WO2015083916A1 - Ac electric machine and driving apparatus including same - Google Patents

Ac electric machine and driving apparatus including same Download PDF

Info

Publication number
WO2015083916A1
WO2015083916A1 PCT/KR2014/006212 KR2014006212W WO2015083916A1 WO 2015083916 A1 WO2015083916 A1 WO 2015083916A1 KR 2014006212 W KR2014006212 W KR 2014006212W WO 2015083916 A1 WO2015083916 A1 WO 2015083916A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
energy transfer
windings
transformer
transfer unit
Prior art date
Application number
PCT/KR2014/006212
Other languages
French (fr)
Korean (ko)
Inventor
박용순
설승기
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140074362A external-priority patent/KR101572978B1/en
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2015083916A1 publication Critical patent/WO2015083916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to an alternating current electric machine and a driving device including the same, and more particularly, to an alternating current electric machine and a driving device including the same that improve the current harmonic characteristics of the winding connected to the power converter.
  • the output harmonic characteristics of the power converter can be easily improved, while the switching losses increase, which reduces the overall conversion efficiency. Furthermore, too high PWM frequencies may cause electromagnetic interference (EMI) problems.
  • EMI electromagnetic interference
  • the weight and volume of the device are relatively increased, and there is a problem in that an additional harmonic suppression filter must be installed to satisfy the harmonic standards set by the relevant regulations.
  • the harmonics of the transformer primary current can be suppressed by appropriately controlling the PWMs of the paralleled power converters, but the harmonic current pulsation still remains largely in the current flowing through the secondary transformer of the transformer.
  • Increasing the root mean square current increases the current rating of the power converter and reduces the power conversion efficiency.
  • This problem may also occur in the case of an electric motor or a generator connected to a power converter.
  • the driving principle is very similar to a transformer in that an electric motor or a generator transfers energy through magnetic coupling.
  • the flow of alternating current through the stator windings creates a magnetic flux that rotates in space, which causes the rotor to generate torque that causes rotation.
  • the power converter used for driving the motor uses PWM
  • the current flowing through the stator windings includes harmonic components of the switching frequency band in addition to the frequency components that generate torque required for rotation. Harmonic components of the motor drive current may also cause the problem of increasing the RMS current as mentioned above, increasing the current rating of the power converter and reducing the power conversion efficiency.
  • the power converter for driving an AC electromechanical machine has a limit in reducing the current pulsation by increasing the switching frequency when the capacity of the target AC electromechanical device increases, thus reducing the current pulsation flowing to the stator while maintaining a low switching frequency.
  • the harmonic characteristics of the current of the second energy transfer unit is improved. It is possible to provide an alternating current electromechanical machine and an alternating current electromechanical driving device including the same.
  • an alternating current electromechanical apparatus and an alternating current electromechanical driving apparatus including the same.
  • an alternating current electromechanical device and an alternating current electromechanical driving device including the same which are composed of elements having a lower rated current, thereby reducing manufacturing costs.
  • the first energy transfer unit magnetically coupled to the second energy transfer unit;
  • a second energy transfer comprising at least two three-phase windings;
  • a core magnetically connecting the first energy transfer unit and the at least two three-phase windings;
  • a connection part for directly connecting the at least two three-phase winding parts, wherein the windings included in the at least two three-phase winding parts are connected to one delta ( ⁇ ) wired winding part.
  • the alternating current electrical machine is a transformer
  • the first energy transfer portion is a transformer primary stage
  • the second energy transfer unit is a transformer secondary stage
  • the core is a transformer core
  • the alternating current electrical machine is an electric motor or a generator
  • the first energy transfer portion is a rotor
  • the second energy transfer portion is a stator
  • the core is a stator core
  • line voltages or line voltages of at least two or more three-phase power sources are connected to nodes between the windings of the delta-connected winding.
  • the nodes and the line voltages or line voltages are connected one to one, respectively.
  • the line voltages or the line voltages of the at least two three-phase power sources form a delta connection or a Y connection for each of the corresponding three-phase power sources.
  • the at least two three-phase power supplies are a combination of three three-phase pulse width modulation (PWM) power supplies or three single-phase PWM power supplies.
  • PWM pulse width modulation
  • three phase power input terminals of at least two or more three phase loads are connected to nodes between the windings of the delta connected winding.
  • the nodes and the three-phase power input terminals are each connected one-to-one.
  • An AC electromechanical driving device includes: a first energy transfer unit magnetically coupled to a second energy transfer unit; A second energy transfer comprising at least two three-phase windings; A core magnetically connecting the first energy transfer unit and the at least two three-phase windings; And a connection portion for directly connecting the at least two three-phase winding portions, wherein the at least two three-phase winding portions are equivalently constituted by one Delta ( ⁇ ) wired winding portion. Alternating current electrical machinery; And at least two or more three phase power sources electrically connected directly to at least two or more three phase windings of the second energy transfer unit.
  • the alternating current electrical machine is a transformer
  • the first energy transfer portion is a transformer primary stage
  • the second energy transfer unit is a transformer secondary stage
  • the core is a transformer core
  • the alternating current electrical machine is an electric motor or a generator
  • the first energy transfer portion is a rotor
  • the second energy transfer portion is a stator
  • the core is a stator core
  • the at least two three-phase power supplies are a combination of three three-phase pulse width modulation (PWM) power supplies or three single-phase PWM power supplies.
  • PWM pulse width modulation
  • line voltages or line voltages of the at least two three-phase power sources are connected to nodes between the windings of the delta-connected winding.
  • the nodes and the line voltages or line voltages are connected one to one, respectively.
  • An AC electromechanical driving device includes: a first energy transfer unit magnetically coupled to a second energy transfer unit; A second energy transfer comprising at least two three-phase windings; A core magnetically connecting the first energy transfer unit and the at least two three-phase windings; And a connection portion for directly connecting the at least two three-phase winding portions, wherein the at least two three-phase winding portions are equivalently constituted by one Delta ( ⁇ ) wired winding portion. Alternating current electrical machinery; And at least two or more three phase loads electrically connected to at least two or more three phase windings of the second energy transfer unit.
  • the alternating current electrical machine is a transformer
  • the first energy transfer portion is a transformer primary stage
  • the second energy transfer unit is a transformer secondary stage
  • the core is a transformer core
  • the alternating current electrical machine is an electric motor or a generator
  • the first energy transfer portion is a rotor
  • the second energy transfer portion is a stator
  • the core is a stator core
  • three phase power input terminals of at least two or more three phase loads are connected to nodes between the windings of the delta connected winding.
  • the output harmonic characteristics of the AC electric machine and the power converter are improved.
  • the effective current of the second energy transfer unit including a plurality of three-phase windings of the AC electric machine is reduced, the overall power conversion efficiency is improved, and the AC electric machine and the AC electric machine driving device with lower rated current elements. It can be configured to reduce the production cost.
  • FIG. 1 is a circuit diagram showing a conventional transformer and a driving device.
  • FIG. 2A is a block diagram illustrating an AC electric machine and a driving device according to an embodiment of the present invention.
  • 2B is a circuit diagram illustrating a transformer and a driving device according to an embodiment of the present invention.
  • FIG. 2C is a circuit diagram illustrating a cross-sectional view of an AC electric machine and an output voltage of an AC electric machine and a power converter, according to an exemplary embodiment.
  • FIG. 3 is a circuit diagram specifically illustrating the three-phase PWM power supply of FIG. 2A as an example.
  • FIG. 4 is a circuit diagram schematically illustrating the connection of the secondary winding of a transformer in the form of a delta connection according to an embodiment of the present invention.
  • FIG. 5 is a circuit diagram illustrating a secondary winding connection of a transformer having a different phase order according to an embodiment of the present invention.
  • FIG. 6 is a circuit diagram illustrating a secondary winding connection of a transformer having three or more three-phase windings according to an exemplary embodiment of the present invention.
  • FIG. 7 and 8 are timing diagrams showing simulation results of the AC electromechanical driving apparatus according to the prior art and the AC electromechanical driving apparatus according to the present invention, respectively, to show the advantageous effects of the present invention.
  • AC electric machines generally include a transformer, an electric motor, and a generator.
  • the transformer controls the magnetic flux in the transformer windings to which the power converter is connected to exchange energy with the other windings of the transformer through the transformer core.
  • Alternating current electrical machines with stators and rotors, such as motors and generators have stators connected to the power converter.
  • the magnetic flux changes in the windings to exchange energy with the rotor through the stator core and voids. Since the problems of the prior art and the main principles of the present invention described below are equally applicable to the secondary winding of a transformer or the stator winding and the power converter of an alternating current electric machine, the following description will be given with reference to FIG. The prior art will be described.
  • the driving device 10 includes a winding unit 15 of a transformer primary stage, a winding unit 11 and 13 of a secondary transformer stage, a transformer core 17, an AC load 16, and a PWM power supply 12. , 14).
  • the winding unit 15 of the transformer primary stage, the winding units 11 and 13 of the transformer secondary stage, and the transformer core 17 may constitute one transformer.
  • the power supply means a circuit module composed of one PWM power supply and a winding connected thereto.
  • the first PWM power source 12 and the first winding unit 11, and the second PWM power source 14 and the second winding unit 13 each constitute one power supply unit.
  • each of the PWM power supplies 12 and 14 is a three-phase PWM power supply
  • each of the winding parts 11, 13, and 15 of the transformer first and second stages is a three-phase winding.
  • the driving device 10 may cause the phases of the output pulsations provided to the windings 11 and 13 to be different from each other by different carrier waves of the PWM power supplies 12 and 14.
  • the harmonic pulsations are synthesized through the magnetic circuits of the transformers 11, 13, 17, and 15, and appear in the first stage of the transformer in a state in which harmonic components of each other are cancelled. As a result, only much lower harmonic pulsations appear in the transformer primary. As such, by applying a plurality of power supply units operated in parallel, the harmonic criterion in the first stage of the transformer can be more easily satisfied because harmonic pulsations different in phase from each other are magnetically synthesized through the transformer.
  • the harmonic pulsation caused by the low frequency PWM still remains in the secondary transformer.
  • the pulsation of the secondary stage of the transformer increases the root mean square (RMS) current to reduce the power conversion efficiency, and switching elements of the PWM power supplies 12 and 14 are devices having a large rated current compared to the fundamental wave current. It causes a problem that must be configured.
  • RMS root mean square
  • the windings 11 and 13 of the secondary stage of the transformer included in each of the plurality of power supply units are configured to have no direct electrical connection with each other.
  • the present invention provides a method for creating a direct electrical connection between the transformer secondary windings 11, 13 to reduce the current pulsation flowing through the windings 11, 13 and improve the power conversion efficiency of the power converter. present.
  • the driving device 100 includes a first energy transfer unit 160, a second energy transfer unit including windings 110 and 130, a core 180, and a PWM power supply 120 and 140. It may include. In addition, the driving device 100 may include an AC load (or a three-phase load) 170. Among these, the first energy transfer unit 160, the second energy transfer unit including the windings 110 and 130, and the core 180 may constitute one AC electric machine. The second energy transfer unit including the first energy transfer unit 160 and the windings 110 and 130 magnetically couples to each other to exchange energy due to the induced magnetic phenomenon.
  • the windings 110 and 130 of the second energy transfer part of the AC electromechanical part are illustrated as being connected to the PWM power supply 120 and 140, in which case the energy transfer direction is the first in the second energy transfer part. Will be directed to the energy transfer unit 160, but the scope of the present invention is not limited thereto.
  • the windings 110 and 130 of the second energy transfer unit of the AC electric machine may be connected to a three-phase load (eg, a battery to be charged) instead of the PWM power sources 120 and 140.
  • three-phase power input terminals of three-phase loads will be connected to nodes between the windings of the windings 110, 130 of the second electromechanical second energy transfer.
  • the energy transfer direction will be directed from the first energy transfer unit 160 to the second energy transfer unit.
  • the AC electric machine is a three-phase connection relaying the connection of the windings 110 and 130 of the second energy transfer unit with external three-phase power sources (here, PWM power sources 120 and 140) or three-phase loads. Terminals may be further included.
  • the PWM power supplies 120, 140 and the windings 110, 130 are three phase power and three phase windings, respectively.
  • the windings 110 and 130 of the second energy transfer unit of the AC electric machine are connected by the connection unit 150 in an equivalent delta shape.
  • Each line voltage of the PWM power supplies 120 and 140 is applied to a node between the windings ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , ⁇ 2 connected in a delta form.
  • the alternating current electrical machine composed of the first energy transfer unit 160, the windings 110 and 130, and the core 180 of the driving device 100 is a three-phase alternating current electrical machine, ideally, the windings ⁇ , ⁇ , and ⁇ Are equal in magnitude and have a phase difference of 120 degrees from each other.
  • the driving device 100 is to maintain the harmonic characteristics of the first energy transfer unit 160 of the alternating current electric machine, while reducing the current harmonic pulsation of the second energy transfer unit of the alternating current electric machine. It further includes a connection portion 150 for directly connecting the windings (110, 130) of the energy transfer.
  • connection part 150 connects the nodes of the first winding part 110 and the nodes of the second winding part 130 so that the first winding part 110 and the second winding part 130 are equivalently delta-connected. It is configured to form one winding of the form.
  • the present invention is a plurality of three-phase windings ( ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 through the connection unit 150, while operating the DC power supply in parallel through the power converter to the second energy transfer unit of the AC electric machine) , ⁇ 2 , ⁇ 2 ) are electrically connected to form one delta winding.
  • the two windings 110 and 130 illustrated in FIG. 2A are defined as a pair of windings, several pairs of windings may be magnetically connected to a core of one AC electric machine.
  • the switching elements of the power converters 120 and 140 are not ideal, so that some voltage drop occurs during the current conduction, and the conduction loss is multiplied by the product of the switch voltage drop [V] and the conduction current [A]. W] occurs. Furthermore, at the instant of switching, voltage and current increase / decrease with a finite slope, resulting in switching losses proportional to the product of current and voltage. Therefore, in order to reduce such conduction loss and switching loss, it is advantageous that the harmonic pulsating current other than the fundamental wave component not contributing to the power transfer is as small as possible. Since the current can be reduced, the power conversion efficiency of the driving device 100 is improved.
  • the filter for removing the pulsating current can be eliminated or minimized, the manufacturing cost, volume, and weight of the driving device 100 can be reduced.
  • the efficiency of the driving device 100 is improved, the operation loss of the heat dissipating device for maintaining the temperature of the switching element can be reduced, and the heat dissipation design is advantageous, thereby adding the overall volume and weight of the driving device 100. Can be further reduced.
  • the AC electromechanical apparatus of the present invention may be a transformer including a transformer primary stage 360, a transformer secondary stage including windings 310 and 330, and a transformer core 380.
  • the AC electromechanical driving apparatus 300 may include a winding 360 of the first stage of the transformer, windings 310 and 330 of the second stage of the transformer, a transformer core 380, and a PWM power source 320 and 340. It may also include an AC load (or a three-phase load) 370.
  • the winding unit 360 of the first stage of the transformer is illustrated in the form of a Y connection, but the winding unit 360 may be configured in another connection form.
  • the winding 360 of the first stage of the transformer may be configured in a delta ( ⁇ ) connection form.
  • the PWM power sources 320, 340 and the windings 310, 330, 360 are three phase power and three phase windings, respectively.
  • the windings 310 and 330 of the second stage of the transformer are connected by the connection unit 350 in an equivalent delta shape.
  • Each line voltage of the PWM power sources 320 and 340 is applied to a node between the windings ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , ⁇ 2 connected in the delta form.
  • the transformer of the drive device 300 is a three-phase transformer, the windings of the same phase (eg, ⁇ 1 and ⁇ 2 ) are transformer primary 360 regardless of the winding number (subscripted 1 or 2). Corresponds to the same winding (eg, ⁇ p ).
  • the drive unit 300 is a connection portion for directly connecting the transformer secondary winding windings 310 and 330 to reduce the current harmonic pulsation of the transformer secondary stage while maintaining the harmonic characteristics of the transformer primary stage 360. And further includes 350.
  • connection part 350 connects the nodes of the first winding part 310 and the nodes of the second winding part 330 so that the first winding part 310 and the second winding part 330 are equivalently delta-connected. It is configured to form one winding of the form.
  • FIG. 2C is a cross-sectional view of an AC electric machine and a driving apparatus according to an embodiment of the present invention, which includes a stator and a rotor, and a connection relationship with an output voltage of the power converter.
  • the AC electric machine may be an electric motor or a generator.
  • an alternating current electric machine includes a rotor 460, windings composed of windings ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , ⁇ 2 , and a stator core 480. It may include a stator.
  • the AC electromechanical driving device 400 may include the AC electromechanical and PWM power sources 420 and 440 of the present embodiment, and the PWM power may act as a load when operating as a generator.
  • a typical three-phase electric motor or a generator transmits and receives energy through three electrical connections from a driving device.
  • the AC electromechanical driving device 400 of the present invention internally stir-winds a plurality of windings ⁇ 1. , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 ) further includes a connection unit 450 for allowing each of the windings to receive energy directly from the plurality of three-phase PWM power sources.
  • the connection unit 450 connects the first windings ⁇ 1 , ⁇ 1 , ⁇ 1 and the second windings ⁇ 2 , ⁇ 2 , ⁇ 2 , and the windings ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , ⁇ 2 ) are configured to equivalently form one winding in the form of a delta ( ⁇ ) connection.
  • Each line voltage of the PWM power supplies 420 and 440 is applied to a node between the windings ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 connected in a delta form.
  • the currents (or voltages) applied to the windings (a 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , ⁇ 2 ) of the stator are Are synthesized to transfer energy to the rotor 460.
  • the energy of the rotor is current (or voltage) in the windings of the stator ( ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , ⁇ 2 ). It is divided into two parts.
  • the cross-sectional view of the AC electric machine shown in FIG. 2C is a structure composed of six slots, but the scope of the present invention is not limited thereto.
  • the shape or number of slots and the way in which the windings are wound can be varied, and the number of poles of the rotor can be adjusted accordingly.
  • a three-phase alternating current electric machine is such that the stator winding is powered from the outside through a three-phase winding (eg, an electric motor) or sends generated power to the outside (eg, a generator).
  • a three-phase winding eg, an electric motor
  • a generator e.g., a generator
  • a plurality of three-phase windings improves the starting characteristics or increases the output through a serial / parallel connection.
  • two three-phase windings or 2n (n natural number)
  • the three 3-phase windings transmit power to the outside.
  • each power converter for example, PWM power supply
  • pulsation reduction effect can be obtained in the stator winding current and the magnetic flux linking to the rotor. have. It may seem disadvantageous to use a plurality of power converters to drive one AC electric machine, but in the case of driving a large AC machine, parallel operation of the power converters is difficult due to the capacity limitation of the switching element. Inevitably, the cost burden does not increase.
  • FIG. 3 is a circuit diagram specifically illustrating an example of the three-phase PWM power supply of FIGS. 1 and 2A to 2C as an example of a power converter.
  • the three-phase PWM power supply 120 includes a DC power supply 121, a switching unit 122, and an output terminal 123.
  • FIG. 3 shows a two-level power converter, a power converter having a higher level output may be used, and unlike FIG. 3 in which a three-phase power source is generated from one DC power source, each phase output is a separate DC power source. It may also be generated from.
  • the DC power supply 121 operates as a source of power.
  • the DC power supply 121 includes various types of power supplies.
  • the DC power supply 121 may include a battery, a solar panel, or a power supply using a rectifier circuit for converting AC into DC.
  • the DC power supply 121 provides power to the output terminal 123 through the switching unit 122.
  • the switching unit 122 is inserted between the DC power supply 121 and the output terminal 123 to convert the DC power provided by the DC power supply 121 into PWM power through switching.
  • the switching unit 122 includes a plurality of power switches therein, and controls the opening and closing of each switch to convert DC power into three-phase PWM power. Since a specific control method of the switching unit 122 for converting DC power into three-phase PWM power is well known in the art, a description thereof will be omitted here.
  • the three-phase PWM power converted by the switching unit 122 is provided to the three-phase windings 110 and 130 (see FIG. 2A) through the output terminal 123.
  • the output terminal 123 is a terminal for outputting the provided three-phase PWM power to the three-phase windings 110 and 130.
  • the output terminal 123 may be configured as a hardware terminal including a connector, or may be simply configured as a simple electrical connection.
  • FIG. 4 is a circuit diagram schematically illustrating the connection of the secondary winding of the transformer shown in FIG. 2B in the form of a delta connection.
  • FIG. 4 in order to more clearly understand the winding connection of FIG. 2B, a circuit diagram showing the windings of FIG. 2B and the line voltages applied to them in the form of a delta connection is shown.
  • the line voltages V ab , V bc , V ca , V rs , V st , and V tr refer to voltages between the output terminals of the PWM power supplies 320, 340, and FIG. 2B, respectively.
  • the line voltage V ab refers to the voltage between the output terminals a and b of the first PWM power supply 320
  • the line voltage V bc refers to the output of the first PWM power supply 320
  • the voltage between the terminals b and c, and the line voltage V ca refers to the voltage between the output terminals c and a of the first PWM power supply 320
  • the line voltage V rs refers to the voltage between the output terminals r and s of the second PWM power supply 340
  • the line voltage V st is the output terminal of the second PWM power supply 340.
  • the line voltage (V tr ) means the voltage between the output terminals (t, r) of the second PWM power supply 340.
  • the line voltage provided by the first PWM power supply 320 and the line voltage provided by the second PWM power supply 340 simultaneously act on each of the windings. That is, due to the circuit structure in which the two PWM power sources 320 and 340 are combined in a delta form, each of the windings ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 may have different PWM. Line voltages derived from the power sources 320 and 340 are superposed and applied. Therefore, if the output carrier phase of the PWM power supplies 320 and 340 are different from each other, the harmonic pulsation of each winding is canceled due to the superposition effect of the line voltages in the second stage of the transformer.
  • the currents (or voltages) applied to the first and second windings 310 and 330 are combined to form the winding 360 of the primary stage of the transformer. , See FIG. 2B).
  • the current (or voltage) applied to the winding 360 of the transformer primary stage is the first and second windings of the secondary transformer stage. It is divided into (310, 330). Even in this case, the change in harmonic pulsation of the first and second windings 310 and 330 is reduced by electrically connecting the first and second windings 310 and 330. none.
  • ⁇ , ⁇ , and ⁇ mean three phases having a phase difference of 120 degrees from each other, and phases corresponding to each other in the first winding part 310 and the second winding part 330 (for example, ⁇ 1 and ⁇ 2 ) are the same size and phase with each other. Therefore, there is no superiority or sequence difference between the first winding 310 and the second winding 330, and the two are distinguished only because the PWM power or load to be connected is different. For example, even if ⁇ 1 and ⁇ 2 are arranged in the state where they are mutually inverted in FIG. 4, there is no difference in achieving the intended effect of the present invention, and this is true even in windings corresponding to ⁇ phase or ⁇ phase. same.
  • the part of the windings ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , ⁇ 2 corresponds to the transformer secondary when the positive voltage is applied to the node pointed at the transformer primary. This means that a positive voltage is applied to the node where the dot on which the dot is marked.
  • the dotted node is also a relative meaning, and may be configured such that each of the windings has a polarity opposite to that shown in FIG. 4 according to the winding direction of the transformer secondary winding.
  • delta power supplies may be equivalently converted to a Y power source.
  • the connected line voltages will be replaced by the line voltages of the output terminals.
  • the three-phase power source may be generated from one power converter, but may be generated using a plurality of power converters.
  • FIG. 5 is a circuit diagram illustrating connection of secondary windings of a transformer having a different phase order according to an embodiment of the present invention. Referring to FIG. 5, windings and line voltages are arranged to have a phase order in the opposite direction to FIG. 4.
  • phase change of the line voltages of the first PWM power source 320 (see FIG. 2B) and the second PWM power source 340 (see FIG. 2B) is shown in the counterclockwise direction.
  • the first PWM power source 320 is shown in FIG. 5.
  • the phase change of the line voltages of the second PWM power supply 340 appear in a clockwise direction. This can be implemented simply by reversing the phase order of the output currents (or voltages) of the PWM power supplies 320, 340.
  • the circuit is equivalent to the delta connection of the windings and the line voltages shown. That is, referring to FIG. 5, the line voltage provided by the first PWM power supply 420 and the line voltage provided by the second PWM power supply 440 simultaneously act on the respective windings of the AC electric machine of FIG. 2C.
  • each of the windings ⁇ 1 , ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 , and ⁇ 2 may have different PWM.
  • Line voltages derived from the power sources 420 and 440 are applied in overlap. Therefore, if the output carrier phase of the PWM power supplies 420 and 440 are different from each other, the harmonic pulsation of each winding is canceled due to the superposition effect of the line voltages in the stator of the AC electric machine.
  • the manner of connecting the windings and the line voltages is not limited to that shown in FIGS. 4 and 5.
  • the present invention connects a plurality of windings (for example, windings 310 and 330 of FIG. 2B) that are separated from each other through a connection portion (for example, connection portion 350 of FIG. 2B) to form a delta connection.
  • One delta winding may be generated, and the line voltage or line voltage of the plurality of three-phase power sources may be connected to each node between the respective windings included in the delta winding.
  • one three-phase power supply may apply all of the line voltage or line voltages to one winding part (eg, 310), or two or more winding parts (eg, 310). , 330 may be applied.
  • FIG. 6 is a circuit diagram illustrating an AC electric machine having three or more three-phase windings in a second energy transfer unit according to an embodiment of the present disclosure.
  • the AC electric machine may be a transformer. Referring to FIG. 6, a total of 12 windings 211, 212, 213, 221, 222, 223, 231, 232, 233, 241, 242, and 243 of four three-phase windings are connected in a delta connection form.
  • Windings with similar reference numerals constitute the same winding.
  • the windings 211, 212, 213 make up the first winding
  • the windings 221, 222, 223 make up the second winding
  • the windings 231, 232, 233 make up the third winding.
  • the winding comprises a winding and the windings 241, 242, 243 constitute a fourth winding.
  • the delta winding unit 200 illustrated in FIG. 6 is configured such that windings constituting the same winding unit are positioned adjacent to each other, this is exemplary and the present invention is not limited thereto.
  • the winding 211 constituting the first winding part may be disposed between the winding 222 constituting the second winding part and the winding 232 constituting the third winding part.
  • the dotted lines in FIG. 6 represent four three-phase power supplies connected in delta.
  • the line voltage or line voltages of the four three-phase power sources are respectively between the respective windings 211, 212, 213, 221, 222, 223, 231, 232, 233, 241, 242, and 243 of the delta winding 200. Connected to the node.
  • the four three-phase power sources are connected to the delta winding unit 200 in a circular form having regularity with each other, this is exemplary and the present invention is not limited thereto.
  • the four three-phase power supplies may be connected to the delta winding 200 in a symmetrical or non-cyclic manner, with only three phase power sources having different carrier phases in at least one winding of the delta winding 200. It is sufficient if they are configured to intersect (i.e., to connect the line voltage or line voltage of a three-phase power source with different carrier phases across both ends of the winding).
  • the delta-connected three-phase power source may be replaced by the power supply of the Y connection type.
  • the present invention can be extended to the AC electric machine having three or more three-phase windings in the second energy transfer unit. Therefore, even in the case of having three or more three-phase windings in the second energy transfer portion of the alternating current electric machine, harmonic pulsations can be reduced and thus power conversion efficiency can be improved.
  • FIG. 7 and 8 are timing diagrams showing simulation results of the driving apparatus according to the prior art and the driving apparatus according to the embodiment of the present invention, respectively, to show the advantageous effects of the present invention.
  • the alternating current electric machine is a transformer and four three-phase windings are included in the second stage.
  • FIG. 7 is a timing diagram illustrating currents of a transformer primary stage and a transformer secondary stage in the driving apparatus according to the related art.
  • the timing diagram 710 shows the system current Iap of the first stage of the transformer. Since the three-phase powers of different phases of the second stage of the transformer are synthesized and appear in the first stage of the transformer, it can be seen that the harmonic content is greatly reduced. .
  • the timing diagram 720 shows a phase currents Iai1, Iai2, Iai3, and Iai4 of the transformer secondary stage. Since the transformer secondary stage includes four three-phase windings, there are four three-phase power supplies correspondingly.
  • the a phase currents Iai1, Iai2, Iai3, and Iai4 mean a phase currents of the three phase power sources.
  • the harmonic component appears large, unlike in the case of transformer primary breaking. This large harmonic component increases the RMS current of the power converter, lowers power conversion efficiency, and increases grid loss and switching loss.
  • FIG. 8 is a timing diagram illustrating currents in a transformer primary stage and a transformer secondary stage in a driving apparatus according to an embodiment of the present invention.
  • the timing diagram 810 shows the system current Iap of the transformer primary stage, and shows the same result as in FIG. 7. Similarly, since three-phase powers having different carrier phases in the second stage of the transformer are synthesized and appear in the first stage of the transformer, it can be seen that the harmonic components are greatly reduced in the first stage of the transformer.
  • the timing diagram 820 shows a phase currents Iai1, Iai2, Iai3, and Iai4 of the transformer secondary stage. Since the transformer secondary stage includes four three-phase windings, there are four three-phase power supplies correspondingly.
  • the a phase currents Iai1, Iai2, Iai3, and Iai4 mean a phase currents of the three phase power sources.
  • line voltages or line voltages of different three-phase power sources are applied to both ends of each of the windings. Therefore, each of the windings overlaps the line voltage or the line voltage of different three-phase power sources. Therefore, when the carrier phase of the three-phase power supplies are different from each other, the harmonic components in the respective windings cancel each other out.
  • the harmonic content of the second stage of the transformer is significantly reduced. Therefore, the AC electromechanical driving apparatus according to the embodiment of the present invention suppresses the harmonics of the second stage of the transformer, so that the power conversion efficiency is improved, and the conduction loss and the switching loss can be confirmed.
  • the present invention may contribute to improving the performance of a transformer and a driving device including the same, and may be widely used anywhere in the field of power conversion in which a power converter may be used in addition to the field of battery energy storage.
  • the three-phase power source connected to the transformer second stage is a three-phase PWM power source, but the scope of the present invention is not limited thereto.
  • power sources in which three single-phase PWM power supplies are combined may be used instead of the three-phase PWM power supply.

