JP2005079571A - Sectional zero-phase-sequence current transformer - Google Patents

Sectional zero-phase-sequence current transformer Download PDF

Info

Publication number
JP2005079571A
JP2005079571A JP2003348817A JP2003348817A JP2005079571A JP 2005079571 A JP2005079571 A JP 2005079571A JP 2003348817 A JP2003348817 A JP 2003348817A JP 2003348817 A JP2003348817 A JP 2003348817A JP 2005079571 A JP2005079571 A JP 2005079571A
Authority
JP
Japan
Prior art keywords
current
coil
magnetic flux
coils
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003348817A
Other languages
Japanese (ja)
Other versions
JP4912563B2 (en
Inventor
Nobuyuki Kuwabara
延行 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MULTI KEISOKUKI KK
Original Assignee
MULTI KEISOKUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MULTI KEISOKUKI KK filed Critical MULTI KEISOKUKI KK
Priority to JP2003348817A priority Critical patent/JP4912563B2/en
Publication of JP2005079571A publication Critical patent/JP2005079571A/en
Application granted granted Critical
Publication of JP4912563B2 publication Critical patent/JP4912563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a winding method for reducing residual current in a sectional-track-type ZCT for use in a cabinet panel for low-voltage circuit. <P>SOLUTION: Four coils having the same number of active turns and the same conductor diameter of a coil material are connected in parallel to each together, thereby a residual current is reduced in a sectional-track-type ZCT. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は低圧の分電盤内等に使用する分割型零相変流器に関するものである。  The present invention relates to a split type zero phase current transformer used in a low voltage distribution board or the like.

分割型零相変流器は電気を止めないで分電盤内に取り付けることができる。従ってトランスのB種接地線で地絡事故を検出した場合に、分割型零相変流器を使用して分電盤内で事故フィーダを探査していくと事故点の早期発見が可能である。  The split type zero-phase current transformer can be installed in the distribution board without stopping electricity. Therefore, when a ground fault is detected with the transformer class B grounding wire, it is possible to detect the fault point early by exploring the fault feeder in the distribution board using a split-type zero-phase current transformer. .

キュービクルや分電盤内の配線は一列に配置されている場合がある。このような用途として分割トラック型ZCTがる。分割型零相変流器は窓の形状が長方形であることと磁路に分割箇所があるために残留電流特性が悪い。そのため、特性を向上させるために、鉄心の回りに使用する磁気シールドは一般的に非分割のものよりも多く施されている。この結果仕上がり寸法は大きく、しかも重く、高価になっている。  The wiring in cubicles and distribution boards may be arranged in a row. As such an application, there is a divided track type ZCT. The split-type zero-phase current transformer has poor residual current characteristics due to the rectangular shape of the window and the split location in the magnetic path. Therefore, in order to improve the characteristics, the magnetic shield used around the iron core is generally provided more than the non-divided one. As a result, the finished dimensions are large, heavy, and expensive.

これらの問題を解決させる方法として、2次コイルを1次電流に接近したコイル毎に独立させて3つのコイルとし、それらを並列接続させる方式がある。1次電流によって鉄心内に漏れ磁束が生じ、この漏れ磁束は2次コイルと鎖交し誘起電圧により2次巻線相互間に循環電流を流す。この電流によって発生する磁束は1次電流の漏れ磁束を低減させ、残留電流を減少させる。(特許文献1、2)。
特公平6−58857号公告 特公平8−33424号公告
As a method for solving these problems, there is a system in which the secondary coil is made independent for each coil approaching the primary current to form three coils and they are connected in parallel. A leakage current is generated in the iron core by the primary current. This leakage flux is linked to the secondary coil, and a circulating current flows between the secondary windings by the induced voltage. The magnetic flux generated by this current reduces the leakage flux of the primary current and reduces the residual current. (Patent Documents 1 and 2).
Japanese Patent Publication No. 6-58857 Announcement of Japanese Patent Publication No. 8-33424

解決しようとする問題点は3つのコイルを使用した分割トラック型ZCTでもまだ残留電流が大きいということである。なぜ3つのコイルを使用した分割トラック型ZCTでは残留電流が生じるかを説明する。  The problem to be solved is that the residual current is still large even in the split track type ZCT using three coils. The reason why the residual current is generated in the split track type ZCT using three coils will be described.

