問題点を、図6を用いて説明する。変圧器の1次
電圧3150V、2次電圧210V及び105V、低圧
側電線1線当りの抵抗0.05Ωとする。電灯負荷と
し、a線に80A、n線に20A、b線に100Aの電
流が流れている時、負荷点an、nb及びab間の電圧
を求める(ただし、1次電圧は不変とし、変圧器のイン
ピーダンス、低圧配電線のリアクタンスは無視する)。
両側の負荷の力率は同じであるから、所要のan間の電
圧をVan,nb間の電圧をVnbと表すと、上半分の
回路では、105=(0.05×80)+Van−
(0.05×20)よりVan=102[V]、また、
下半分の回路では、105=(0.05×20)+Vn
b+(0.05×100)よりVnb=99[V]とな
る。従って、ab間の電圧は、Vab=Van+Vnb
=201[V]となる。このように、単相3線式配電路
では、負荷により負荷端の電圧が異なることが極めて一
般的に生じることがわかる。
The most common problems in the single-phase three-wire type distribution line will be described with reference to FIG. The primary voltage of the transformer is 3150V, the secondary voltage is 210V and 105V, and the resistance per wire of the low voltage side wire is 0.05Ω. As a light load, when the current of 80A in the a line, 20A in the n line, and 100A in the b line is flowing, find the voltage between the load points an, nb, and ab (However, the primary voltage remains unchanged and the transformer Ignore the impedance of, and the reactance of the low voltage distribution line).
Since the power factor of the load on both sides is the same, the required voltage between an and Van is represented by Van, and the voltage between nb and Vnb is represented by 105 = (0.05 × 80) + Van− in the upper half circuit.
From (0.05 × 20), Van = 102 [V], and
In the lower half circuit, 105 = (0.05 × 20) + Vn
From b + (0.05 × 100), Vnb = 99 [V]. Therefore, the voltage between ab is Vab = Van + Vnb
= 201 [V]. As described above, in the single-phase three-wire distribution line, it is extremely common that the voltage at the load end varies depending on the load.

【0018】そこで、単相3線式のこれらの欠点を解消
するために考案されたものがバランサー(衡圧器)であ
る。これは、図7に示すように巻数比の特殊な変圧器に
相当するものであって、単相3線式の線路に特別なつな
ぎ方をして、図8のようになるべく配線の末端に設け
る。これによると、A外線に流れる電流がB外線に流れ
る電流より小さい場合には、a,b端子に補償電流io
が流入し、A外線に流れる電流がB外線に流れる電流よ
り大きい場合には、a,b端子から補償電流ioが流出
する。バランサーを設けると、両側の回路がいつも同じ
電圧になるように、バランサーを通して誘導的に結合さ
れるから、たとえ両側の負荷に不均衡があっても、また
中性線が切れても、いつも両側の電圧はバランスして、
負荷に働くように、作用する。それはバランサーが、単
相3線式の配電路の両側の電圧がバランスするように、
補償電流を流すからである。
Then, a balancer (balance device) is devised to solve these drawbacks of the single-phase three-wire system. This corresponds to a special transformer with a turns ratio as shown in FIG. 7, and a single-phase 3-wire type line is specially connected to the end of the wiring as much as possible as shown in FIG. Set up. According to this, when the current flowing through the A external line is smaller than the current flowing through the B external line, the compensation current io is applied to the terminals a and b.
When the current flowing in the A external line is larger than the current flowing in the B external line, the compensation current io flows out from the terminals a and b. If a balancer is installed, it will be inductively coupled through the balancer so that the circuits on both sides will always have the same voltage, so even if there is an imbalance in the load on both sides or the neutral line is cut off, it will always be on both sides. Balance the voltage of
Acts like a load. That is, the balancer balances the voltages on both sides of the single-phase, three-wire distribution line.
This is because the compensation current is passed.