Abstract

The present invention relates to an AC electric machine having improved current harmonic characteristics for a second energy transfer unit, and to an AC electric machine driving apparatus including same. An AC electric machine according to an embodiment of the present invention comprises: a first energy transfer unit electrically coupled with the second energy transfer unit; the second energy transfer unit including at least two or more three-phase coil portions; a core electrically connecting the first energy transfer unit with at least two or more three-phase coil portions; and a connecting unit directly electrically connecting at least two or more three-phase coil portions, wherein by means of the connecting unit, the at least two or more three-phase coil portions equivalently constitute one delta connection coil portion.

Description

교류전기기계 및 그것을 포함하는 구동장치AC electromechanical machines and drives including them
본 발명은 교류전기기계 및 그것을 포함하는 구동 장치에 관한 것으로서, 더욱 상세하게는 전력변환 장치와 연결된 권선의 전류 고조파 특성을 개선한 교류전기기계 및 그것을 포함하는 구동장치에 관한 것이다.The present invention relates to an alternating current electric machine and a driving device including the same, and more particularly, to an alternating current electric machine and a driving device including the same that improve the current harmonic characteristics of the winding connected to the power converter.
최근 들어 풍력, 태양광과 같은 신재생 에너지의 전력 계통 연결, 또는 전력 계통 지원을 위한 대용량 배터리 에너지 저장 장치의 계통 연결에 대해 많은 응용 예가 있으며, 이에 대한 관심이 급속히 증가하고 있다. 신재생 에너지원 또는 연료 전지, 배터리와 같은 새로운 전력원을 기존의 전력 계통에 연결하기 위해서는 통상 전력변환장치를 통하여 전력원이 계통에 연결되게 된다. 이러한 전력변환장치는 일반적으로 PWM(Pulse Width Modulation)을 이용하여 계통 측 전압을 합성하므로 계통 전류에 고조파 성분들이 포함될 수 있다. 따라서, 풍력, 태양광, 연료전지, 배터리 등과 같은 새로운 전력원을 전력변환장치를 통하여 기존 계통에 연결할 경우, IEEE Std. 1547이나 IEEE Std. 519와 같은 국제 기준 또는 각국의 규제 기관이 정한 고조파 기준을 만족해야 한다.Recently, there are many applications for grid connection of renewable energy such as wind and solar, or grid connection of large-capacity battery energy storage devices for supporting the grid, and interest in this is rapidly increasing. In order to connect a new power source such as a renewable energy source or a fuel cell or a battery to an existing power system, the power source is usually connected to the system through a power converter. Since the power converter generally synthesizes a grid side voltage using pulse width modulation (PWM), harmonic components may be included in the grid current. Therefore, when a new power source such as wind, solar, fuel cell or battery is connected to the existing system through the power converter, IEEE Std. 1547 or IEEE Std. International standards such as 519 or harmonic standards set by national regulatory bodies must be met.
PWM 주파수가 높아지면 전력변환장치의 출력 고조파 특성은 쉽게 향상될 수 있는 반면에, 스위칭 손실이 증가하여 전체적인 변환 효율이 감소된다. 나아가, 너무 높은 PWM 주파수는 EMI(Electromagnetic Interference) 문제를 야기할 수도 있다. PWM 주파수가 낮은 전력변환장치를 사용할 경우, 상대적으로 장치의 무게 및 부피가 증가하게 되는 것은 물론이고, 관련 규정에서 정한 고조파 기준을 만족시키기 위해 고조파 억제 필터를 추가적으로 설치해야 하는 문제점이 있다. As the PWM frequency increases, the output harmonic characteristics of the power converter can be easily improved, while the switching losses increase, which reduces the overall conversion efficiency. Furthermore, too high PWM frequencies may cause electromagnetic interference (EMI) problems. In the case of using a power converter having a low PWM frequency, the weight and volume of the device are relatively increased, and there is a problem in that an additional harmonic suppression filter must be installed to satisfy the harmonic standards set by the relevant regulations.
최근, 반도체 소자의 가격이 감소하면서 대규모 전력원을 계통에 연결하기 위하여 복수의 전력변환장치를 병렬로 운전하는 것이 용이해졌고, 병렬로 연결된 전력변환장치마다 스위칭 순간을 조금씩 다르게 함으로써 합성된 출력 전류의 고조파 맥동을 감소시키는 방법이 제안되었다. 이러한 방법은 추가적인 필터 사용을 최소화시키고, 도 1과 같은 변압기를 이용하여 용이하게 구현할 수 있다는 이점이 있다. In recent years, as the cost of semiconductor devices has decreased, it has become easier to operate a plurality of power converters in parallel in order to connect a large power source to the grid. A method of reducing harmonic pulsations has been proposed. This method has the advantage of minimizing the use of additional filters and can be easily implemented using a transformer as shown in FIG. 1.
그러나, 이 경우에도 변압기 1차단 전류의 고조파는 병렬 연결된 전력변환장치의 PWM을 적절히 제어하여 억제할 수 있으나, 변압기 2차단에 흐르는 전류에는 여전히 고조파 전류 맥동이 크게 남아있게 되고, 이는 전체적인 실효(RMS,Root Mean Square) 전류를 증가시켜 전력변환장치의 전류 정격을 키우고, 또한 전력 변환 효율을 감소시키는 문제점을 야기하였다.However, even in this case, the harmonics of the transformer primary current can be suppressed by appropriately controlling the PWMs of the paralleled power converters, but the harmonic current pulsation still remains largely in the current flowing through the secondary transformer of the transformer. Increasing the root mean square current increases the current rating of the power converter and reduces the power conversion efficiency.
이러한 문제점은 전력변환장치와 연결된 전동기 또는 발전기의 경우에도 동일하게 나타날 수 있다. 전동기 또는 발전기는 자기적인 결합을 통해 에너지를 전달한다는 측면에서, 구동 원리가 변압기와 매우 유사하다. 예를 들어, 전동기의 경우, 고정자 권선에 교류 전류를 흘리면 공간에 회전하는 자속을 만들 수 있고, 이는 회전자로 하여금 회전을 일으키는 토크를 발생시킨다. 이 때, 전동기 구동에 사용되는 전력변환장치가 PWM을 사용함에 따라, 고정자 권선에 흐르는 전류에는 회전에 필요한 토크를 발생시키는 주파수 성분 외에 스위칭 주파수 대역의 고조파 성분도 포함되게 된다. 이러한 전동기 구동 전류의 고조파 성분 역시 앞서 언급한 바와 같이 RMS 전류를 증가시켜, 전력변환장치의 전류 정격을 증가시키고 전력 변환 효율을 감소시키는 문제점을 야기할 수 있다. This problem may also occur in the case of an electric motor or a generator connected to a power converter. The driving principle is very similar to a transformer in that an electric motor or a generator transfers energy through magnetic coupling. For example, in the case of an electric motor, the flow of alternating current through the stator windings creates a magnetic flux that rotates in space, which causes the rotor to generate torque that causes rotation. At this time, as the power converter used for driving the motor uses PWM, the current flowing through the stator windings includes harmonic components of the switching frequency band in addition to the frequency components that generate torque required for rotation. Harmonic components of the motor drive current may also cause the problem of increasing the RMS current as mentioned above, increasing the current rating of the power converter and reducing the power conversion efficiency.
또, 교류전기기계 구동을 위한 전력변환장치는 대상 교류전기기계의 용량이 커지게 되면, 스위칭 주파수를 높여 전류 맥동을 줄이는 것에 한계가 존재하므로, 낮은 스위칭 주파수를 유지하면서 고정자에 흐르는 전류 맥동을 줄일 필요가 있다.In addition, the power converter for driving an AC electromechanical machine has a limit in reducing the current pulsation by increasing the switching frequency when the capacity of the target AC electromechanical device increases, thus reducing the current pulsation flowing to the stator while maintaining a low switching frequency. There is a need.
본 발명의 일 측면에 따르면, 교류전기기계의 복수의 3상 권선부를 포함하는 제 2 에너지 전달부의 권선에 전력변환장치와의 새로운 연결 방식을 적용함으로써, 제 2 에너지 전달부의 전류의 고조파 특성을 향상시킨 교류전기기계 및 그것을 포함하는 교류전기기계 구동 장치를 제공할 수 있다.According to an aspect of the present invention, by applying a new connection method with the power converter to the winding of the second energy transfer unit including a plurality of three-phase winding of the AC electric machine, the harmonic characteristics of the current of the second energy transfer unit is improved. It is possible to provide an alternating current electromechanical machine and an alternating current electromechanical driving device including the same.
본 발명의 다른 일 측면에 따르면, 전력 변환 효율이 향상된 교류전기기계 및 그것을 포함하는 교류전기기계 구동 장치를 제공할 수 있다. According to another aspect of the present invention, it is possible to provide an alternating current electromechanical apparatus and an alternating current electromechanical driving apparatus including the same.
본 발명의 또 다른 일 측면에 따르면, 더 낮은 정격 전류를 갖는 소자들로 구성되어, 제작 비용을 감소시킨 교류전기기계 및 그것을 포함하는 교류전기기계 구동 장치를 제공할 수 있다.According to another aspect of the present invention, it is possible to provide an alternating current electromechanical device and an alternating current electromechanical driving device including the same, which are composed of elements having a lower rated current, thereby reducing manufacturing costs.
본 발명의 실시 예들에 따른 교류전기기계는, 제 2 에너지 전달부와 자기적으로 결합하는 제 1 에너지 전달부; 적어도 둘 이상의 3상 권선부들을 포함하는 제 2 에너지 전달부; 상기 제 1 에너지 전달부와 상기 적어도 둘 이상의 3상 권선부들을 자기적으로 연결하는 코어; 및 상기 적어도 둘 이상의 3상 권선부들을 전기적으로 직접 연결하는 연결부를 포함하고, 상기 연결부에 의해, 상기 적어도 둘 이상의 3상 권선부들에 포함된 권선들은 하나의 델타(Delta,Δ) 결선된 권선부를 등가적으로 구성한다.AC electric machine according to the embodiments of the present invention, the first energy transfer unit magnetically coupled to the second energy transfer unit; A second energy transfer comprising at least two three-phase windings; A core magnetically connecting the first energy transfer unit and the at least two three-phase windings; And a connection part for directly connecting the at least two three-phase winding parts, wherein the windings included in the at least two three-phase winding parts are connected to one delta (Δ) wired winding part. Configure equivalently.
실시 예로서, 상기 교류전기기계는 변압기이며, 상기 제 1 에너지 전달부는 변압기 1차단이고, 상기 제 2 에너지 전달부는 변압기 2차단이며, 상기 코어는 변압기 코어이다.In an embodiment, the alternating current electrical machine is a transformer, the first energy transfer portion is a transformer primary stage, the second energy transfer unit is a transformer secondary stage, and the core is a transformer core.
실시 예로서, 상기 교류전기기계는 전동기 또는 발전기이며, 상기 제 1 에너지 전달부는 회전자이고, 상기 제 2 에너지 전달부는 고정자이며, 상기 코어는 고정자 코어이다.In an embodiment, the alternating current electrical machine is an electric motor or a generator, the first energy transfer portion is a rotor, the second energy transfer portion is a stator, and the core is a stator core.
실시 예로서, 상기 델타 결선된 권선부의 권선들 사이의 노드들에는 적어도 둘 이상의 3상 전원들의 선 전압들 또는 선간 전압들이 연결된다.In an embodiment, line voltages or line voltages of at least two or more three-phase power sources are connected to nodes between the windings of the delta-connected winding.
실시 예로서, 상기 노드들과 상기 선전압들 또는 선간 전압들은 각각 일대일로 연결된다.In an embodiment, the nodes and the line voltages or line voltages are connected one to one, respectively.
실시 예로서, 상기 적어도 둘 이상의 3상 전원들의 선 전압들 또는 선간 전압들은 대응하는 3상 전원별로 각각 델타결선 또는 Y 결선을 구성한다.In an embodiment, the line voltages or the line voltages of the at least two three-phase power sources form a delta connection or a Y connection for each of the corresponding three-phase power sources.
실시 예로서, 상기 적어도 둘 이상의 3상 전원들은 3상 PWM(Pulse Width Modulation) 전원 또는 단상 PWM 전원 3개가 조합된 전원들이다.In an embodiment, the at least two three-phase power supplies are a combination of three three-phase pulse width modulation (PWM) power supplies or three single-phase PWM power supplies.
실시 예로서, 상기 델타 결선된 권선부의 권선들 사이의 노드들에는 적어도 둘 이상의 3상 부하들의 3상 전력 입력 단자들이 연결된다.In an embodiment, three phase power input terminals of at least two or more three phase loads are connected to nodes between the windings of the delta connected winding.
실시 예로서, 상기 노드들과 상기 3상 전력 입력 단자들은 각각 일대일로 연결된다.In an embodiment, the nodes and the three-phase power input terminals are each connected one-to-one.
본 발명의 실시 예들에 따른 교류전기기계 구동장치는, 제 2 에너지 전달부와 자기적으로 결합하는 제 1 에너지 전달부; 적어도 둘 이상의 3상 권선부들을 포함하는 제 2 에너지 전달부; 상기 제 1 에너지 전달부와 상기 적어도 둘 이상의 3상 권선부들을 자기적으로 연결하는 코어; 및 상기 적어도 둘 이상의 3상 권선부들을 전기적으로 직접 연결하는 연결부를 포함하고, 상기 연결부에 의해, 상기 적어도 둘 이상의 3상 권선부들은 하나의 델타(Delta,Δ) 결선된 권선부를 등가적으로 구성하는, 교류전기기계; 및 상기 제 2 에너지 전달부의 적어도 둘 이상의 3상 권선부들과 전기적으로 직접 연결되는 적어도 둘 이상의 3상 전원들을 포함한다.An AC electromechanical driving device according to embodiments of the present invention includes: a first energy transfer unit magnetically coupled to a second energy transfer unit; A second energy transfer comprising at least two three-phase windings; A core magnetically connecting the first energy transfer unit and the at least two three-phase windings; And a connection portion for directly connecting the at least two three-phase winding portions, wherein the at least two three-phase winding portions are equivalently constituted by one Delta (Δ) wired winding portion. Alternating current electrical machinery; And at least two or more three phase power sources electrically connected directly to at least two or more three phase windings of the second energy transfer unit.
실시 예로서, 상기 교류전기기계는 변압기이며, 상기 제 1 에너지 전달부는 변압기 1차단이고, 상기 제 2 에너지 전달부는 변압기 2차단이며, 상기 코어는 변압기 코어이다.In an embodiment, the alternating current electrical machine is a transformer, the first energy transfer portion is a transformer primary stage, the second energy transfer unit is a transformer secondary stage, and the core is a transformer core.
실시 예로서, 상기 교류전기기계는 전동기 또는 발전기이며, 상기 제 1 에너지 전달부는 회전자이고, 상기 제 2 에너지 전달부는 고정자이며, 상기 코어는 고정자 코어이다.In an embodiment, the alternating current electrical machine is an electric motor or a generator, the first energy transfer portion is a rotor, the second energy transfer portion is a stator, and the core is a stator core.
실시 예로서, 상기 적어도 둘 이상의 3상 전원들은 3상 PWM(Pulse Width Modulation) 전원 또는 단상 PWM 전원 3개가 조합된 전원들이다.In an embodiment, the at least two three-phase power supplies are a combination of three three-phase pulse width modulation (PWM) power supplies or three single-phase PWM power supplies.
실시 예로서, 상기 델타 결선된 권선부의 권선들 사이의 노드들에는 상기 적어도 둘 이상의 3상 전원들의 선 전압들 또는 선간 전압들이 연결된다.In an embodiment, line voltages or line voltages of the at least two three-phase power sources are connected to nodes between the windings of the delta-connected winding.
실시 예로서, 상기 노드들과 상기 선전압들 또는 선간 전압들은 각각 일대일로 연결된다.In an embodiment, the nodes and the line voltages or line voltages are connected one to one, respectively.