上記従来の3つのコイルを使用した方式を図1に示す。1次導体A、B、Cは一列に配置されている。IA、IB、ICは1次電流である。鉄心1の回りに2次巻線が巻かれている。コイル2は1次電流IAによる漏れ磁束と多く鎖交する。同様にコイル3a、3bは1次電流IBによる漏れ磁束と多く鎖交する。コイル4も1次電流ICによる漏れ磁束と多く鎖交する。コイル2の巻数とコイル3aと3bとの巻数の和とコイル4の巻数はいずれも同じであり、線材導体径も同じである。  FIG. 1 shows a system using the above three conventional coils. The primary conductors A, B, and C are arranged in a line. IA, IB, and IC are primary currents. A secondary winding is wound around the iron core 1. The coil 2 has a lot of interlinkage with the leakage magnetic flux caused by the primary current IA. Similarly, the coils 3a and 3b are largely linked to the leakage magnetic flux caused by the primary current IB. The coil 4 also has a lot of linkage with the leakage magnetic flux caused by the primary current IC. The sum of the number of turns of the coil 2 and the number of turns of the coils 3a and 3b and the number of turns of the coil 4 are the same, and the wire conductor diameter is also the same.

1次電流は図1(2)に示すように低圧の3相平衡電流とする。このとき、例としてコイル2と鎖交する磁束を考えてみる。コイル2と鎖交する磁束は1次電流IAからのものφA、1次電流IBからのものφB、ICからのものφCがある。これらの鎖交磁束の和は一つの鎖交磁束φaとして表すことができる。コイル3a、3bと鎖交する磁束も各1次電流からの磁束の和としてφb、コイル4と鎖交する磁束もφcとして表すことができる。各コイルは一つの磁束との鎖交磁束として表わせるので、各コイルは1相の電流からの磁束による影響と表すことができる。すなわち図2(1)に示すように3つの空隙をもったCTの組合わせと考えることができる。このときの1次電流をIa、Ib、Icとすると図1(2)に示す電流IA、IB、ICと、このIa、Ib、Icとの関係は図2(2)に表すことができる。コイル2に影響する電流Iaは1次電流IAからの影響分(IA)、IBからの影響分(IBA)、ICからの影響分(ICA)のベクトル和で表せる。Ib、Icも同様に各1次電流の成分(IB)、(ICB)、(IAB)、(IC)、(IAC)、(IBC)のベクトル和で表せる。零相電流が含まれていないときはIA+IB+IC=0である。同様にIa+Ib+Ic=0である。図2(1)を等価回路で表すと図3のようになる。N2は各コイルの巻数、I0は零相電流、Zeは励磁インピーダンス、Irsは2次側に流れる残留電流である。rはコイルの抵抗値、rbは3a+3bの抵抗値である。3並列巻線のときはrb=rである。図3の等価回路から残留電流Irsを求めると(1)式が得られる。

Figure 2005079571
The primary current is a low-voltage three-phase balanced current as shown in FIG. At this time, consider the magnetic flux interlinking with the coil 2 as an example. The magnetic flux interlinking with the coil 2 includes φA from the primary current IA, φB from the primary current IB, and φC from the IC. The sum of these interlinkage magnetic fluxes can be expressed as one interlinkage magnetic flux φa. The magnetic flux interlinking with the coils 3a and 3b can also be expressed as φb as the sum of the magnetic flux from each primary current, and the magnetic flux interlinking with the coil 4 can also be expressed as φc. Since each coil can be expressed as an interlinkage magnetic flux with one magnetic flux, each coil can be expressed as an influence of a magnetic flux from a one-phase current. That is, it can be considered as a combination of CT having three gaps as shown in FIG. If the primary currents at this time are Ia, Ib, and Ic, the relationship between the currents IA, IB, and IC shown in FIG. 1 (2) and these Ia, Ib, and Ic can be expressed in FIG. 2 (2). The current Ia affecting the coil 2 can be expressed by the vector sum of the influence from the primary current IA (IA), the influence from the IB (IBA), and the influence from the IC (ICA). Similarly, Ib and Ic can be expressed as vector sums of the components (IB), (ICB), (IAB), (IC), (IAC), and (IBC) of the respective primary currents. When zero phase current is not included, IA + IB + IC = 0. Similarly, Ia + Ib + Ic = 0. FIG. 2A is represented by an equivalent circuit as shown in FIG. N2 is the number of turns of each coil, I0 is a zero-phase current, Ze is an excitation impedance, and Irs is a residual current flowing on the secondary side. r is the resistance value of the coil, and rb is the resistance value of 3a + 3b. For three parallel windings, rb = r. When the residual current Irs is obtained from the equivalent circuit of FIG. 3, equation (1) is obtained.
Figure 2005079571