【0019】このバランサーの効果を示すために、上記
実施例においてバランサーを設置した場合、両側の電圧
にどんな効果が生じるか計算する。なお、簡単にするた
めに、バランサーによる電圧降下は無視する。バランサ
ーは変圧比が1:1の受圧器であって、図9に示すよう
に、回路に補償電池ioを発生させ、循環させ、その結
果として、末端の電圧の平衡を保つように動作してゆ
く。A外線の電流=80+io、中性線の電流=20−
2io、B外線の電流=100−ioとなるから、上半
分の回路では、105=0.05×(80+io)+V
1−0.05×(20−2io)、下半分の回路では、
105=0.05×(20−2io)+V2+0.05
×(100−io)となる。よって、V1、V2は、V
1=102−0.15io、V2=99+0.15io
となる。ここで、バランサーの変圧器としての性質よ
り、V1=V2=Vとなるから、このときの補償電流は
io=10[A]となる。このように、バランサーなし
の場合に電圧降下が大きい側の電流を減らし、電圧降下
の少ない側の電流を増して動作し、更に中性線における
電圧降下を0とするように働く。また、バランサーがな
い時の中性線の電流の半分が、バランサー電流となって
流れることがわかる。すなわち、この例の場合には、A
外線の電流=B外線の電流=90[A]、V1=V2=
100.5[V]、中性線電流=0[A]である。
In order to show the effect of this balancer, when the balancer is installed in the above-mentioned embodiment, what effect is exerted on the voltage on both sides will be calculated. For simplicity, the voltage drop due to the balancer is ignored. The balancer is a pressure receiver having a transformation ratio of 1: 1 and, as shown in FIG. 9, generates a compensation battery io in the circuit and circulates it. As a result, it operates so as to maintain the terminal voltage balance. go. A outer wire current = 80 + io, neutral wire current = 20−
2io, B external current = 100−io, so in the upper half circuit, 105 = 0.05 × (80 + io) + V
1-0.05 × (20-2io), in the lower half circuit,
105 = 0.05 × (20-2io) + V2 + 0.05
X (100-io). Therefore, V1 and V2 are V
1 = 102-0.15io, V2 = 99 + 0.15io
Becomes Here, because of the property of the balancer as a transformer, V1 = V2 = V, so the compensation current at this time is io = 10 [A]. In this way, in the case without a balancer, the current on the side with a large voltage drop is reduced, the current on the side with a small voltage drop is increased to operate, and the voltage drop in the neutral line is made zero. Also, it can be seen that half of the current in the neutral line when there is no balancer flows as the balancer current. That is, in the case of this example, A
External line current = B External line current = 90 [A], V1 = V2 =
100.5 [V] and neutral line current = 0 [A].

【0020】また、図4の回路で、中性線が断線した場
合の問題を、バランサーが設置された時には、どんな結
果になるかということを検討する。バランサーのない時
の中性線には、断線前には8.4[A]の電流が流れて
いるのだから、バランサーが設置された時には、バラン
サーによる循環電流は8.4/2=4.2[A]とな
る。A外線には、6.3[A]、B外線にも6.3
[A]、中性線には電流は流れないことになる。よっ
て、中性線が断線しても、両側の電圧には差が生じな
い。以上のように、単相3線配電路に、バランサーさえ
設ければ、3線式の両側の電圧は、たとえ中性線が断線
しても差は生じない。バランサーの設置により、単相3
線式にあった従来の欠点が解消されることになる。
Further, in the circuit of FIG. 4, the problem in the case where the neutral wire is broken will be examined as to what kind of result will occur when the balancer is installed. Since the current of 8.4 [A] flows through the neutral wire before the disconnection when there is no balancer, when the balancer is installed, the circulating current by the balancer is 8.4 / 2 = 4. It becomes 2 [A]. 6.3 [A] for the A line and 6.3 for the B line.
[A], no current flows in the neutral wire. Therefore, even if the neutral wire is broken, there is no difference in the voltages on both sides. As described above, if a balancer is provided in the single-phase three-wire distribution line, the voltage on both sides of the three-wire system does not differ even if the neutral wire is broken. Single phase 3 by installing a balancer
The conventional drawbacks of the linear type will be eliminated.