본 발명의 실시 예들에 따른 교류전기기계 구동장치는, 제 2 에너지 전달부와 자기적으로 결합하는 제 1 에너지 전달부; 적어도 둘 이상의 3상 권선부들을 포함하는 제 2 에너지 전달부; 상기 제 1 에너지 전달부와 상기 적어도 둘 이상의 3상 권선부들을 자기적으로 연결하는 코어; 및 상기 적어도 둘 이상의 3상 권선부들을 전기적으로 직접 연결하는 연결부를 포함하고, 상기 연결부에 의해, 상기 적어도 둘 이상의 3상 권선부들은 하나의 델타(Delta,Δ) 결선된 권선부를 등가적으로 구성하는, 교류전기기계; 및 상기 제 2 에너지 전달부의 적어도 둘 이상의 3상 권선부들과 전기적으로 연결되는 적어도 둘 이상의 3상 부하들을 포함한다.An AC electromechanical driving device according to embodiments of the present invention includes: a first energy transfer unit magnetically coupled to a second energy transfer unit; A second energy transfer comprising at least two three-phase windings; A core magnetically connecting the first energy transfer unit and the at least two three-phase windings; And a connection portion for directly connecting the at least two three-phase winding portions, wherein the at least two three-phase winding portions are equivalently constituted by one Delta (Δ) wired winding portion. Alternating current electrical machinery; And at least two or more three phase loads electrically connected to at least two or more three phase windings of the second energy transfer unit.
실시 예로서, 상기 교류전기기계는 변압기이며, 상기 제 1 에너지 전달부는 변압기 1차단이고, 상기 제 2 에너지 전달부는 변압기 2차단이며, 상기 코어는 변압기 코어이다.In an embodiment, the alternating current electrical machine is a transformer, the first energy transfer portion is a transformer primary stage, the second energy transfer unit is a transformer secondary stage, and the core is a transformer core.
실시 예로서, 상기 교류전기기계는 전동기 또는 발전기이며, 상기 제 1 에너지 전달부는 회전자이고, 상기 제 2 에너지 전달부는 고정자이며, 상기 코어는 고정자 코어이다.In an embodiment, the alternating current electrical machine is an electric motor or a generator, the first energy transfer portion is a rotor, the second energy transfer portion is a stator, and the core is a stator core.
실시 예로서, 상기 델타 결선된 권선부의 권선들 사이의 노드들에는 적어도 둘 이상의 3상 부하들의 3상 전력 입력 단자들이 연결된다.In an embodiment, three phase power input terminals of at least two or more three phase loads are connected to nodes between the windings of the delta connected winding.
본 발명의 실시 예들에 따르면, 교류전기기계 및 전력변환장치의 출력 고조파 특성이 향상된다. 또한, 교류전기기계의 복수의 3상 권선부를 포함하는 제 2 에너지 전달부의 실효전류가 감소하므로, 전체적인 전력 변환 효율이 향상되고, 더 낮은 정격 전류의 소자들로 교류전기기계 및 교류전기기계 구동장치를 구성할 수 있어 제작 비용을 절감할 수 있다.According to embodiments of the present invention, the output harmonic characteristics of the AC electric machine and the power converter are improved. In addition, since the effective current of the second energy transfer unit including a plurality of three-phase windings of the AC electric machine is reduced, the overall power conversion efficiency is improved, and the AC electric machine and the AC electric machine driving device with lower rated current elements. It can be configured to reduce the production cost.
도 1은 종래의 변압기 및 구동장치를 나타내는 회로도이다.1 is a circuit diagram showing a conventional transformer and a driving device.
도 2a는 본 발명의 일 실시 예에 따른, 교류전기기계 및 구동장치를 나타내는 블록도이다.2A is a block diagram illustrating an AC electric machine and a driving device according to an embodiment of the present invention.
도 2b는 본 발명의 일 실시 예에 따른, 변압기 및 구동장치를 나타내는 회로도이다.2B is a circuit diagram illustrating a transformer and a driving device according to an embodiment of the present invention.
도 2c는 본 발명의 일 실시 예에 따른, 교류전기기계의 단면도 및 교류전기기계와 전력변환장치의 출력 전압의 연결을 나타내는 회로도이다.FIG. 2C is a circuit diagram illustrating a cross-sectional view of an AC electric machine and an output voltage of an AC electric machine and a power converter, according to an exemplary embodiment.
도 3은 도 2a의 3상 PWM 전원을 하나의 예시로서 구체적으로 나타내는 회로도이다.3 is a circuit diagram specifically illustrating the three-phase PWM power supply of FIG. 2A as an example.
도 4는 본 발명의 일 실시 예에 따른, 변압기의 2차단 권선 연결을 델타 연결의 형태로 도식화한 회로도이다. 4 is a circuit diagram schematically illustrating the connection of the secondary winding of a transformer in the form of a delta connection according to an embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따른, 상 순서를 달리한 변압기의 2차단 권선 연결을 나타내는 회로도이다.FIG. 5 is a circuit diagram illustrating a secondary winding connection of a transformer having a different phase order according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따른, 3개 이상의 3상 권선부를 갖는 변압기의 2차단 권선 연결을 나타내는 회로도이다.6 is a circuit diagram illustrating a secondary winding connection of a transformer having three or more three-phase windings according to an exemplary embodiment of the present invention.
도 7 및 도 8은 본 발명의 유리한 효과를 보여주기 위해, 종래 기술에 따른 교류전기기계 구동장치 및 본 발명에 따른 교류전기기계 구동장치를 각각 시뮬레이션한 결과를 나타내는 타이밍도이다.7 and 8 are timing diagrams showing simulation results of the AC electromechanical driving apparatus according to the prior art and the AC electromechanical driving apparatus according to the present invention, respectively, to show the advantageous effects of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시 예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시 예는 당업자가 본 명세서를 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시 예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시 예에 관련하여 본 발명의 사상 및 범위를 벗어나지 않으면서 다른 실시 예로 구현될 수 있다. DETAILED DESCRIPTION OF THE INVENTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present disclosure. It is to be understood that the various embodiments of the invention are different, but need not be mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be implemented in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment.
또한, 각각의 개시된 실시 예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 사상 및 범위를 벗어나지 않는 범위 내에서 다양하게 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 의도된 것이 아니며, 본 발명의 범위는 원칙적으로 첨부한 청구항들에 정해지고, 청구항들에 기재된 것 및 그와 균등한 범위의 가능한 실시 예들을 포괄한다. 유사한 참조부호가 도면들에서 사용되는 경우, 유사한 참조부호는 여러 실시 예들에 대해서 동일하거나 유사한 기능을 지칭한다.In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be variously changed without departing from the spirit and scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined in the appended claims in principle, and encompasses what is described in the claims and the equivalent embodiments thereof. When like reference numerals are used in the drawings, like reference numerals refer to the same or similar functions for the various embodiments.
종래의 교류전기기계 및 이를 포함하는 구동장치는 앞서 설명한 바와 같은 문제점을 가지며, 교류전기기계는 일반적으로 변압기, 전동기 및 발전기를 포괄하는 개념이다. 변압기는 전력변환장치가 연결된 변압기 권선에서 자속을 제어하여 변압기 코어를 통해 변압기의 다른 권선들과 에너지를 주고 받고, 전동기 및 발전기와 같이 고정자와 회전자를 갖는 교류전기기계는 전력변환장치에 연결된 고정자 권선에 자속 변화를 일으켜 고정자 코어와 공극을 통해 회전자와 에너지를 주고 받는다. 후술하는 종래 기술의 문제점 및 본 발명의 주요한 원리는 변압기의 2차단 권선 또는 교류전기기계의 고정자 권선 및 전력변환장치에 동일하게 적용 가능하므로, 이하, 변압기 및 전력변환장치를 예로 들어 도 1과 함께 종래 기술에 대하여 설명한다.Conventional AC electric machines and drive devices including the same have the problems described above, and AC electric machines generally include a transformer, an electric motor, and a generator. The transformer controls the magnetic flux in the transformer windings to which the power converter is connected to exchange energy with the other windings of the transformer through the transformer core. Alternating current electrical machines with stators and rotors, such as motors and generators, have stators connected to the power converter. The magnetic flux changes in the windings to exchange energy with the rotor through the stator core and voids. Since the problems of the prior art and the main principles of the present invention described below are equally applicable to the secondary winding of a transformer or the stator winding and the power converter of an alternating current electric machine, the following description will be given with reference to FIG. The prior art will be described.
도 1은 종래의 변압기 및 이를 포함하는 구동장치를 나타내는 회로도이다. 도 1을 참조하면, 구동장치(10)는 변압기 1차단의 권선부(15), 변압기 2차단의 권선부(11, 13), 변압기 코어(17), 교류부하(16) 및 PWM 전원(12, 14)을 포함한다. 그 중 변압기 1차단의 권선부(15), 변압기 2차단의 권선부(11, 13) 및 변압기 코어(17)는 하나의 변압기를 구성할 수 있다. 1 is a circuit diagram illustrating a conventional transformer and a driving device including the same. Referring to FIG. 1, the driving device 10 includes a winding unit 15 of a transformer primary stage, a winding unit 11 and 13 of a secondary transformer stage, a transformer core 17, an AC load 16, and a PWM power supply 12. , 14). Among them, the winding unit 15 of the transformer primary stage, the winding units 11 and 13 of the transformer secondary stage, and the transformer core 17 may constitute one transformer.
상대적으로 낮은 PWM 주파수를 갖는 전력변환장치(예를 들어, PWM 전원(12, 14))에 있어서, 고조파 억제 필터의 사용을 줄이기 위해 도 1과 같이 변압기 2차단에 적어도 둘 이상의 전력 공급부가 병렬로 운용될 수 있다. 여기서, 전력 공급부는 하나의 PWM 전원 및 그것과 연결된 권선부로 이루어진 회로 모듈을 의미한다. 예를 들어, 제 1 PWM 전원(12)과 제 1 권선부(11), 그리고 제 2 PWM 전원(14)과 제 2 권선부(13)는 각각 하나의 전력 공급부를 구성한다. 여기서, PWM 전원들(12, 14) 각각은 3상 PWM 전원이고, 변압기 1차단과 2차단의 권선부들(11, 13, 15) 각각은 3상 권선부이다. In power converters having relatively low PWM frequencies (e.g., PWM power supplies 12, 14), at least two power supplies in parallel with the transformer secondary, as shown in Figure 1, to reduce the use of harmonic suppression filters. Can be operated. Here, the power supply means a circuit module composed of one PWM power supply and a winding connected thereto. For example, the first PWM power source 12 and the first winding unit 11, and the second PWM power source 14 and the second winding unit 13 each constitute one power supply unit. Here, each of the PWM power supplies 12 and 14 is a three-phase PWM power supply, and each of the winding parts 11, 13, and 15 of the transformer first and second stages is a three-phase winding.
구동장치(10)는 PWM 전원들(12, 14)의 반송파 위상(carrier wave)을 서로 다르게 함으로써 권선부들(11, 13)에 제공되는 출력 맥동의 위상이 서로 달라지게 할 수 있다. 그리고, 이러한 고조파 맥동들은 변압기(11, 13, 17, 15)의 자기회로를 통해 합성되고, 서로의 고조파 성분이 상쇄된 상태로 변압기 1차단에 나타난다. 그 결과, 변압기 1차단에서는 훨씬 낮아진 수준의 고조파 맥동만이 나타나게 된다. 이처럼, 병렬 운용되는 복수의 전력 공급부를 적용함으로써, 서로 위상이 다른 고조파 맥동이 변압기를 통해 자기적으로 합성되므로 변압기 1차단에서의 고조파 기준은 보다 쉽게 충족될 수 있다. The driving device 10 may cause the phases of the output pulsations provided to the windings 11 and 13 to be different from each other by different carrier waves of the PWM power supplies 12 and 14. The harmonic pulsations are synthesized through the magnetic circuits of the transformers 11, 13, 17, and 15, and appear in the first stage of the transformer in a state in which harmonic components of each other are cancelled. As a result, only much lower harmonic pulsations appear in the transformer primary. As such, by applying a plurality of power supply units operated in parallel, the harmonic criterion in the first stage of the transformer can be more easily satisfied because harmonic pulsations different in phase from each other are magnetically synthesized through the transformer.
그러나, 이 경우에도 변압기 2차단 권선부들(11, 13)의 전류들에 대해서는 서로 상쇄되는 효과를 기대할 수 없으므로, 여전히 변압기 2차단에는 저주파 PWM에 의한 고조파 맥동이 그대로 남아 있게 된다. 이러한 변압기 2차단의 맥동은 실효(Root Mean Square, RMS) 전류를 증가시켜 전력 변환 효율을 감소시키고, PWM 전원들(12, 14)의 스위칭 소자들이 기본파 전류에 비해 큰 정격 전류를 갖는 소자로 구성되어야 하는 문제점을 야기한다.However, even in this case, since the effects of canceling each other with respect to the currents of the transformer secondary winding windings 11 and 13 cannot be expected, the harmonic pulsation caused by the low frequency PWM still remains in the secondary transformer. The pulsation of the secondary stage of the transformer increases the root mean square (RMS) current to reduce the power conversion efficiency, and switching elements of the PWM power supplies 12 and 14 are devices having a large rated current compared to the fundamental wave current. It causes a problem that must be configured.
일반적으로 병렬 운용되는 복수의 전력 공급부에 있어서, 각각에 포함된 변압기 2차단의 권선부들(11, 13)은 서로 직접적인 전기적 연결이 없는 형태로 구성된다. 그에 반해, 본 발명은 변압기 2차단 권선부들(11, 13)간에 직접적인 전기적 연결을 생성하여, 권선부들(11, 13)에 흐르는 전류 맥동을 저감시키고 전력변환장치의 전력 변환 효율을 향상시키는 방법을 제시한다.In general, in a plurality of power supply units operated in parallel, the windings 11 and 13 of the secondary stage of the transformer included in each of the plurality of power supply units are configured to have no direct electrical connection with each other. In contrast, the present invention provides a method for creating a direct electrical connection between the transformer secondary windings 11, 13 to reduce the current pulsation flowing through the windings 11, 13 and improve the power conversion efficiency of the power converter. present.
도 2a는 본 발명의 실시 예에 따른, 교류전기기계 및 이를 포함하는 교류전기기계 구동장치를 나타내는 회로도이다. 도 2a를 참조하면, 구동장치(100)는 제 1 에너지 전달부(160), 권선부들(110, 130)을 포함하는 제 2 에너지 전달부, 코어(180), 및 PWM 전원(120, 140)을 포함할 수 있다. 또, 구동장치(100)는 교류부하(또는, 3상 부하)(170)를 포함할 수 있다. 이 중, 제 1 에너지 전달부(160), 권선부들(110, 130)을 포함하는 제 2 에너지 전달부 및 코어(180)는 하나의 교류전기기계를 구성할 수 있다. 제 1 에너지 전달부(160)와 권선부들(110, 130)을 포함하는 제 2 에너지 전달부는 유도되는 자기적 현상으로 인해 서로 자기적으로 결합하여 에너지를 주고 받는다.2A is a circuit diagram illustrating an AC electric machine and an AC electric machine driving apparatus including the same according to an exemplary embodiment of the present invention. Referring to FIG. 2A, the driving device 100 includes a first energy transfer unit 160, a second energy transfer unit including windings 110 and 130, a core 180, and a PWM power supply 120 and 140. It may include. In addition, the driving device 100 may include an AC load (or a three-phase load) 170. Among these, the first energy transfer unit 160, the second energy transfer unit including the windings 110 and 130, and the core 180 may constitute one AC electric machine. The second energy transfer unit including the first energy transfer unit 160 and the windings 110 and 130 magnetically couples to each other to exchange energy due to the induced magnetic phenomenon.
한편, 도 2a에서, 교류전기기계 제 2 에너지 전달부의 권선부들(110, 130)은 PWM 전원(120, 140)에 연결되는 것으로 예시되었으며, 이 경우 에너지 전달 방향은 제 2 에너지 전달부에서 제 1 에너지 전달부(160)로 향하게 될 것이나, 본 발명의 범위는 이에 한정되지 않는다. 예를 들어, 교류전기기계의 제 2 에너지 전달부의 권선부들(110, 130)은 PWM 전원(120, 140)을 대신하여 3상 부하(예를 들어, 충전할 배터리)와 연결될 수 있다. 이 경우, 교류전기기계 제 2 에너지 전달부의 권선부들(110, 130)의 권선들 사이의 노드들에는 3상 부하들의 3상 전력 입력 단자들이 연결될 것이다. 그리고, 에너지 전달 방향은 제 1 에너지 전달부(160)에서 제 2 에너지 전달부로 향하게 될 것이다. Meanwhile, in FIG. 2A, the windings 110 and 130 of the second energy transfer part of the AC electromechanical part are illustrated as being connected to the PWM power supply 120 and 140, in which case the energy transfer direction is the first in the second energy transfer part. Will be directed to the energy transfer unit 160, but the scope of the present invention is not limited thereto. For example, the windings 110 and 130 of the second energy transfer unit of the AC electric machine may be connected to a three-phase load (eg, a battery to be charged) instead of the PWM power sources 120 and 140. In this case, three-phase power input terminals of three-phase loads will be connected to nodes between the windings of the windings 110, 130 of the second electromechanical second energy transfer. And, the energy transfer direction will be directed from the first energy transfer unit 160 to the second energy transfer unit.