ここで零相電流Iが流れた時の2次側に流れる電流をIO2とするとI02は次式より求まる。

Figure 2005079571

ここで
Figure 2005079571

である。Z≫Z、Z≫m、よりIrsの1次換算残留電流Irは次式となる。
Figure 2005079571
Here, assuming that the current flowing on the secondary side when the zero-phase current I 0 flows is I O2 , I 02 is obtained from the following equation.
Figure 2005079571

here
Figure 2005079571

It is. From Z e >> Z 2 , Z e >> m 2 , the primary equivalent residual current Ir of I rs is given by the following equation.
Figure 2005079571

ここで各コイル内の磁界の強さのに磁路長を乗算させた和はアンペアの周回積分の法則から0となり残留電流も0となる。しかし出力電圧に変えるためには係数として透磁率が関係し、透磁率は軟磁性材(通常鉄ニッケル合金のパーマロイPC材使用)の磁界の大きさによって変化する。図1のような配置ではコイル2とコイル3aの箇所では等価1次電流IaとIbの大きさは異なる。等価1次電流Iaによるコイル2との鎖交磁束が磁気飽和未満の0.2〜0.3T(テスラ)のときにはコイル3aとの鎖交磁束を比べるとφa:φb≒5:1である。このときφaの透磁率をμa、φbの透磁率をμbとするとこの比はμa:μb≒2:1である。よって(4)式は各コイル内の透磁率が異なることによってma≠mbとなり残留電流が生じる。  Here, the sum obtained by multiplying the magnetic field strength in each coil by the magnetic path length is 0 and the residual current is also 0 based on the law of circulatory integration of amperes. However, in order to change to the output voltage, the magnetic permeability is related as a coefficient, and the magnetic permeability changes depending on the magnitude of the magnetic field of the soft magnetic material (usually using a permalloy PC material of iron-nickel alloy). In the arrangement as shown in FIG. 1, the magnitudes of the equivalent primary currents Ia and Ib are different between the coil 2 and the coil 3a. When the interlinkage magnetic flux with the coil 2 by the equivalent primary current Ia is 0.2 to 0.3 T (Tesla) less than the magnetic saturation, the interlinkage magnetic flux with the coil 3a is compared to φa: φb≈5: 1. At this time, if the permeability of φa is μa and the permeability of φb is μb, this ratio is μa: μb≈2: 1. Therefore, in equation (4), the magnetic permeability in each coil is different, so ma ≠ mb and a residual current is generated.

本発明は上記課題を解決するために、IB付近に巻くコイル3a、3bはお互いに独立したコイルとし、これに2箇所のIA、IB付近に巻回された2つのコイルを加え計4つのコイルを並列結線させた。  In the present invention, in order to solve the above-mentioned problem, the coils 3a and 3b wound around the IB are independent from each other, and two coils wound around the IA and IB are added to the coils 3a and 3b. Were connected in parallel.

本発明は4つのコイルを使用することにより残留電流を3つのときに比べて小さくすることができる。4つのコイルによりより(4)式に示すrbはrb=r/2となる。mbはmaに比べて透磁率の大きさの違いμa:μb≒2:1よりmb≒(1/2)maが得られ次式が求まる。

Figure 2005079571

これにより(4)式の〔〕内は0に近づくことができる。In the present invention, the residual current can be reduced by using four coils as compared with the case of using three coils. With the four coils, rb shown in the equation (4) becomes rb = r / 2. As for mb, mb≈ (1/2) ma is obtained from the difference in the magnitude of magnetic permeability compared to ma, μa: μb≈2: 1, and the following equation is obtained.
Figure 2005079571

As a result, the value in [] in equation (4) can approach zero.

図6に発明の効果を示す。図6は横軸にコイルの並列接続数を示し、縦軸は残留電流を示す。コイルの並列接続数の1は図5(1)、接続数2は図5(2)、接続数3は図3、接続数4は図4、接続数5は図5(3)の結線を示している。接続数4のときが残留電流が最小になる。これによって鉄心及びシールド材の使用料が従来と同じならば残留電流は1/2になる。また残留電流特性が同じにするならば従来方式の鉄心又はシールドの断面積を約1/2にすることができる。すなわち小型、軽量化、及び鉄心(通常ニッケル合金の軟磁性材)の使用量が低減でき省資源が計ることができる。低コストが実現できる。  FIG. 6 shows the effect of the invention. In FIG. 6, the horizontal axis represents the number of coils connected in parallel, and the vertical axis represents the residual current. The number of parallel connections of the coil is 1 in FIG. 5 (1), the number of connections is 2 in FIG. 5 (2), the number of connections is 3 in FIG. 3, the number of connections is 4 in FIG. Show. When the number of connections is 4, the residual current is minimized. As a result, if the usage fee of the iron core and the shielding material is the same as the conventional one, the residual current is halved. If the residual current characteristics are the same, the cross-sectional area of the conventional core or shield can be reduced to about ½. That is, the size and weight can be reduced, and the amount of iron core (usually a soft magnetic material of nickel alloy) can be reduced, saving resources. Low cost can be realized.