【0021】図10は、別実施例を示す正面断面説明図
である。従来のバランサーの単巻コイルでは、磁束洩れ
は配置や電流値により変化する。ペア線路をバイファイ
ラー巻コイルで構成したので、2つの隣り合う巻線間同
士で常に磁束を打ち消すことになる。そのため、基本的
に電流値に影響されることが極めて少なくなり、漏洩磁
束の絶対量が単巻コイルに比べ極めて小さくなる。更
に、コアの端部とコイルとの間の空隙に、洩れ磁束吸収
用のペースト状磁性体を設けたので、外部領域に対する
影響も殆ど無視できる程度に抑止できる。また、図示の
ように、コアの端部の径を巻回されたコイルの厚みに相
当する位置まで大きくして、洩れ磁束吸収用に寄与させ
てよい。これによって、従来のバランサーの効率を低下
させていた磁気的結合の不完全性や、漏洩磁束絶対量の
変化によるバランサー能力の変動を、負荷電流の変化に
かかわらず安定化することがでえき、省エネ性と共にシ
ステムの安定性が得られる。なお、図11ないし13
は、このようなバランサーの応用例を示す回路図であ
る。
FIG. 10 is a front sectional view showing another embodiment. In the conventional single turn coil of the balancer, the magnetic flux leakage changes depending on the arrangement and the current value. Since the pair line is composed of the bifilar winding coil, the magnetic flux is always canceled between the two adjacent windings. Therefore, it is basically less affected by the current value, and the absolute amount of the leakage magnetic flux is extremely smaller than that of the single-turn coil. Further, since the paste-like magnetic body for absorbing the leakage magnetic flux is provided in the gap between the end of the core and the coil, the influence on the external region can be suppressed to a negligible extent. Further, as shown in the drawing, the diameter of the end portion of the core may be increased to a position corresponding to the thickness of the wound coil to contribute to the leakage magnetic flux absorption. As a result, it is possible to stabilize the imperfections in magnetic coupling that have reduced the efficiency of conventional balancers and the fluctuations in the balancer ability due to changes in the absolute amount of leakage magnetic flux, regardless of changes in the load current, Energy saving as well as system stability can be obtained. 11 to 13
FIG. 9 is a circuit diagram showing an application example of such a balancer.

【0022】[0022]

【発明の効果】本発明のコイルの巻回方法とそのトラン
ス類は、上述の構成を備えることによって次の効果を奏
する。すなわち、請求項1に記載のコイルの巻回方法、
または、それを用いた請求項2に記載のトランス類によ
ると、1次巻線線路と2次巻線線路とによってペア線路
が形成され、その1次巻線線路と2次巻線線路における
電流の向きが逆向きなので、誘導作用により、コイルか
らの漏洩磁束が減少し、コアを介した磁束結合が向上
し、小型軽量でありながら省エネ性と安定性に優れたコ
イルが得られる。
The coil winding method and the transformers thereof according to the present invention have the following effects by having the above-mentioned configuration. That is, the coil winding method according to claim 1,
Alternatively, according to the transformers according to claim 2 using the same, a pair line is formed by the primary winding line and the secondary winding line, and the current in the primary winding line and the secondary winding line is formed. Since the direction is opposite, the magnetic flux leaking from the coil is reduced by the inductive action, the magnetic flux coupling through the core is improved, and a coil that is small and lightweight, yet excellent in energy saving and stability can be obtained.

【0023】請求項3に記載のトランス類によると、ペ
ア線路の配置が、1次巻線を形成する線路の層と、2次
巻線を形成する線路の層とによって層状になっている簡
素な構成なので、簡易に製造することができる。
According to the transformers of the third aspect, the pair lines are arranged in a layered manner by the layer of the line forming the primary winding and the layer of the line forming the secondary winding. Since it has a simple structure, it can be easily manufactured.

【0024】請求項4に記載のトランス類によると、1
次巻線と2次巻線との巻線比が1:1であり、ペア線路
の配置が、1次巻線を形成する線路と2次巻線を形成す
る線路とが交互に並べられる簡素な構成なので、簡易に
バランサーを製造することができる。
According to the transformers of claim 4, 1
The winding ratio of the secondary winding to the secondary winding is 1: 1 and the pair lines are arranged in a simple manner in which the lines forming the primary winding and the lines forming the secondary winding are alternately arranged. With such a configuration, the balancer can be easily manufactured.

【0025】請求項5に記載のトランス類によると、コ
アの端部とコイルとの間の空隙に、洩れ磁束吸収用のペ
ースト状磁性体が設けられるので、外部領域に対する影
響が十分抑止される。
According to the transformers of the fifth aspect, since the paste-like magnetic body for absorbing the leakage magnetic flux is provided in the gap between the end of the core and the coil, the influence on the external region is sufficiently suppressed. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の平面説明図FIG. 1 is an explanatory plan view of an embodiment of the present invention.

【図2】別実施例の正面説明図FIG. 2 is a front explanatory view of another embodiment.