실시 예로서, 교류전기기계는 제 2 에너지 전달부의 권선부들(110, 130)과 외부의 3상 전원들(여기서는 PWM 전원들(120, 140)) 또는 3상 부하들의 연결을 중계하는 3상 연결 단자들(미도시)을 더 포함할 수 있다. In an embodiment, the AC electric machine is a three-phase connection relaying the connection of the windings 110 and 130 of the second energy transfer unit with external three-phase power sources (here, PWM power sources 120 and 140) or three-phase loads. Terminals may be further included.
도 2a에서, PWM 전원들(120, 140)과 권선부들(110, 130)은 각각 3상 전원 및 3상 권선부들이다. 교류전기기계의 제 2 에너지 전달부의 권선부들(110, 130)은 연결부(150)에 의해, 등가적으로 델타(Δ) 형태로 결선된다. 그리고, PWM 전원들(120, 140)의 각 선 전압은 델타 형태로 결선된 권선들(α1, β1, γ1, α2, β2, γ2) 사이의 노드에 인가된다. In FIG. 2A, the PWM power supplies 120, 140 and the windings 110, 130 are three phase power and three phase windings, respectively. The windings 110 and 130 of the second energy transfer unit of the AC electric machine are connected by the connection unit 150 in an equivalent delta shape. Each line voltage of the PWM power supplies 120 and 140 is applied to a node between the windings α 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 connected in a delta form.
구동장치(100)의 제 1 에너지 전달부(160), 권선부들(110, 130) 및 코어(180)로 구성되는 교류전기기계는 3상 교류전기기계이므로, 이상적으로는 권선 α, β, γ의 전압은 크기가 같고 서로 120도의 위상 차를 갖는다. Since the alternating current electrical machine composed of the first energy transfer unit 160, the windings 110 and 130, and the core 180 of the driving device 100 is a three-phase alternating current electrical machine, ideally, the windings α, β, and γ Are equal in magnitude and have a phase difference of 120 degrees from each other.
본 발명에서, 구동장치(100)는 교류전기기계의 제 1 에너지 전달부(160)의 고조파 특성을 유지하면서 교류전기기계의 제 2 에너지 전달부의 전류 고조파 맥동을 감소시키기 위해, 교류전기기계 제 2 에너지 전달부의 권선부들(110, 130)을 직접적으로 연결하는 연결부(150)를 더 포함한다. In the present invention, the driving device 100 is to maintain the harmonic characteristics of the first energy transfer unit 160 of the alternating current electric machine, while reducing the current harmonic pulsation of the second energy transfer unit of the alternating current electric machine. It further includes a connection portion 150 for directly connecting the windings (110, 130) of the energy transfer.
연결부(150)는 제 1 권선부(110)의 노드들과 제 2 권선부(130)의 노드들을 결선하여, 제 1 권선부(110) 및 제 2 권선부(130)가 등가적으로 델타 결선 형태의 하나의 권선부를 형성하도록 구성된다. The connection part 150 connects the nodes of the first winding part 110 and the nodes of the second winding part 130 so that the first winding part 110 and the second winding part 130 are equivalently delta-connected. It is configured to form one winding of the form.
본 발명은 교류전기기계의 제 2 에너지 전달부에 전력변환장치를 통해 직류 전원들을 병렬로 운용하면서, 연결부(150)를 통해 복수의 3상 권선들(α1, β1, γ1, α2, β2, γ2)을 전기적으로 연결하여 하나의 델타 권선을 형성한다. 도 2a에 예시된 두 개의 권선부(110, 130) 연결을 한 쌍의 권선부라고 정의할 때, 하나의 교류전기기계의 코어에는 여러 쌍의 권선부가 자기적으로 연결될 수 있다.The present invention is a plurality of three-phase windings (α 1 , β 1 , γ 1 , α 2 through the connection unit 150, while operating the DC power supply in parallel through the power converter to the second energy transfer unit of the AC electric machine) , β 2 , γ 2 ) are electrically connected to form one delta winding. When the two windings 110 and 130 illustrated in FIG. 2A are defined as a pair of windings, several pairs of windings may be magnetically connected to a core of one AC electric machine.
구동장치(100)의 권선부들(110, 130)을 연결하는 구체적인 원리 및 추가적인 실시 예에 대해서는 뒤에서 더욱 상세히 설명하겠지만, 본 발명의 실시 예와 같이, 권선부들(110, 130) 간의 직접적인 연결을 추가하면 교류전기기계의 제 2 에너지 전달부의 고조파 맥동이 크게 감소하게 된다. 이처럼, 교류전기기계의 제 2 에너지 전달부의 고조파 맥동을 감소시킨 구동장치(100)는 다음과 같은 유리한 효과를 갖는다.Specific principles and additional embodiments for connecting the windings 110 and 130 of the driving device 100 will be described in more detail later, but as in the embodiment of the present invention, a direct connection between the windings 110 and 130 is added. The harmonic pulsations in the second energy transfer section of the AC electric machine are greatly reduced. As such, the driving device 100 which reduces the harmonic pulsation of the second energy transfer part of the AC electric machine has the following advantageous effects.
일반적으로, 전력변환장치(120, 140)의 스위칭 소자는 이상적이지 못하여, 전류 도통 시에 얼마간의 전압 강하가 발생하게 되고, 스위치 전압 강하[V]와 도통 전류[A]의 곱만큼 도통 손실[W]이 발생한다. 나아가, 스위칭 순간에는 전압과 전류가 유한한 기울기로 증가/감소하므로 전류와 전압의 곱에 비례하는 스위칭 손실도 발생하게 된다. 따라서 이러한 도통 손실과 스위칭 손실을 줄이기 위해, 전력 전달에 기여하지 않는 기본파 성분 외의 고조파 맥동 전류는 가급적 작은 것이 유리하고, 본 발명에서는 종래의 기술에 비해 3상 PWM 전원의 출력으로부터 스위칭에 의한 맥동 전류를 감소시킬 수 있으므로, 구동장치(100)의 전력 변환 효율이 향상된다. In general, the switching elements of the power converters 120 and 140 are not ideal, so that some voltage drop occurs during the current conduction, and the conduction loss is multiplied by the product of the switch voltage drop [V] and the conduction current [A]. W] occurs. Furthermore, at the instant of switching, voltage and current increase / decrease with a finite slope, resulting in switching losses proportional to the product of current and voltage. Therefore, in order to reduce such conduction loss and switching loss, it is advantageous that the harmonic pulsating current other than the fundamental wave component not contributing to the power transfer is as small as possible. Since the current can be reduced, the power conversion efficiency of the driving device 100 is improved.
또한, 이러한 맥동 전류 제거를 위한 필터를 없애거나 최소화할 수 있으므로, 구동장치(100)의 제작 비용, 부피 및 무게가 감소될 수 있다. 나아가, 구동장치(100)의 효율이 향상되면, 스위칭 소자의 온도를 일정하게 유지하기 위한 방열 장치의 동작 손실을 줄일 수 있고, 방열 설계가 유리해져 구동장치(100)의 전체적인 부피와 무게를 추가적으로 더 줄일 수 있다.In addition, since the filter for removing the pulsating current can be eliminated or minimized, the manufacturing cost, volume, and weight of the driving device 100 can be reduced. In addition, if the efficiency of the driving device 100 is improved, the operation loss of the heat dissipating device for maintaining the temperature of the switching element can be reduced, and the heat dissipation design is advantageous, thereby adding the overall volume and weight of the driving device 100. Can be further reduced.
도 2b는 본 발명의 실시 예에 따른, 교류전기기계 및 이를 포함하는 구동장치를 나타내는 회로도이다. 도 2b를 참조하면, 본 발명의 교류전기기계는 변압기 1차단(360), 권선부들(310, 330)을 포함하는 변압기 2차단 및 변압기 코어(380)를 포함하는 변압기일 수 있다. 또한, 교류전기기계 구동장치(300)는 변압기 1차단의 권선부(360), 변압기 2차단의 권선부들(310, 330), 변압기 코어(380), 및 PWM 전원(320, 340)을 포함할 수 있으며, 교류부하(또는, 3상 부하)(370)를 포함할 수도 있다.2B is a circuit diagram illustrating an AC electric machine and a driving device including the same according to an exemplary embodiment of the present invention. Referring to FIG. 2B, the AC electromechanical apparatus of the present invention may be a transformer including a transformer primary stage 360, a transformer secondary stage including windings 310 and 330, and a transformer core 380. In addition, the AC electromechanical driving apparatus 300 may include a winding 360 of the first stage of the transformer, windings 310 and 330 of the second stage of the transformer, a transformer core 380, and a PWM power source 320 and 340. It may also include an AC load (or a three-phase load) 370.
도 2b에서, 변압기 1차단의 권선부(360)는 Y 결선 형태로 도시되었으나, 권선부(360)는 다른 결선 형태로도 구성될 수 있다. 예를 들어, 변압기 1차단의 권선부(360)는 델타(Δ) 결선 형태로 구성될 수 있다.In FIG. 2B, the winding unit 360 of the first stage of the transformer is illustrated in the form of a Y connection, but the winding unit 360 may be configured in another connection form. For example, the winding 360 of the first stage of the transformer may be configured in a delta (Δ) connection form.
도 2b에서, PWM 전원들(320, 340)과 권선부들(310, 330, 360)은 각각 3상 전원 및 3상 권선부들이다. 변압기 2차단의 권선부들(310, 330)은 연결부(350)에 의해, 등가적으로 델타(Δ) 형태로 결선된다. 그리고, PWM 전원들(320, 340)의 각 선 전압은 델타 형태로 결선된 권선들(α1, β1, γ1, α2, β2, γ2) 사이의 노드에 인가된다. In FIG. 2B, the PWM power sources 320, 340 and the windings 310, 330, 360 are three phase power and three phase windings, respectively. The windings 310 and 330 of the second stage of the transformer are connected by the connection unit 350 in an equivalent delta shape. Each line voltage of the PWM power sources 320 and 340 is applied to a node between the windings α 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 connected in the delta form.
구동장치(300)의 변압기는 3상 변압기이므로, 같은 상의 권선들(예를 들어, α1 과 α2)은 권선 번호(아래 첨자로 표시된, 1 또는 2)와 무관하게 변압기 1차단(360)의 동일한 권선(예를 들어, αp)에 대응된다.Since the transformer of the drive device 300 is a three-phase transformer, the windings of the same phase (eg, α 1 and α 2 ) are transformer primary 360 regardless of the winding number (subscripted 1 or 2). Corresponds to the same winding (eg, α p ).
본 발명에서, 구동장치(300)는 변압기 1차단(360)의 고조파 특성을 유지하면서 변압기 2차단의 전류 고조파 맥동을 감소시키기 위해, 변압기 2차단 권선부들(310, 330)을 직접적으로 연결하는 연결부(350)를 더 포함한다. In the present invention, the drive unit 300 is a connection portion for directly connecting the transformer secondary winding windings 310 and 330 to reduce the current harmonic pulsation of the transformer secondary stage while maintaining the harmonic characteristics of the transformer primary stage 360. And further includes 350.
연결부(350)는 제 1 권선부(310)의 노드들과 제 2 권선부(330)의 노드들을 결선하여, 제 1 권선부(310) 및 제 2 권선부(330)가 등가적으로 델타 결선 형태의 하나의 권선부를 형성하도록 구성된다. The connection part 350 connects the nodes of the first winding part 310 and the nodes of the second winding part 330 so that the first winding part 310 and the second winding part 330 are equivalently delta-connected. It is configured to form one winding of the form.
도 2c는 본 발명의 실시 예에 따른 교류전기기계 및 구동장치로서, 고정자 및 회전자를 포함하는 교류전기기계의 단면도 및 전력변환장치의 출력 전압과의 연결관계를 도시하고 있다. 여기서, 교류전기기계는 전동기 또는 발전기일 수 있다. 도 2c를 참조하면, 교류전기기계는 회전자(460), 권선들(α1, β1, γ1, α2, β2, γ2)로 구성되는 권선부들 및 고정자 코어(480)를 포괄하는 고정자를 포함할 수 있다. 또한, 교류전기기계 구동장치(400)는 본 실시예의 교류전기기계 및 PWM 전원(420, 440)을 포함할 수 있으며, 발전기로 동작하는 경우 PWM 전원은 부하로 작용할 수도 있다. 2C is a cross-sectional view of an AC electric machine and a driving apparatus according to an embodiment of the present invention, which includes a stator and a rotor, and a connection relationship with an output voltage of the power converter. Here, the AC electric machine may be an electric motor or a generator. Referring to FIG. 2C, an alternating current electric machine includes a rotor 460, windings composed of windings α 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 , and a stator core 480. It may include a stator. In addition, the AC electromechanical driving device 400 may include the AC electromechanical and PWM power sources 420 and 440 of the present embodiment, and the PWM power may act as a load when operating as a generator.
도 2c에서, 일반적인 3상 전동기 또는 발전기는 구동장치로부터 3개의 전기적 연결을 통해 에너지를 주고 받는데, 본 발명의 교류전기기계 구동장치(400)는 고정자 권선부들을 내부적으로 복수의 권선들(α1, β1, γ1, α2, β2, γ2)로 나누어 복수의 3상 PWM 전원으로부터 각 권선들이 직접 에너지를 전달받을 수 있도록 하는 연결부(450)를 더 포함한다. 연결부(450)는 제 1 권선부(α1, β1, γ1)와 제 2 권선부(α2, β2, γ2)를 연결하여, 권선들(α1, β1, γ1, α2, β2, γ2)이 등가적으로 델타(Δ) 결선 형태의 하나의 권선부를 형성하도록 구성된다. 그리고, PWM 전원들(420, 440)의 각 선 전압은 델타 형태로 결선된 권선들(α1, β1, γ1, α2, β2, γ2) 사이의 노드에 인가된다. In FIG. 2C, a typical three-phase electric motor or a generator transmits and receives energy through three electrical connections from a driving device. The AC electromechanical driving device 400 of the present invention internally stir-winds a plurality of windings α 1. , β 1 , γ 1 , α 2 , β 2 , and γ 2 ) further includes a connection unit 450 for allowing each of the windings to receive energy directly from the plurality of three-phase PWM power sources. The connection unit 450 connects the first windings α 1 , β 1 , γ 1 and the second windings α 2 , β 2 , γ 2 , and the windings α 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 ) are configured to equivalently form one winding in the form of a delta (Δ) connection. Each line voltage of the PWM power supplies 420 and 440 is applied to a node between the windings α 1 , β 1 , γ 1 , α 2 , β 2 , and γ 2 connected in a delta form.
에너지의 전달 방향이 교류전기기계의 고정자에서 회전자를 향할 때, 고정자의 권선들(α1, β1, γ1, α2, β2, γ2)에 인가된 전류(또는, 전압)들은 합성되어 회전자(460)로 에너지를 전달한다. 반대로, 에너지 전달의 방향이 회전자에서 고정자를 향할 때, 회전자의 에너지는 고정자의 권선들(α1, β1, γ1, α2, β2, γ2)에 전류(또는, 전압)들로 나누어 전달된다. 이 경우에도, 고정자의 권선들(α1, β1, γ1, α2, β2, γ2)을 전기적으로 연결하는 것에 의해(450), 고정자의 권선들(α1, β1, γ1, α2, β2, γ2)의 고조파 맥동이 감소하게 되는 것에는 변함이 없다. When the direction of energy transfer is from the stator of the alternating current electric machine to the rotor, the currents (or voltages) applied to the windings (a 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 ) of the stator are Are synthesized to transfer energy to the rotor 460. Conversely, when the direction of energy transfer is directed from the rotor to the stator, the energy of the rotor is current (or voltage) in the windings of the stator (α 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 ). It is divided into two parts. Even in this case, by electrically connecting the windings α 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 of the stator 450, the windings α 1 , β 1 , γ of the stator 1 , α 2 , β 2 , γ 2 ) is not changed that the harmonic pulsation is reduced.