分割型トラック型ZCTの窓内に配置された1次導体IA、IB、ICにおいてIB近い長径方向の2辺に巻くコイルはできるだけ均一に巻き1つのコイルの中間点が1次導体IBに最も接近した位置になるようにコイルの位置をきめる。4つのコイルは巻き数を同じにする。  In the primary conductors IA, IB, and IC arranged in the divided track type ZCT window, the coil wound on the two sides in the major axis direction close to IB is wound as uniformly as possible, and the intermediate point of one coil is closest to the primary conductor IB. Determine the position of the coil so that The four coils have the same number of turns.

図4は本発明の分割トラック型ZCTの構成を示したものである。1次導体IB付近に巻くコイル3a、3bは巻数、巻き線材の導体径をコイル2と巻数、線材とも同じとした。したがって4つのコイルとも巻数、線材とも同じにして、出力を並列接続させた。図4は1次導体IA、IB、ICに対して長方形の形状を示したが楕円型の場合でもコイルの巻き方は同じ巻き方、結線で同じ効果がある。  FIG. 4 shows the structure of the divided track type ZCT of the present invention. The coils 3a and 3b wound in the vicinity of the primary conductor IB have the same number of turns and the same conductor diameter as that of the coil 2, the number of turns and the wire. Therefore, the number of turns and the wire of all four coils were the same, and the outputs were connected in parallel. FIG. 4 shows a rectangular shape with respect to the primary conductors IA, IB, and IC. However, even in the case of an elliptical shape, the coil is wound in the same way and connected with the same effect.

図1(1)はトラック型零相変流器の2次巻線の結線例でコイルが3並列結線の場合を表したものである。(2)は1次電流のベクトルを表したものである。FIG. 1 (1) shows an example of the connection of the secondary winding of the track type zero-phase current transformer, and shows the case where the coil has three parallel connections. (2) represents a primary current vector. 図2(1)は図1の(1)で示すトラック型零相変流器を3つの空隙をもったCTとして表したものである。(2)は3つのCTの各コイルと鎖交する磁束を各一つの電流による影響として表したときに、その1次電流をベクトルで表したものである。FIG. 2 (1) shows the track type zero-phase current transformer shown in FIG. 1 (1) as CT having three gaps. (2) represents the primary current as a vector when the magnetic flux interlinking with the coils of the three CTs is expressed as an influence of each one current. 図3は図2(1)の簡易等価回路図3 is a simplified equivalent circuit diagram of FIG. 図4は本発明による結線例で1次電流IBに接近したコイルを2つのコイルに分けて4並列結線としたもの。FIG. 4 shows an example of connection according to the present invention in which a coil approaching the primary current IB is divided into two coils to form four parallel connections. 図5はトラック型ZCTの2次巻線の各結線例を表したものである。(1)は連続に一周に渡りコイルを巻いたもの、(2)は2並列結線されたもの、(3)はIB付近のコイルを3つにして5並列結線にしたもの。FIG. 5 shows connection examples of the secondary winding of the track type ZCT. (1) is a continuous winding of a coil, (2) is a 2-parallel connection, and (3) is a 5-parallel connection with three coils near IB. 図6は1次電流を3相電流600A一定にした状態においてコイルの並列結線数を変化させたときの残留電流値を等価1次側零相電流値に換算して示したものである。FIG. 6 shows the residual current value converted to the equivalent primary-side zero-phase current value when the number of parallel connections of the coils is changed in a state where the primary current is constant at 600A of the three-phase current.