【図3】同、平面断面説明図FIG. 3 is an explanatory plan sectional view of the same.

【図4】断線の生じた単相3線式回路図FIG. 4 is a circuit diagram of a single-phase three-wire system in which disconnection occurs.

【図5】短絡の生じた単相3線式回路図FIG. 5 is a single-phase three-wire circuit diagram in which a short circuit has occurred.

【図6】配電状態を示す単相3線式回路図FIG. 6 is a single-phase three-wire circuit diagram showing a power distribution state.

【図7】バランサーの回路図FIG. 7: Balancer circuit diagram

【図8】バランサーの配置を示す単相3線式回路図FIG. 8 is a single-phase three-wire circuit diagram showing the arrangement of balancers.

【図9】配電状態を示すバランサー付き単相3線式回路
FIG. 9 is a single-phase three-wire circuit diagram with a balancer showing a power distribution state.

【図10】バランサーの断線の生じた単相3線式回路図FIG. 10 is a circuit diagram of a single-phase three-wire system in which the balancer is broken.

【図11】バランサーの応用例を示す回路図FIG. 11 is a circuit diagram showing an application example of a balancer.

【図12】同、別実施例FIG. 12 is another embodiment of the same.

【図13】同、別実施例FIG. 13 is another embodiment of the same.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電源に接続される1次巻線を形成する線路
1または数本と、負荷に接続される2次巻線を形成する
線路1または数本とをペアにして、1体のペア線路を形
成し、 そのペア線路を巻回することでコイルを形成し、 かつ、ペア線路を構成する各1次巻線線路及び2次巻線
線路における電流の向きを逆向きに設定することを特徴
とするコイルの巻回方法。
1. A pair of one or several lines forming a primary winding connected to a power source and one or several lines forming a secondary winding connected to a load are paired to form a single body. Forming a paired line, forming a coil by winding the paired line, and setting the directions of the currents in the respective primary winding lines and secondary winding lines constituting the paired line in opposite directions. A method for winding a coil, characterized by:
【請求項2】トランス類のコアに巻回されるコイルにお
いて、 電源に接続される1次巻線を形成する線路1または数本
と、負荷に接続される2次巻線を形成する線路1または
数本とをペアにして、1体のペア線路を形成し、 そのペア線路をコアに単層または複層巻回することでコ
イルを形成し、 かつ、ペア線路を構成する各1次巻線線路及び2次巻線
線路における電流の向きを逆向きに配線することを特徴
とするトランス類。
2. In a coil wound around a core of a transformer or the like, a line 1 or several lines forming a primary winding connected to a power source and a line 1 forming a secondary winding connected to a load. Alternatively, a pair of several wires are paired to form a single paired line, and the paired line is wound around the core in a single layer or in multiple layers to form a coil, and each primary winding constituting the paired line. A transformer characterized in that the currents in the wire line and the secondary winding line are wired in opposite directions.
【請求項3】コアに対するペア線路の配置が、1次巻線
を形成する線路の層と、2次巻線を形成する線路の層と
によって層状になっている請求項2に記載のトランス
類。
3. The transformers according to claim 2, wherein the paired lines are arranged with respect to the core in a layered manner by a layer of a line forming a primary winding and a layer of a line forming a secondary winding. .
【請求項4】1次巻線と2次巻線との巻線比が1:1で
あり、バランサーとして機能し、 コアに対するペア線路の配置が、1次巻線を形成する線
路と2次巻線を形成する線路とが交互に並んでいる請求
項2に記載のトランス類。
4. The winding ratio of the primary winding to the secondary winding is 1: 1 and functions as a balancer, and the pair line is arranged with respect to the core such that the line forming the primary winding and the secondary line. The transformers according to claim 2, wherein the lines forming the windings are alternately arranged.
【請求項5】コアの端部とコイルとの間の空隙に、 洩れ磁束吸収用のペースト状磁性体を備えた請求項2な
いし4に記載のトランス類。
5. The transformer according to claim 2, wherein a paste-like magnetic material for absorbing leakage magnetic flux is provided in a gap between the end of the core and the coil.
JP2002111483A 2002-04-15 2002-04-15 Method of winding coil and its transformer and the like Pending JP2003309033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111483A JP2003309033A (en) 2002-04-15 2002-04-15 Method of winding coil and its transformer and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111483A JP2003309033A (en) 2002-04-15 2002-04-15 Method of winding coil and its transformer and the like