도 2c에 도시된 교류전기기계의 단면도는 6개의 슬롯(Slot)으로 구성된 구조이지만, 본 발명의 범위는 이에 한정되지 않는다. 슬롯의 모양이나 개수 및 권선을 감는 방식은 다양하게 변형이 가능하고, 그에 따라 회전자의 극수도 알맞게 조절이 가능하다.The cross-sectional view of the AC electric machine shown in FIG. 2C is a structure composed of six slots, but the scope of the present invention is not limited thereto. The shape or number of slots and the way in which the windings are wound can be varied, and the number of poles of the rotor can be adjusted accordingly.
일반적으로 3상 교류전기기계는 고정자 권선이 3상 권선부를 통해 외부로부터 전력을 공급받거나(예를 들어, 전동기) 발전 전력을 외부로 보내게 된다(예를 들어, 발전기). 특히, 대형 교류전기기계의 경우, 복수의 3상 권선부들이 직·병렬 연결을 통해 기동 특성을 개선하거나 출력을 증대시키는데, 본 발명의 실시 예에서는 2개의 3상 권선부들 또는 2n(n=자연수)개의 3상 권선부들을 통해 외부와 전력을 주고 받게 된다. 이 때, 교류전기기계에 전압을 인가하는 각 전력변환장치(예를 들어, PWM 전원)의 반송파 위상을 다르게 조절하면, 고정자 권선 전류 및 회전자에 쇄교하는 자속에 있어 맥동 저감 효과를 얻을 수 있다. 하나의 교류전기기계를 구동하기 위해서 복수의 전력변환장치를 사용하는 것이 비용적으로 불리해 보일 수 있으나, 대용량 교류전기기계를 구동하는 경우, 스위칭 소자의 용량 한계로 인해 전력변환장치의 병렬 운전이 불가피하여 결과적으로 비용적인 부담은 증가하지 않게 된다.In general, a three-phase alternating current electric machine is such that the stator winding is powered from the outside through a three-phase winding (eg, an electric motor) or sends generated power to the outside (eg, a generator). In particular, in the case of a large AC electric machine, a plurality of three-phase windings improves the starting characteristics or increases the output through a serial / parallel connection. In an embodiment of the present invention, two three-phase windings or 2n (n = natural number) The three 3-phase windings transmit power to the outside. At this time, if the carrier phase of each power converter (for example, PWM power supply) that applies voltage to the AC electric machine is adjusted differently, pulsation reduction effect can be obtained in the stator winding current and the magnetic flux linking to the rotor. have. It may seem disadvantageous to use a plurality of power converters to drive one AC electric machine, but in the case of driving a large AC machine, parallel operation of the power converters is difficult due to the capacity limitation of the switching element. Inevitably, the cost burden does not increase.
도 3은 전력변환장치의 하나의 예로서 도 1 및 도 2a 내지 도 2c의 3상 PWM 전원의 일 예를 구체적으로 나타내는 회로도이다. 도 3을 참조하면 3상 PWM 전원(120)은 직류 전원(121), 스위칭 부(122) 및 출력 단자(123)를 포함한다. 도 3은 2-레벨 전력변환장치를 나타내지만, 그보다 높은 레벨의 출력을 갖는 전력변환장치가 사용될 수 있고, 3상 전원이 하나의 직류 전원에서 생성되는 도 3과 달리 각 상 출력이 개별적인 직류 전원으로부터 생성될 수도 있다. 3 is a circuit diagram specifically illustrating an example of the three-phase PWM power supply of FIGS. 1 and 2A to 2C as an example of a power converter. Referring to FIG. 3, the three-phase PWM power supply 120 includes a DC power supply 121, a switching unit 122, and an output terminal 123. Although FIG. 3 shows a two-level power converter, a power converter having a higher level output may be used, and unlike FIG. 3 in which a three-phase power source is generated from one DC power source, each phase output is a separate DC power source. It may also be generated from.
직류 전원(121)은 전력의 공급원으로서 동작한다. 직류 전원(121)은 다양한 형태의 전력 공급체를 포함한다. 예를 들어, 직류 전원(121)은 배터리, 태양광 패널 또는 교류를 직류로 변환하는 정류회로를 이용한 전력 공급체를 포함할 수 있다. 직류 전원(121)은 스위칭 부(122)를 통해 출력 단자(123)에 전력을 제공한다.The DC power supply 121 operates as a source of power. The DC power supply 121 includes various types of power supplies. For example, the DC power supply 121 may include a battery, a solar panel, or a power supply using a rectifier circuit for converting AC into DC. The DC power supply 121 provides power to the output terminal 123 through the switching unit 122.
스위칭 부(122)는 직류 전원(121)과 출력 단자(123) 사이에 삽입되어, 직류 전원(121)이 제공하는 직류 전력을 스위칭을 통해 PWM 전력으로 변환한다. 스위칭 부(122)는 내부에 복수의 전력 스위치를 포함하고, 각 스위치의 개폐를 제어하여 직류 전력을 3상 PWM 전력으로 변환한다. 직류 전력을 3상 PWM 전력으로 변환하기 위한 스위칭 부(122)의 구체적인 제어 방법은 당해 기술 분야에 널리 알려져 있으므로 여기서는 그에 대한 설명을 생략한다.The switching unit 122 is inserted between the DC power supply 121 and the output terminal 123 to convert the DC power provided by the DC power supply 121 into PWM power through switching. The switching unit 122 includes a plurality of power switches therein, and controls the opening and closing of each switch to convert DC power into three-phase PWM power. Since a specific control method of the switching unit 122 for converting DC power into three-phase PWM power is well known in the art, a description thereof will be omitted here.
스위칭 부(122)에서 변환된 3상 PWM 전력은 출력 단자(123)를 통해 3상 권선부들(110, 130, 도 2a 참조)에 제공된다.The three-phase PWM power converted by the switching unit 122 is provided to the three-phase windings 110 and 130 (see FIG. 2A) through the output terminal 123.
출력 단자(123)는 제공된 3상 PWM 전력을 3상 권선부들(110, 130)에 출력하는 단자이다. 출력 단자(123)는 커넥터를 포함하는 하드웨어 단자로써 구성될 수도 있으나, 간단하게 단순한 전기 결선으로써 구성될 수도 있다.The output terminal 123 is a terminal for outputting the provided three-phase PWM power to the three- phase windings 110 and 130. The output terminal 123 may be configured as a hardware terminal including a connector, or may be simply configured as a simple electrical connection.
이하, 본 발명의 실시 예에 따라 교류전기기계의 권선들이 델타연결의 형태가 되는 것을, 변압기의 예를 들어 도 4와 함께 설명한다. 고정자 및 회전자를 포함하는 교류전기기계의 경우에도 각각 변압기의 2차단과 1차단에 대응되어 이와 유사하게 적용된다. 도 4는 도 2b에 도시된 변압기의 2차단 권선부 연결을 델타 연결의 형태로 도식화한 회로도이다. 도 4를 참조하면, 도 2b의 권선부 연결을 더욱 명확히 이해하기 위해, 도 2b의 권선부들 및 그것들에 인가되는 선간 전압들을 델타연결의 형태로 전개한 회로도가 도시된다.Hereinafter, the windings of the AC electric machine according to the exemplary embodiment of the present invention will be described with reference to FIG. 4 as an example of a transformer in the form of a delta connection. The alternating current electric machine including the stator and the rotor are similarly applied to the secondary and primary stages of the transformer, respectively. 4 is a circuit diagram schematically illustrating the connection of the secondary winding of the transformer shown in FIG. 2B in the form of a delta connection. Referring to FIG. 4, in order to more clearly understand the winding connection of FIG. 2B, a circuit diagram showing the windings of FIG. 2B and the line voltages applied to them in the form of a delta connection is shown.
도 2b의 변압기의 2차단 권선부(310, 330, 도 2b 참조)를 연결부(350, 도 2b 참조)를 통해 직접적으로 연결한 결과는, 도 4에 도시된 권선들 및 선간 전압들의 델타 연결과 회로적으로 등가가 된다. 여기서, 선간 전압들(Vab, Vbc, Vca, Vrs, Vst, Vtr)은 각각 PWM 전원들(320, 340, 도 2b 참조)의 출력 단자들 사이의 전압을 의미한다. The result of connecting the secondary windings 310, 330 (see FIG. 2B) of the transformer of FIG. 2B directly through the connection 350 (see FIG. 2B) results in a delta connection of the windings and the line voltages shown in FIG. Equivalent to the circuit Here, the line voltages V ab , V bc , V ca , V rs , V st , and V tr refer to voltages between the output terminals of the PWM power supplies 320, 340, and FIG. 2B, respectively.
예를 들어, 선간 전압(Vab)은 제 1 PWM 전원(320)의 출력 단자들(a, b) 사이의 전압을 의미하고, 선간 전압(Vbc)은 제 1 PWM 전원(320)의 출력 단자들(b, c) 사이의 전압을 의미하고, 선간 전압(Vca)은 제 1 PWM 전원(320)의 출력 단자들(c, a) 사이의 전압을 의미한다. 유사하게, 선간 전압(Vrs)은 제 2 PWM 전원(340)의 출력 단자들(r, s) 사이의 전압을 의미하고, 선간 전압(Vst)은 제 2 PWM 전원(340)의 출력 단자들(s, t) 사이의 전압을 의미하고, 선간 전압(Vtr)은 제 2 PWM 전원(340)의 출력 단자들(t, r) 사이의 전압을 의미한다.For example, the line voltage V ab refers to the voltage between the output terminals a and b of the first PWM power supply 320, and the line voltage V bc refers to the output of the first PWM power supply 320. The voltage between the terminals b and c, and the line voltage V ca , refers to the voltage between the output terminals c and a of the first PWM power supply 320. Similarly, the line voltage V rs refers to the voltage between the output terminals r and s of the second PWM power supply 340, and the line voltage V st is the output terminal of the second PWM power supply 340. The line voltage (V tr ) means the voltage between the output terminals (t, r) of the second PWM power supply 340.
도 4를 참조하면, 각 권선들에는 제 1 PWM 전원(320)이 제공하는 선간 전압과 제 2 PWM 전원(340)이 제공하는 선간 전압이 동시에 작용한다. 즉, 두 개의 PWM 전원들(320, 340)이 델타 형태로 결합된 회로 구조로 인해, 각각의 권선들(α1, β1, γ1, α2, β2, γ2)에는 서로 다른 PWM 전원들(320, 340)에서 파생된 선간 전압들이 중첩되어(superposition) 인가된다. 따라서, PWM 전원들(320, 340)의 출력 반송파 위상을 서로 다르게 하면, 변압기 2차단에서도 선간 전압들의 중첩 효과로 인해 각 권선의 고조파 맥동이 상쇄되게 된다.Referring to FIG. 4, the line voltage provided by the first PWM power supply 320 and the line voltage provided by the second PWM power supply 340 simultaneously act on each of the windings. That is, due to the circuit structure in which the two PWM power sources 320 and 340 are combined in a delta form, each of the windings α 1 , β 1 , γ 1 , α 2 , β 2 , and γ 2 may have different PWM. Line voltages derived from the power sources 320 and 340 are superposed and applied. Therefore, if the output carrier phase of the PWM power supplies 320 and 340 are different from each other, the harmonic pulsation of each winding is canceled due to the superposition effect of the line voltages in the second stage of the transformer.
전력 전달의 방향이 변압기의 2차단에서 변압기의 1차단을 향할 때, 제 1 및 제 2 권선부(310, 330)에 인가된 전류(또는, 전압)들은 합성되어 변압기 1차단의 권선부(360, 도 2b 참조)로 전달된다. 반대로, 전력 전달의 방향이 변압기의 1차단에서 변압기의 2차단을 향할 때, 변압기 1차단의 권선부(360)에 인가된 전류(또는, 전압)은 변압기 2차단의 제 1 및 제 2 권선부(310, 330)에 나누어 전달된다. 이 경우에도, 제 1 및 제 2 권선부(310, 330)를 전기적으로 연결하는 것에 의해(350), 제 1 및 제 2 권선부(310, 330)의 고조파 맥동이 감소하게 되는 것에는 변함이 없다. When the direction of power transfer is directed from the secondary stage of the transformer to the primary stage of the transformer, the currents (or voltages) applied to the first and second windings 310 and 330 are combined to form the winding 360 of the primary stage of the transformer. , See FIG. 2B). Conversely, when the direction of power transfer is from the first stage of the transformer to the second stage of the transformer, the current (or voltage) applied to the winding 360 of the transformer primary stage is the first and second windings of the secondary transformer stage. It is divided into (310, 330). Even in this case, the change in harmonic pulsation of the first and second windings 310 and 330 is reduced by electrically connecting the first and second windings 310 and 330. none.
한편, 앞서 설명한 바와 같이, α, β 및 γ는 서로 120도의 위상 차이를 갖는 3개의 상을 의미하고, 제 1 권선부(310) 및 제 2 권선부(330)에서 서로 대응되는 상들(예를 들어, α1 과 α2)은 서로 크기 및 위상이 같다. 따라서, 제 1 권선부(310)와 제 2 권선부(330) 사이에는 우열이나 순서적인 차이는 없고, 양자는 단지 연결되는 PWM 전원 또는 부하가 다르기 때문에 구분되는 것이다. 예를 들어, α1 과 α2는 도 4에서 서로의 위치가 맞바꾼 상태로 배치하여도 본 발명의 의도한 효과를 발휘하는 데에는 차이가 없고, 이것은 β상 또는 γ상에 대응하는 권선들에 있어서도 동일하다. Meanwhile, as described above, α, β, and γ mean three phases having a phase difference of 120 degrees from each other, and phases corresponding to each other in the first winding part 310 and the second winding part 330 (for example, For example, α 1 and α 2 ) are the same size and phase with each other. Therefore, there is no superiority or sequence difference between the first winding 310 and the second winding 330, and the two are distinguished only because the PWM power or load to be connected is different. For example, even if α 1 and α 2 are arranged in the state where they are mutually inverted in FIG. 4, there is no difference in achieving the intended effect of the present invention, and this is true even in windings corresponding to β phase or γ phase. same.
권선들(α1, β1, γ1, α2, β2, γ2)의 점(dot)으로 표시된 부분은, 변압기 1차단에서 점이 찍힌 노드에 양의 전압이 걸리면, 변압기 2차단에서도 대응되는 상의 점이 찍힌 노드에 양의 전압이 걸림을 의미한다. 점이 찍힌 노드 또한 상대적인 의미로서, 변압기 2차단 권선의 감기(winding) 방향에 따라 각 권선들이 도 4에 도시된 것과 반대 극성을 갖도록 구성할 수도 있다.The part of the windings α 1 , β 1 , γ 1 , α 2 , β 2 , γ 2 corresponds to the transformer secondary when the positive voltage is applied to the node pointed at the transformer primary. This means that a positive voltage is applied to the node where the dot on which the dot is marked. The dotted node is also a relative meaning, and may be configured such that each of the windings has a polarity opposite to that shown in FIG. 4 according to the winding direction of the transformer secondary winding.
한편, 여기서, 선간 전압들은 델타 전원으로 도시되었으나, 본 발명의 범위는 이에 한정되지 않는다. 예를 들어, 델타 전원들은 등가적으로 와이(Y) 전원으로 변환될 수 있다. 단, 이 경우 연결된 선간 전압들은 출력 단자들의 선 전압으로 대체될 것이다. 3상 전원은 하나의 전력변환장치로부터 생성될 수도 있지만, 복수의 전력변환장치를 이용하여 생성될 수도 있다. Meanwhile, although the line voltages are shown as delta power sources, the scope of the present invention is not limited thereto. For example, delta power supplies may be equivalently converted to a Y power source. In this case, however, the connected line voltages will be replaced by the line voltages of the output terminals. The three-phase power source may be generated from one power converter, but may be generated using a plurality of power converters.
위에서 설명한 구성에 따르면, 각 권선들에는 서로 위상이 다른 PWM 전원들의 선간 전압이 중첩되어 인가되므로, 각 권선들의 고조파 맥동이 감소하게 된다.According to the configuration described above, since the line voltages of the PWM power supplies having different phases are applied to each of the windings, harmonic pulsations of the respective windings are reduced.
도 5는 본 발명의 일 실시 예에 따른, 상 순서를 달리한 변압기의 2차단 권선부 연결을 나타내는 회로도이다. 도 5를 참조하면, 도 4와 반대 방향의 상 순서를 갖도록, 권선들 및 선간 전압들이 배치된다. FIG. 5 is a circuit diagram illustrating connection of secondary windings of a transformer having a different phase order according to an embodiment of the present invention. Referring to FIG. 5, windings and line voltages are arranged to have a phase order in the opposite direction to FIG. 4.
도 4에서는, 제 1 PWM 전원(320, 도 2b 참조)과 제 2 PWM 전원(340, 도 2b 참조)의 선간 전압들의 상 변화가 반시계 방향으로 나타나지만, 도 5에서는, 제 1 PWM 전원(320)과 제 2 PWM 전원(340)의 선간 전압들의 상 변화가 시계 방향으로 나타난다. 이는 PWM 전원들(320, 340)의 출력 전류(또는 전압)들의 상 순서를 반대 방향으로 바꿈으로써 간단하게 구현될 수 있다. In FIG. 4, the phase change of the line voltages of the first PWM power source 320 (see FIG. 2B) and the second PWM power source 340 (see FIG. 2B) is shown in the counterclockwise direction. In FIG. 5, the first PWM power source 320 is shown in FIG. 5. ) And the phase change of the line voltages of the second PWM power supply 340 appear in a clockwise direction. This can be implemented simply by reversing the phase order of the output currents (or voltages) of the PWM power supplies 320, 340.
이처럼 상 순서를 바꾸는 경우에도, 각 권선들(α1, β1, γ1, α2, β2, γ2)에 서로 위상이 다른 PWM 전원들(320, 340)의 선간 전압이 중첩되어 인가되는 데에는 차이가 없으므로, 마찬가지로 각 권선들의 고조파 맥동이 감소되는 효과가 온전히 발휘된다.Even when the phase order is changed in this way, the voltages between the wires of the PWM power sources 320 and 340 which are out of phase with each other are applied to each of the windings α 1 , β 1 , γ 1 , α 2 , β 2 , and γ 2 . Since there is no difference, the effect of reducing the harmonic pulsation of each of the windings is also fully exhibited.
한편, 도 2c의 교류전기기계의 고정자의 각 권선들(α1, β1, γ1, α2, β2, γ2)을 연결부(450)를 통해 직접적으로 연결한 결과는, 도 5에 도시된 권선들 및 선간 전압들의 델타 연결과 회로적으로 등가가 된다. 즉, 도 5를 참조하면, 도 2c의 교류전기기계의 각 권선들에는 제 1 PWM 전원(420)이 제공하는 선간 전압과 제 2 PWM 전원(440)이 제공하는 선간 전압이 동시에 작용한다. 즉, 두 개의 PWM 전원들(420, 440)이 델타 형태로 결합된 회로 구조로 인해, 각각의 권선들(α1, β1, γ1, α2, β2, γ2)에는 서로 다른 PWM 전원들(420, 440)에서 파생된 선간 전압들이 중첩되어 인가된다. 따라서, PWM 전원들(420, 440)의 출력 반송파 위상을 서로 다르게 하면, 교류전기기계의 고정자에서도 선간 전압들의 중첩 효과로 인해 각 권선의 고조파 맥동이 상쇄되게 된다.Meanwhile, as a result of directly connecting the respective windings α 1 , β 1 , γ 1 , α 2 , β 2 , and γ 2 of the stator of the AC electric machine of FIG. 2C through the connection part 450, The circuit is equivalent to the delta connection of the windings and the line voltages shown. That is, referring to FIG. 5, the line voltage provided by the first PWM power supply 420 and the line voltage provided by the second PWM power supply 440 simultaneously act on the respective windings of the AC electric machine of FIG. 2C. That is, due to the circuit structure in which the two PWM power sources 420 and 440 are combined in a delta form, each of the windings α 1 , β 1 , γ 1 , α 2 , β 2 , and γ 2 may have different PWM. Line voltages derived from the power sources 420 and 440 are applied in overlap. Therefore, if the output carrier phase of the PWM power supplies 420 and 440 are different from each other, the harmonic pulsation of each winding is canceled due to the superposition effect of the line voltages in the stator of the AC electric machine.
본 발명에서, 권선들과 선간 전압들의 연결 방식은 도 4 및 도 5에 도시된 것에 한정되지 않는다. 본 발명은 서로 구분되는 복수 개의 권선부들(예를 들어, 도 2b의 권선부들(310, 330))을 연결부(예를 들어, 도 2b의 연결부(350))를 통해 서로 연결하여 델타 결선 형태의 하나의 델타 권선부를 생성하고, 델타 권선부에 포함된 각 권선들 사이의 노드들 마다 복수의 3상 전원들의 선간 전압 또는 선 전압이 연결되는 어떤 형태로도 구현될 수 있다. In the present invention, the manner of connecting the windings and the line voltages is not limited to that shown in FIGS. 4 and 5. The present invention connects a plurality of windings (for example, windings 310 and 330 of FIG. 2B) that are separated from each other through a connection portion (for example, connection portion 350 of FIG. 2B) to form a delta connection. One delta winding may be generated, and the line voltage or line voltage of the plurality of three-phase power sources may be connected to each node between the respective windings included in the delta winding.
이때, 하나의 3상 전원(예를 들어, 320)은 그 선간 전압 또는 선 전압들을 하나의 권선부(예를 들어, 310)에 모두 인가할 수도 있고, 둘 이상의 권선부들(예를 들어, 310, 330)에 나누어 인가할 수도 있다. In this case, one three-phase power supply (for example, 320) may apply all of the line voltage or line voltages to one winding part (eg, 310), or two or more winding parts (eg, 310). , 330 may be applied.
도 6은 본 발명의 실시 예에 따른, 제 2 에너지 전달부에 3개 이상의 3상 권선부를 갖는 교류전기기계를 나타내는 회로도이며, 하나의 예시로 교류전기기계는 변압기일 수 있다. 도 6을 참조하면, 4개의 3상 권선부의 총 12개 권선들(211, 212, 213, 221, 222, 223, 231, 232, 233, 241, 242, 243)이 델타 결선 형태로 연결된다. 6 is a circuit diagram illustrating an AC electric machine having three or more three-phase windings in a second energy transfer unit according to an embodiment of the present disclosure. In one example, the AC electric machine may be a transformer. Referring to FIG. 6, a total of 12 windings 211, 212, 213, 221, 222, 223, 231, 232, 233, 241, 242, and 243 of four three-phase windings are connected in a delta connection form.
유사한 참조 번호를 갖는 권선들은 동일한 권선부를 구성함을 의미한다. 예를 들어, 권선들(211, 212, 213)은 제 1 권선부를 구성하고, 권선들(221, 222, 223)은 제 2 권선부를 구성하고, 권선들(231, 232, 233)은 제 3 권선부를 구성하고, 권선들 (241, 242, 243)은 제 4 권선부를 구성한다. Windings with similar reference numerals constitute the same winding. For example, the windings 211, 212, 213 make up the first winding, the windings 221, 222, 223 make up the second winding, and the windings 231, 232, 233 make up the third winding. The winding comprises a winding and the windings 241, 242, 243 constitute a fourth winding.
도 6에서 도시된 델타 권선부(200)는 동일한 권선부를 구성하는 권선끼리 서로 인접하여 위치하도록 구성되었지만, 이는 예시적인 것으로서, 본 발명은 이에 한정되지 않는다. 예를 들어, 제 1 권선부를 구성하는 권선(211)은 제 2 권선부를 구성하는 권선(222)과 제 3 권선부를 구성하는 권선(232) 사이에 배치될 수도 있다. Although the delta winding unit 200 illustrated in FIG. 6 is configured such that windings constituting the same winding unit are positioned adjacent to each other, this is exemplary and the present invention is not limited thereto. For example, the winding 211 constituting the first winding part may be disposed between the winding 222 constituting the second winding part and the winding 232 constituting the third winding part.
도 6의 점선들은 델타 결선된 4개의 3상 전원을 의미한다. 4개의 3상 전원들의 선간 전압 또는 선 전압들은 각각 델타 권선부(200)의 각 권선들(211, 212, 213, 221, 222, 223, 231, 232, 233, 241, 242, 243) 사이의 노드에 연결된다. 한편, 여기서, 4개의 3상 전원들은 서로 규칙성을 가진 순환 형태로 델타 권선부(200)에 연결되었지만, 이는 예시적인 것으로서, 본 발명은 이에 한정되지 않는다. 4개의 3상 전원들은 서로 대칭적이거나 순환적이지 않은 형태로 델타 권선부(200)에 연결될 수도 있으며, 단지 델타 권선부(200)의 적어도 하나의 권선에 서로 다른 반송파 위상을 갖는 3상 전원들이 교차하도록(즉, 권선의 양단에 서로 다른 반송파 위상을 갖는 3상 전원의 선간 전압 또는 선 전압이 연결되도록) 구성되면 족하다.The dotted lines in FIG. 6 represent four three-phase power supplies connected in delta. The line voltage or line voltages of the four three-phase power sources are respectively between the respective windings 211, 212, 213, 221, 222, 223, 231, 232, 233, 241, 242, and 243 of the delta winding 200. Connected to the node. Meanwhile, although the four three-phase power sources are connected to the delta winding unit 200 in a circular form having regularity with each other, this is exemplary and the present invention is not limited thereto. The four three-phase power supplies may be connected to the delta winding 200 in a symmetrical or non-cyclic manner, with only three phase power sources having different carrier phases in at least one winding of the delta winding 200. It is sufficient if they are configured to intersect (i.e., to connect the line voltage or line voltage of a three-phase power source with different carrier phases across both ends of the winding).
한편, 앞서 설명한 바와 같이, 델타 결선된 3상 전원들은 Y 결선 형태의 전원들로 대체될 수 있다. On the other hand, as described above, the delta-connected three-phase power source may be replaced by the power supply of the Y connection type.
상기와 같은 구성에 따르면, 제 2 에너지 전달부에 3개 이상의 3상 권선부를 갖는 교류전기기계로 본 발명이 확장 적용될 수 있다. 따라서, 교류전기기계의 제 2 에너지 전달부에 3개 이상의 3상 권선부를 갖는 경우에도, 고조파 맥동이 감소되고 그에 따라 전력 변환 효율이 향상될 수 있다. According to the above configuration, the present invention can be extended to the AC electric machine having three or more three-phase windings in the second energy transfer unit. Therefore, even in the case of having three or more three-phase windings in the second energy transfer portion of the alternating current electric machine, harmonic pulsations can be reduced and thus power conversion efficiency can be improved.
도 7 및 도 8은 본 발명의 유리한 효과를 보여주기 위해, 종래 기술에 따른 구동장치 및 본 발명의 일 실시 예에 따른 구동장치를 각각 시뮬레이션한 결과를 나타내는 타이밍도이다. 도 7 및 도 8에서는, 교류전기기계가 변압기이며 2차단에 4개의 3상 권선부가 포함된 경우를 시뮬레이션하였다.7 and 8 are timing diagrams showing simulation results of the driving apparatus according to the prior art and the driving apparatus according to the embodiment of the present invention, respectively, to show the advantageous effects of the present invention. In FIG. 7 and FIG. 8, the alternating current electric machine is a transformer and four three-phase windings are included in the second stage.
도 7은 종래 기술에 따른 구동장치에 있어서, 변압기 1차단 및 변압기 2차단의 전류를 나타내는 타이밍도이다. FIG. 7 is a timing diagram illustrating currents of a transformer primary stage and a transformer secondary stage in the driving apparatus according to the related art.
타이밍도(710)는 변압기 1차단의 계통 전류(Iap)를 나타낸 것으로서, 변압기 2차단의 서로 위상이 다른 3상 전력이 합성되어 변압기 1차단에 나타나기 때문에, 고조파 성분이 크게 줄어 들었음을 알 수 있다.The timing diagram 710 shows the system current Iap of the first stage of the transformer. Since the three-phase powers of different phases of the second stage of the transformer are synthesized and appear in the first stage of the transformer, it can be seen that the harmonic content is greatly reduced. .
타이밍도(720)는 변압기 2차단의 a상 전류들(Iai1, Iai2, Iai3, Iai4)을 나타낸다. 변압기 2차단은 4개의 3상 권선부를 포함하므로, 그에 대응하여 3상 전원도 4개가 된다. a상 전류들(Iai1, Iai2, Iai3, Iai4)은 각 3상 전원들의 a상 전류를 의미한다. 타이밍도(720)에서는, 변압기 1차단의 경우와 다르게, 고조파 성분이 크게 나타난다. 이처럼 큰 고조파 성분은 전력변환장치의 실효(RMS) 전류를 증가시키고, 전력변환효율을 낮추고, 계통 손실, 스위칭 손실 등을 증가시킨다.The timing diagram 720 shows a phase currents Iai1, Iai2, Iai3, and Iai4 of the transformer secondary stage. Since the transformer secondary stage includes four three-phase windings, there are four three-phase power supplies correspondingly. The a phase currents Iai1, Iai2, Iai3, and Iai4 mean a phase currents of the three phase power sources. In the timing diagram 720, the harmonic component appears large, unlike in the case of transformer primary breaking. This large harmonic component increases the RMS current of the power converter, lowers power conversion efficiency, and increases grid loss and switching loss.
도 8은 본 발명의 일 실시 예에 따른 구동장치에 있어서, 변압기 1차단 및 변압기 2차단의 전류를 나타내는 타이밍도이다.8 is a timing diagram illustrating currents in a transformer primary stage and a transformer secondary stage in a driving apparatus according to an embodiment of the present invention.
타이밍도(810)는 변압기 1차단의 계통 전류(Iap)를 나타낸 것으로서, 도 7과 동일한 결과를 보여준다. 마찬가지로, 변압기 2차단의 서로 반송파 위상이 다른 3상 전력이 합성되어 변압기 1차단에 나타나기 때문에, 변압기 1차단에서는 고조파 성분이 크게 줄어 들었음을 알 수 있다.The timing diagram 810 shows the system current Iap of the transformer primary stage, and shows the same result as in FIG. 7. Similarly, since three-phase powers having different carrier phases in the second stage of the transformer are synthesized and appear in the first stage of the transformer, it can be seen that the harmonic components are greatly reduced in the first stage of the transformer.
타이밍도(820)는 변압기 2차단의 a상 전류들(Iai1, Iai2, Iai3, Iai4)을 나타낸다. 변압기 2차단은 4개의 3상 권선부를 포함하므로, 그에 대응하여 3상 전원도 4개가 된다. a상 전류들(Iai1, Iai2, Iai3, Iai4)은 각 3상 전원들의 a상 전류를 의미한다. The timing diagram 820 shows a phase currents Iai1, Iai2, Iai3, and Iai4 of the transformer secondary stage. Since the transformer secondary stage includes four three-phase windings, there are four three-phase power supplies correspondingly. The a phase currents Iai1, Iai2, Iai3, and Iai4 mean a phase currents of the three phase power sources.
본 발명의 실시 예들에서, 각 권선들의 양단에는 서로 다른 3상 전원의 선 전압 또는 선간 전압이 인가된다. 따라서, 각 권선들에는 서로 다른 3상 전원의 선 전압 또는 선간 전압이 중첩된다. 따라서, 3상 전원들의 반송파 위상이 서로 다른 경우, 각 권선들에서 고조파 성분들이 서로 상쇄되게 된다. In embodiments of the present invention, line voltages or line voltages of different three-phase power sources are applied to both ends of each of the windings. Therefore, each of the windings overlaps the line voltage or the line voltage of different three-phase power sources. Therefore, when the carrier phase of the three-phase power supplies are different from each other, the harmonic components in the respective windings cancel each other out.
타이밍도(820)를 보면 앞서, 도 7과는 다르게, 변압기 2차단의 고조파 성분이 상당히 감소되어 나타난다. 그러므로, 본 발명의 실시 예에 따른 교류전기기계 구동장치는 변압기 2차단의 고조파 성분을 억제하므로, 전력변환효율이 향상되고, 도통 손실, 스위칭 손실 등이 감소됨을 확인할 수 있다.Looking at the timing diagram 820, unlike FIG. 7, the harmonic content of the second stage of the transformer is significantly reduced. Therefore, the AC electromechanical driving apparatus according to the embodiment of the present invention suppresses the harmonics of the second stage of the transformer, so that the power conversion efficiency is improved, and the conduction loss and the switching loss can be confirmed.
한편, 본 발명은 변압기 및 그것을 포함하는 구동장치의 성능을 향상시키는 데 기여할 수 있는 것으로, 배터리 에너지 저장 장치 분야 외에도 전력변환장치가 사용될 수 있는 전력 변환 분야라면 어디에서든 폭넓게 활용될 수 있을 것이다.Meanwhile, the present invention may contribute to improving the performance of a transformer and a driving device including the same, and may be widely used anywhere in the field of power conversion in which a power converter may be used in addition to the field of battery energy storage.
또한, 예시된 실시 예들에서, 변압기 2차단과 연결되는 3상 전원은 3상 PWM 전원인 것으로 설명되었으나, 본 발명의 범위는 이에 한정되지 않는다. 예를 들어, 본 발명의 다른 실시 예에서는, 3상 PWM 전원을 대신하여 단상 PWM 전원 3개가 조합된 전원들이 사용될 수 있다.In addition, in the illustrated embodiments, it has been described that the three-phase power source connected to the transformer second stage is a three-phase PWM power source, but the scope of the present invention is not limited thereto. For example, in another embodiment of the present invention, power sources in which three single-phase PWM power supplies are combined may be used instead of the three-phase PWM power supply.
본 명세서의 상세한 설명에서는 구체적인 실시 예를 들어 설명하였으나, 본 명세서의 범위에서 벗어나지 않는 한 각 실시 예는 여러 가지 형태로 변형될 수 있다. In the detailed description of the present specification, a specific embodiment has been described. However, each embodiment may be modified in various forms without departing from the scope of the present specification.
또한, 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 명세서의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 명세서의 범위는 상술한 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구범위 및 그 균등물에 의해 정해져야 한다.In addition, although specific terms are used herein, they are used only for the purpose of describing the present invention and are not used to limit the scope of the present specification as defined in the meaning or claims. Therefore, the scope of the present specification should not be limited to the above-described embodiments, but should be defined by the following claims and their equivalents.

Claims (19)

  1. 제 2 에너지 전달부와 자기적으로 결합하는 제 1 에너지 전달부;A first energy transfer unit magnetically coupled with the second energy transfer unit;
    적어도 둘 이상의 3상 권선부들을 포함하는 상기 제 2 에너지 전달부; The second energy transfer unit comprising at least two three-phase windings;
    상기 제 1 에너지 전달부와 상기 적어도 둘 이상의 3 상 권선부들을 자기적으로 연결하는 코어; 및A core magnetically connecting said first energy transfer portion and said at least two three-phase windings; And
    상기 적어도 둘 이상의 3 상 권선부들을 전기적으로 직접 연결하는 연결부를 포함하고,A connection for directly connecting the at least two three-phase windings electrically;
    상기 연결부에 의해, 상기 적어도 둘 이상의 3상 권선부들은 하나의 델타 결선된 권선부를 등가적으로 구성하는, 교류전기기계.By means of said connection, said at least two three-phase windings equivalently constitute one delta-connected winding.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 교류전기기계는 변압기이며,The AC electric machine is a transformer,
    상기 제 1 에너지 전달부는 변압기 1차단이고, 상기 제 2 에너지 전달부는 변압기 2차단이며,The first energy transfer unit is a transformer primary stage, the second energy transfer unit is a transformer secondary stage,
    상기 코어는 변압기 코어인, 교류전기기계.The core is a transformer core.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 교류전기기계는 전동기 또는 발전기이며,The AC electric machine is an electric motor or a generator,
    상기 제 1 에너지 전달부는 회전자이고, 상기 제 2 에너지 전달부는 고정자이며,The first energy transfer part is a rotor, the second energy transfer part is a stator,
    상기 코어는 고정자 코어인, 교류전기기계.The core is a stator core.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 델타 결선된 권선부의 권선들 사이의 노드들에는 적어도 둘 이상의 3상 전원들의 선 전압들 또는 선간 전압들이 연결되는, 교류전기기계.And line voltages or line voltages of at least two or more three-phase power supplies are connected to nodes between the windings of the delta-connected winding.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 노드들과 상기 선전압들 또는 선간 전압들은 각각 일대일로 연결되는, 교류전기기계.And the nodes and the line voltages or line voltages are each connected one-to-one.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 적어도 둘 이상의 3상 전원들의 선 전압들 또는 선간 전압들은 대응하는 3상 전원별로 각각 델타 결선 또는 Y 결선을 구성하는, 교류전기기계. Wherein the line voltages or line voltages of the at least two three-phase power supplies form a delta connection or a Y connection for each corresponding three-phase power source.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 적어도 둘 이상의 3상 전원들은 3상 PWM(Pulse Width Modulation) 전원 또는 단상 PWM 전원 3개가 조합된 전원들인, 교류전기기계.Wherein said at least two three-phase power supplies are power supplies in combination of three-phase pulse width modulation (PWM) power supplies or three single-phase PWM power supplies.
  8. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 델타 결선된 권선부의 권선들 사이의 노드들에는 적어도 둘 이상의 3상 부하들의 3상 전력 입력 단자들이 연결되는, 교류전기기계.And three-phase power input terminals of at least two three-phase loads are connected to nodes between the windings of the delta-connected winding.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 노드들과 상기 3상 전력 입력 단자들은 각각 일대일로 연결되는, 교류전기기계.And the nodes and the three-phase power input terminals are each connected one-to-one.
  10. 제 2 에너지 전달부와 자기적으로 결합하는 제 1 에너지 전달부;A first energy transfer unit magnetically coupled with the second energy transfer unit;
    적어도 둘 이상의 3상 권선부들을 포함하는 상기 제 2 에너지 전달부; The second energy transfer unit comprising at least two three-phase windings;
    상기 제 1 에너지 전달부와 상기 적어도 둘 이상의 3 상 권선부들을 자기적으로 연결하는 코어; 및A core magnetically connecting said first energy transfer portion and said at least two three-phase windings; And
    상기 적어도 둘 이상의 3 상 권선부들을 전기적으로 직접 연결하는 연결부를 포함하고,A connection for directly connecting the at least two three-phase windings electrically;
    상기 연결부에 의해, 상기 적어도 둘 이상의 3상 권선부들은 하나의 델타 결선된 권선부를 등가적으로 구성하는, 교류전기기계; 및By said connecting portion, said at least two three-phase windings equivalently constitute one delta-connected winding; And
    상기 제 2 에너지 전달부의 적어도 둘 이상의 3상 권선부들과 전기적으로 직접 연결되는 적어도 둘 이상의 3상 전원들을 포함하는, 교류전기기계 구동장치.And at least two or more three phase power sources electrically connected directly to at least two or more three phase windings of the second energy transfer unit.
  11. 제 10 항에 있어서, The method of claim 10,
    상기 교류전기기계는 변압기이며,The AC electric machine is a transformer,
    상기 제 1 에너지 전달부는 변압기 1차단이고, 상기 제 2 에너지 전달부는 변압기 2차단이며,The first energy transfer unit is a transformer primary stage, the second energy transfer unit is a transformer secondary stage,
    상기 코어는 변압기 코어인, 교류전기기계 구동장치.And the core is a transformer core.
  12. 제 10 항에 있어서, The method of claim 10,
    상기 교류전기기계는 전동기 또는 발전기이며,The AC electric machine is an electric motor or a generator,
    상기 제 1 에너지 전달부는 회전자이고, 상기 제 2 에너지 전달부는 고정자이며,The first energy transfer part is a rotor, the second energy transfer part is a stator,
    상기 코어는 고정자 코어인, 교류전기기계 구동장치. And the core is a stator core.
  13. 제 10 항 내지 제 12 항 중 어느 한 항에 있어서,The method according to any one of claims 10 to 12,
    상기 적어도 둘 이상의 3상 전원들은 3상 PWM(Pulse Width Modulation) 전원 또는 단상 PWM 전원 3개가 조합된 전원들인, 교류전기기계 구동장치.And said at least two three-phase power supplies are power supplies in combination of a three-phase pulse width modulation (PWM) power supply or three single-phase PWM power supplies.
  14. 제 10 항 내지 제 12 항 중 어느 한 항에 있어서,The method according to any one of claims 10 to 12,
    상기 델타 결선된 권선부의 권선들 사이의 노드들에는 상기 적어도 둘 이상의 3상 전원들의 선 전압들 또는 선간 전압들이 연결되는, 교류전기기계 구동장치.And line voltages or line voltages of the at least two three-phase power supplies are connected to nodes between the windings of the delta-connected winding.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 노드들과 상기 선전압들 또는 선간 전압들은 각각 일대일로 연결되는, 교류전기기계 구동장치.And the nodes and the line voltages or line voltages are each connected one-to-one.
  16. 제 2 에너지 전달부와 자기적으로 결합하는 제 1 에너지 전달부;A first energy transfer unit magnetically coupled with the second energy transfer unit;
    적어도 둘 이상의 3상 권선부들을 포함하는 제 2 에너지 전달부; A second energy transfer comprising at least two three-phase windings;
    상기 제 1 에너지 전달부와 상기 적어도 둘 이상의 3 상 권선부들을 자기적으로 연결하는 코어; 및A core magnetically connecting said first energy transfer portion and said at least two three-phase windings; And
    상기 적어도 둘 이상의 3 상 권선부들을 전기적으로 직접 연결하는 연결부를 포함하고,A connection for directly connecting the at least two three-phase windings electrically;
    상기 연결부에 의해, 상기 적어도 둘 이상의 3상 권선부들은 하나의 델타 결선된 권선부를 등가적으로 구성하는, 교류전기기계; 및By said connecting portion, said at least two three-phase windings equivalently constitute one delta-connected winding; And
    상기 제 2 에너지 전달부의 적어도 둘 이상의 3상 권선부들과 전기적으로 연결되는 적어도 둘 이상의 3상 부하들을 포함하는, 교류전기기계 구동장치.And at least two or more three phase loads electrically connected to at least two or more three phase windings of the second energy transfer portion.
  17. 제 16 항에 있어서, The method of claim 16,
    상기 교류전기기계는 변압기이며,The AC electric machine is a transformer,
    상기 제 1 에너지 전달부는 변압기 1차단이고, 상기 제 2 에너지 전달부는 변압기 2차단이며,The first energy transfer unit is a transformer primary stage, the second energy transfer unit is a transformer secondary stage,
    상기 코어는 변압기 코어인, 교류전기기계 구동장치.And the core is a transformer core.
  18. 제 16 항에 있어서, The method of claim 16,
    상기 교류전기기계는 전동기 또는 발전기이며,The AC electric machine is an electric motor or a generator,
    상기 제 1 에너지 전달부는 회전자이고, 상기 제 2 에너지 전달부는 고정자이며,The first energy transfer part is a rotor, the second energy transfer part is a stator,
    상기 코어는 고정자 코어인, 교류전기기계 구동장치.And the core is a stator core.
  19. 제 16 항 내지 제 18 항 중 어느 한 항에 있어서,The method according to any one of claims 16 to 18,
    상기 델타 결선된 권선부의 권선들 사이의 노드들에는 적어도 둘 이상의 3상 부하들의 3상 전력 입력 단자들이 연결되는, 교류전기기계 구동장치.And three-phase power input terminals of at least two or more three-phase loads are connected to nodes between the windings of the delta-connected winding.
PCT/KR2014/006212 2013-12-03 2014-07-10 Ac electric machine and driving apparatus including same WO2015083916A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130149472 2013-12-03
KR10-2013-0149472 2013-12-03
KR1020140074362A KR101572978B1 (en) 2013-12-03 2014-06-18 Electrical machine and driving apparatus including the same
KR10-2014-0074362 2014-06-18