符号の説明Explanation of symbols

A、B、C・・・トラック型ZCTの窓内に一列に配置された1次電流用の1次導体
IA、IB、IC・・・3相1次平衡電流
1・・・トラック型ZCTの鉄心
2・・・3並列巻線において鉄心がAに接近した部分に巻いたコイル
3a・・・3並列巻線において鉄心がBに接近した2つの部分のうち一方側に巻いたコイル
3b・・・3並列巻線において鉄心がBに接近した2つの部分のうち3a側に対してもう一方側に巻いたコイル
4・・・3並列巻線において鉄心がCに接近した部分に巻いたコイル
φA・・・1次電流IAから発生するコイル2と鎖交する磁束
φB・・・1次電流IBから発生するコイル2と鎖交する磁束
φC・・・1次電流ICから発生するコイル2と鎖交する磁束
r・・・一つコイルの直流抵抗値
Ia・・・コイル2と鎖交する磁束が一つの電流によって発生した磁束としたときのその電流
Ib・・・コイル3a、3bと鎖交する磁束が一つの電流によって発生した磁束としたときのその電流
Ic・・・コイル4と鎖交する磁束が一つの電流によって発生した磁束としたときのその電流
φa・・・磁束φA、φB、φCの和で電流Iaによりコイル2と鎖交する磁束
φb・・・電流Ibによりコイル3a、3bと鎖交する磁束
φc・・・電流Icによりコイル4と鎖交する磁束
ma・・・電流Iaに対してのコイル2の相互インダクタンス
mb・・・電流Ibに対してのコイル2の相互インダクタンス
mc・・・電流Icに対してのコイル2の相互インダクタンス
(IA)・・・コイル2の磁束にあたえる電流IAの成分
(IBA)・・・コイル2の磁束にあたえる電流IBの成分
(ICA)・・・コイル2の磁束にあたえる電流ICの成分
(IB)・・・コイル2の磁束にあたえる電流IBの成分
(IAB)・・・コイル2の磁束にあたえる電流IAの成分
(ICB)・・・コイル2の磁束にあたえる電流ICの成分
(IC)・・・コイル2の磁束にあたえる電流ICの成分
(IAC)・・・コイル2の磁束にあたえる電流IAの成分
(IBC)・・・コイル2の磁束にあたえる電流IBの成分
N2・・・一つのコイルの巻数
I0・・・零相電流
Ze・・・零相変流器の励磁インピーダンス
Irs・・・残留電流
A, B, C: primary conductors IA, IB, IC for primary current arranged in a line in a window of the track type ZCT 1-phase primary balanced current 1 ... of the track type ZCT Coil 3a wound around the part where the iron core approaches A in the iron core 2 ... 3 parallel winding 3a coil 3b wound around one side of the two parts where the iron core approaches B in the 3 parallel winding -Coil 4 wound around the other side of 3a among the two parts where the iron core approaches B in the three parallel windings ... Coil φA wound around the part where the iron core approaches C in the three parallel windings ... Magnetic flux φB interlinked with coil 2 generated from primary current IA ... Magnetic flux φC interlinked with coil 2 generated from primary current IB ... Coil 2 and chain generated from primary current IC Magnetic flux r ... DC resistance value Ia of one coil ... Coil 2 Current Ib when the intersecting magnetic flux is a magnetic flux generated by a single current, current Ic when the magnetic flux interlinking with the coils 3a and 3b is a magnetic flux generated by a single current, ... Coil 4 When the magnetic flux linked to the coil is a magnetic flux generated by one current, the current φa is the sum of the magnetic fluxes φA, φB, and φC, and the magnetic flux φb that is linked to the coil 2 by the current Ia. Magnetic flux φc interlinked with 3a, 3b... Magnetic flux interlinked with coil 4 by current Ic... Mutual inductance mb of coil 2 with respect to current Ia ... of coil 2 with respect to current Ib Mutual inductance mc ... Mutual inductance (IA) of coil 2 with respect to current Ic ... Component of current IA (IBA) applied to magnetic flux of coil 2 ... Applied to magnetic flux of coil 2 Component of current IB (ICA): component of current IC applied to magnetic flux of coil 2 (IB): component of current IB applied to magnetic flux of coil 2 (IAB): current IA applied to magnetic flux of coil 2 Component (ICB): current IC component applied to magnetic flux of coil 2 (IC) component of current IC applied to magnetic flux of coil 2 (IAC) component of current IA applied to magnetic flux of coil 2 (IBC): The component N2 of the current IB applied to the magnetic flux of the coil 2 ... the number of turns of one coil I0 ... the zero phase current Ze ... the exciting impedance Irs of the zero phase current transformer ... the residual current

Claims (2)