Publications (1)

Publication Number Publication Date
JP2003309033A true JP2003309033A (en) 2003-10-31

Family

ID=29394257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111483A Pending JP2003309033A (en) 2002-04-15 2002-04-15 Method of winding coil and its transformer and the like

Country Status (1)

Country Link
JP (1) JP2003309033A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026297A1 (en) * 2006-08-30 2008-03-06 Matsuoka, Katsutake Current balancer and low-voltage power distribution system
JP2011138830A (en) * 2009-12-25 2011-07-14 Iq Four:Kk Transformer
JP2014022750A (en) * 2012-07-19 2014-02-03 Boeing Co Linear electromagnetic device
JP2014093378A (en) * 2012-11-01 2014-05-19 Shimazu Co Ltd Electric power transformer and manufacturing method therefor
JP2015023593A (en) * 2013-07-16 2015-02-02 愛知電機株式会社 Automatic voltage regulator
JP2020515228A (en) * 2017-01-11 2020-05-21 ナウン エナジー,カンパニー,リミテッド Real-time detection / recovery system in case of power line failure and its construction method
JP2021523674A (en) * 2018-05-09 2021-09-02 アイティーイー カンパニー リミテッド Electrical failure universal detection and recovery distribution system and its construction method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026297A1 (en) * 2006-08-30 2008-03-06 Matsuoka, Katsutake Current balancer and low-voltage power distribution system
JP2008061361A (en) * 2006-08-30 2008-03-13 Yozo Iida Current balancer and low-voltage power distribution system
JP2011138830A (en) * 2009-12-25 2011-07-14 Iq Four:Kk Transformer
JP2014022750A (en) * 2012-07-19 2014-02-03 Boeing Co Linear electromagnetic device
JP2014093378A (en) * 2012-11-01 2014-05-19 Shimazu Co Ltd Electric power transformer and manufacturing method therefor
JP2015023593A (en) * 2013-07-16 2015-02-02 愛知電機株式会社 Automatic voltage regulator
JP2020515228A (en) * 2017-01-11 2020-05-21 ナウン エナジー,カンパニー,リミテッド Real-time detection / recovery system in case of power line failure and its construction method
JP7263251B2 (en) 2017-01-11 2023-04-24 ナウン エナジー,カンパニー,リミテッド Real-time detection/recovery system for power line failures in power distribution system and its construction method
JP2021523674A (en) * 2018-05-09 2021-09-02 アイティーイー カンパニー リミテッド Electrical failure universal detection and recovery distribution system and its construction method
US11588324B2 (en) 2018-05-09 2023-02-21 Na Woon Kim Electrical fault detection and recovery power distribution system and its construction method

Similar Documents

Publication Publication Date Title
US7277302B2 (en) 12-pulse converter including a filter choke incorporated in the rectifier
US7564334B2 (en) Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components
US7355871B2 (en) Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components
JP2010520636A (en) Transformer structure
JP5060244B2 (en) Reactor
JP2003309033A (en) Method of winding coil and its transformer and the like
JPH0487570A (en) High-frequency inverter
JP5033898B2 (en) Power receiving equipment
JP2014093378A (en) Electric power transformer and manufacturing method therefor
JP2007235014A (en) Split balanced winding type transformer and single-phase three-wired power distribution system
JP5520613B2 (en) Magnetic flux control type variable transformer
JP2007048859A (en) Three-phase four wire system power transformer and three-phase four wire system low voltage power distribution system using same
JP2794405B2 (en) Shunt type transformer unit and single-phase three-wire power supply system
CN100433209C (en) Lightning protection antiinterference capactive transformer
CN219246504U (en) Multiphase coupling integrated inductor and DCDC converter
JPH10201097A (en) Single-phase three-wire type low voltage distribution system
US4638177A (en) Rotating flux transformer
JPH11186070A (en) Single-phase autotransformer
JP2005079571A (en) Sectional zero-phase-sequence current transformer
JP3280609B2 (en) Current limiting device to limit fault current
CN115995330A (en) Multiphase coupling integrated inductor and DCDC converter
JPH05159948A (en) On-load tap changing single-phase autotransformer
JP2021170569A (en) Magnetic flux control type variable transformer
JP3039434U (en) Distribution transformer in single-phase three-wire low-voltage distribution circuit
JPH0443619A (en) Transformer equiped with tertiary winding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306