Publications (1)

Publication Number Publication Date
WO2015083916A1 true WO2015083916A1 (en) 2015-06-11

Family

ID=53273640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006212 WO2015083916A1 (en) 2013-12-03 2014-07-10 Ac electric machine and driving apparatus including same

Country Status (1)

Country Link
WO (1) WO2015083916A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278714A (en) * 2007-05-07 2008-11-13 Fuji Electric Systems Co Ltd Rectifier circuit
KR101137316B1 (en) * 2010-06-04 2012-04-19 노부야스 사토 Power receiving equipment
KR101173632B1 (en) * 2008-09-17 2012-08-13 주식회사 에너테크 Apparatus for improving power quality and power supply system
KR20130036264A (en) * 2013-02-04 2013-04-11 김나운 Eco-friendly energy-saving hybrid transformer and the energy-saving methods
JP2013099054A (en) * 2011-10-31 2013-05-20 Hitachi Ltd Power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278714A (en) * 2007-05-07 2008-11-13 Fuji Electric Systems Co Ltd Rectifier circuit
KR101173632B1 (en) * 2008-09-17 2012-08-13 주식회사 에너테크 Apparatus for improving power quality and power supply system
KR101137316B1 (en) * 2010-06-04 2012-04-19 노부야스 사토 Power receiving equipment
JP2013099054A (en) * 2011-10-31 2013-05-20 Hitachi Ltd Power conversion device
KR20130036264A (en) * 2013-02-04 2013-04-11 김나운 Eco-friendly energy-saving hybrid transformer and the energy-saving methods

Similar Documents

Publication Publication Date Title
CN105684297B (en) Turbine generator system with DC output
US7710081B2 (en) Electromechanical energy conversion systems
Pena-Alzola et al. Review of modular power converters solutions for smart transformer in distribution system
US20120106210A1 (en) Multi-phase power converters and integrated choke therfor
JP2010508802A5 (en)
US9227518B2 (en) Rotary electric machine and in-vehicle rotary electric machine system
US20200244127A1 (en) Stator winding for a rotating electrical machine
KR20090132507A (en) Solar power plant
US20200158085A1 (en) Power converter for full conversion wind turbine systems
WO2014099897A2 (en) Distribution transformer interface apparatus and methods
WO2022088655A1 (en) Power supply system, power electronic circuit, and battery module
CN106711992A (en) Permanent-magnet DC fan cluster system topological structure
WO2013032122A1 (en) Axial-flux-type permanent magnet synchronous generator and motor
WO2013027949A2 (en) Power conversion device
KR20200120866A (en) An electric machine element and an electric machine
WO2015083916A1 (en) Ac electric machine and driving apparatus including same
WO2021194241A1 (en) 6-phase driving motor comprising input terminals of multiple conductor materials
US20210067050A1 (en) Modular power conversion system with galvanic insulation
KR101572978B1 (en) Electrical machine and driving apparatus including the same
WO2012074311A2 (en) Parallel operating inverter wind power generating system using a current balancer
US20240128837A1 (en) Chargers and DC-DC Converters Integrated with a Poly-Phase Motor Drive
WO2023182603A1 (en) Alternating current generator
EP4181354A1 (en) Electric drive
CN217010070U (en) Water-cooling power module unit
TWI749806B (en) Power conversion structure applied in sst and charging system having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868124

Country of ref document: EP

Kind code of ref document: A1