鉄心の回りに巻回する2次巻線において、同じ巻数、及び同じ巻き線材の導体径を有した4つのコイルをお互いに並列に接続させて残留電流を小さくしたことを特徴とする分割トラック型零相変流器。  Divided track type characterized in that in the secondary winding wound around the iron core, four coils having the same number of turns and the same winding material diameter are connected in parallel to reduce the residual current. Zero-phase current transformer. 鉄心の回りに巻く2次巻線及び2次巻線の回りを覆った磁気シールド材を含めて巻回した3次巻線を有し、2次及び3次巻線とも4つのコイルから構成され、何れも並列に接続し、残留電流を低減させたことを特徴とする分割トラック型零相変流器。  It has a secondary winding wound around the iron core and a tertiary winding wound with a magnetic shield material covering the periphery of the secondary winding. Both the secondary and tertiary windings are composed of four coils. A split track type zero-phase current transformer characterized in that both are connected in parallel to reduce residual current.
JP2003348817A 2003-09-02 2003-09-02 Split track type zero phase current transformer Expired - Fee Related JP4912563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348817A JP4912563B2 (en) 2003-09-02 2003-09-02 Split track type zero phase current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348817A JP4912563B2 (en) 2003-09-02 2003-09-02 Split track type zero phase current transformer

Publications (2)

Publication Number Publication Date
JP2005079571A true JP2005079571A (en) 2005-03-24
JP4912563B2 JP4912563B2 (en) 2012-04-11

Family

ID=34419654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348817A Expired - Fee Related JP4912563B2 (en) 2003-09-02 2003-09-02 Split track type zero phase current transformer

Country Status (1)

Country Link
JP (1) JP4912563B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416626A (en) * 2004-07-27 2006-02-01 Baker Hughes Inc Inductive coupler arrangement
CN102074336A (en) * 2010-12-09 2011-05-25 天津市百利纽泰克电气科技有限公司 Heavy-current non-boss primary conductor of transformer
CN103354161A (en) * 2013-08-02 2013-10-16 苏州贝腾特电子科技有限公司 High-voltage transformer
CN105261469A (en) * 2013-08-02 2016-01-20 胡小青 Multifunctional high-voltage transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416626A (en) * 2004-07-27 2006-02-01 Baker Hughes Inc Inductive coupler arrangement
GB2416626B (en) * 2004-07-27 2007-08-08 Baker Hughes Inc Armored flat cable signalling and instrument power acquisition
CN102074336A (en) * 2010-12-09 2011-05-25 天津市百利纽泰克电气科技有限公司 Heavy-current non-boss primary conductor of transformer
CN103354161A (en) * 2013-08-02 2013-10-16 苏州贝腾特电子科技有限公司 High-voltage transformer
CN105261469A (en) * 2013-08-02 2016-01-20 胡小青 Multifunctional high-voltage transformer

Also Published As

Publication number Publication date
JP4912563B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
US7839251B2 (en) Filtering choke arrangement for a frequency converter
US7629786B2 (en) Device for reducing harmonics in three-phase poly-wire power lines
JP2010520636A (en) Transformer structure
JP4912563B2 (en) Split track type zero phase current transformer
JPH0691335B2 (en) Shield of electromagnetic equipment
JP5033898B2 (en) Power receiving equipment
JP3566481B2 (en) Eddy current shield device and three-phase transformer
JP3662067B2 (en) Inner iron type single winding single phase transformer
JP2007235014A (en) Split balanced winding type transformer and single-phase three-wired power distribution system
JP2003309033A (en) Method of winding coil and its transformer and the like
US20170323717A1 (en) Gapless core reactor
JP4648954B2 (en) Zero phase current transformer
RU184270U1 (en) THREE-PHASE TRANSFORMER OF DC SUPPLY SUBSTANCES
JPS59119810A (en) Interphase reactor device
JP4649123B2 (en) Zero phase current transformer
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JPH06258347A (en) Current transformer for measuring instrument
SU797023A1 (en) Three-phase single-cycle ac-to-dc voltage converter
JPH10201097A (en) Single-phase three-wire type low voltage distribution system
RU2073275C1 (en) Filter choke
JPH0341455Y2 (en)
RU161495U1 (en) DEVICE FOR INCREASING THE ENERGY EFFICIENCY OF THE FOUR WIRE ELECTRICAL NETWORK
KR20160139662A (en) Three phase transformer which can function as inductor
JPH065444A (en) Phase shifter
RU2522164C1 (en) Supply source transformer for suspended measuring sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090602

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4912563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees