JP2008278714A - Rectifier circuit - Google Patents

Rectifier circuit Download PDF

Info

Publication number
JP2008278714A
JP2008278714A JP2007122339A JP2007122339A JP2008278714A JP 2008278714 A JP2008278714 A JP 2008278714A JP 2007122339 A JP2007122339 A JP 2007122339A JP 2007122339 A JP2007122339 A JP 2007122339A JP 2008278714 A JP2008278714 A JP 2008278714A
Authority
JP
Japan
Prior art keywords
phase
voltage
reactor
windings
rectifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007122339A
Other languages
Japanese (ja)
Inventor
Hiroshi Osawa
博 大沢
Iwao Kurata
巌 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007122339A priority Critical patent/JP2008278714A/en
Publication of JP2008278714A publication Critical patent/JP2008278714A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel 12-pulse rectifier circuit for the purpose of low-voltage large capacity which realizes miniaturization and cost reduction and improves the degree of freedom in design by reduced capacity of AC interphase reactors and small current thereof for the purpose requiring an insulation transformer for voltage step-down. <P>SOLUTION: The rectifier circuit includes an AC interphase reactor 3 having two pairs of three-phase windings 3U<SB>1</SB>, 3V<SB>1</SB>, 3W<SB>1</SB>and 3U<SB>2</SB>, 3V<SB>2</SB>, 3W<SB>2</SB>which are connected between a three-phase input terminal and first, second three-phase output terminals; first and second insulation transformers 2A and 2B having primary sides each connected to the first and second three-phase output terminals, and having a secondary voltage phase difference of substantially 30 degrees; and two three-phase bridge rectifiers 1A and 1B having AC circuits each connected to the secondary side of these insulation transformers and a DC circuit connected in parallel. In the rectifier circuit, the three-phase windings 3U<SB>1</SB>, 3V<SB>1</SB>, 3W<SB>1</SB>and 3U<SB>2</SB>, 3V<SB>2</SB>, 3W<SB>2</SB>have substantially the same number of windings and are wound on the same iron core. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、3相交流電圧を絶縁変圧器を介して3相ブリッジ整流器により整流し、直流電圧を得る整流回路に関し、詳しくは、2台の3相ブリッジ整流器の直流側が並列接続されてなる整流回路に関するものである。   The present invention relates to a rectifier circuit that rectifies a three-phase AC voltage with a three-phase bridge rectifier through an insulating transformer to obtain a DC voltage, and more specifically, rectification in which the DC sides of two three-phase bridge rectifiers are connected in parallel. It relates to the circuit.

3相交流電力を直流電力に変換する電力変換器として、3相ブリッジ整流器がよく用いられている。3相ブリッジ整流器は、電源の1サイクルに6回の転流を行うことから、その回路は6パルス整流回路とも呼ばれている。更に、3相ブリッジ整流器を複数台組み合わせることにより、12パルス整流回路または18パルス整流回路などの多パルス整流回路を構成することが可能である。
これらの多パルス整流回路は、転流回数が増えるため、電源に流れる高調波電流を低減できること、大容量化できることは、利点として良く知られている。
A three-phase bridge rectifier is often used as a power converter that converts three-phase AC power into DC power. Since the three-phase bridge rectifier performs six commutations in one cycle of the power supply, the circuit is also called a six-pulse rectifier circuit. Further, a multi-pulse rectifier circuit such as a 12-pulse rectifier circuit or an 18-pulse rectifier circuit can be configured by combining a plurality of three-phase bridge rectifiers.
Since these multi-pulse rectifier circuits increase the number of commutations, it is well known as an advantage that the harmonic current flowing in the power supply can be reduced and the capacity can be increased.

図2及び図3は、ダイオードまたはサイリスタにより構成された2台の3相ブリッジ整流器からなる12パルス整流回路の構成例を示しており、例えば非特許文献1に記載された回路と原理的に同一である。
図2及び図3において、1A,1Bは3相ブリッジ整流器、2は一方の2次巻線がスター結線、他方の2次巻線がデルタ結線され、両2次巻線の出力電圧が30度の位相差をもつ3巻線絶縁変圧器である。また、U,V,Wは3相入力端子、P,Nは直流出力端子を示している。
2 and 3 show a configuration example of a 12-pulse rectifier circuit including two three-phase bridge rectifiers configured by diodes or thyristors. For example, the circuit is basically the same as the circuit described in Non-Patent Document 1. It is.
2 and 3, 1A and 1B are three-phase bridge rectifiers, 2 is one secondary winding is star-connected, the other secondary winding is delta-connected, and the output voltage of both secondary windings is 30 degrees. This is a three-winding insulation transformer having a phase difference of. U, V, and W are three-phase input terminals, and P and N are DC output terminals.

図2の回路では、2台の3相ブリッジ整流器1A,1Bが直列接続されており、主に高圧大容量用途に適している。
一方、図3の回路は、相間リアクトル5を介して2台の3相ブリッジ整流器1A,1Bの直流回路が並列接続された並列12パルス整流回路であり、主に低圧大容量用途に適している。ここで、相間リアクトル5は、並列接続された3相ブリッジ整流器1A,1B間を横流する高調波電流を抑制する作用を果している。
図2及び図3の回路では、2台の3相ブリッジ整流器1A,1Bが発生する第5次及び第7次の高調波が理想的には相殺されるので、電源の高調波を低減することができる。
In the circuit of FIG. 2, two three-phase bridge rectifiers 1A and 1B are connected in series, which is suitable mainly for high voltage and large capacity applications.
On the other hand, the circuit of FIG. 3 is a parallel 12-pulse rectifier circuit in which DC circuits of two three-phase bridge rectifiers 1A and 1B are connected in parallel via an interphase reactor 5, and is mainly suitable for low voltage and large capacity applications. . Here, the interphase reactor 5 has the effect | action which suppresses the harmonic current which crosses between the three-phase bridge rectifiers 1A and 1B connected in parallel.
In the circuits of FIGS. 2 and 3, the fifth and seventh harmonics generated by the two three-phase bridge rectifiers 1A and 1B are ideally canceled, so that the harmonics of the power supply are reduced. Can do.

次に、図4は、非特許文献2に記載されている回路と原理的に同一の回路である。
この回路では、図2や図3に示した絶縁変圧器2に代えて、一相あたり3巻線が磁気結合された相間リアクトル31が用いられている。以下では、この種のリアクトルを交流相間リアクトルと呼び、図3に示した直流側の相間リアクトル5を直流相間リアクトルと呼ぶことにする。
Next, FIG. 4 is a circuit that is theoretically the same as the circuit described in Non-Patent Document 2.
In this circuit, an interphase reactor 31 in which three windings per phase are magnetically coupled is used instead of the insulating transformer 2 shown in FIGS. Hereinafter, this type of reactor is referred to as an AC phase reactor, and the DC side phase reactor 5 illustrated in FIG. 3 is referred to as a DC phase reactor.

図4において、交流相間リアクトル31では異なる相の巻線が互いに磁気結合されていることにより、リアクトル31の入出力間において移相機能が生じる。
図示するように同一鉄心上に巻かれた3巻線の巻数N,N,Nを、
:N:N=3.73:2.73:1.0
に設計することにより、整流器1A,1Bに接続される2組のリアクトルの出力電圧が30度の位相差をもつので、整流器1A,1Bに30度の位相差の3相交流電圧をそれぞれ供給することができる。これにより、図4の従来技術では、図3に示す回路と同様な並列12パルス整流回路の機能を得ようとするものである。
なお、図4の回路では、交流相間リアクトル31が整流器1A,1B間を流れる横流を抑制するので、図3のような直流相間リアクトル5は不要となる。
In FIG. 4, in the AC interphase reactor 31, windings of different phases are magnetically coupled to each other, so that a phase shift function is generated between the input and output of the reactor 31.
As shown in the figure, the number of turns N 1 , N 2 , N 3 of three windings wound on the same iron core is
N 1 : N 2 : N 3 = 3.73: 2.73: 1.0
Since the output voltages of the two reactors connected to the rectifiers 1A and 1B have a phase difference of 30 degrees, a three-phase AC voltage having a phase difference of 30 degrees is supplied to the rectifiers 1A and 1B, respectively. be able to. Accordingly, the prior art of FIG. 4 attempts to obtain the function of a parallel 12-pulse rectifier circuit similar to the circuit shown in FIG.
In the circuit of FIG. 4, the AC interphase reactor 31 suppresses the cross current flowing between the rectifiers 1 </ b> A and 1 </ b> B, so the DC interphase reactor 5 as shown in FIG. 3 is not necessary.

次いで、図5は、特許文献1に記載されている回路と原理的に同一の回路である。この回路では、交流相間リアクトル32の同一鉄心上に巻かれた3巻線の巻数N,N,Nを、
:N:N=√3:1:1
に設計する。これにより、図4と同様に、並列12パルス整流回路の機能を得ようとするものである。
Next, FIG. 5 is a circuit that is theoretically the same as the circuit described in Patent Document 1. In this circuit, the number of turns N 1 , N 2 , N 3 of three windings wound on the same iron core of the AC interphase reactor 32 is
N 1 : N 2 : N 3 = √3: 1: 1
To design. As a result, the function of the parallel 12-pulse rectifier circuit is obtained as in FIG.

「電気工学ハンドブック(第6版)」,社団法人電気学会,20編パワーエレクトロニクス、846頁〜847頁“Electrical Engineering Handbook (6th Edition)”, The Institute of Electrical Engineers of Japan, 20 editions of Power Electronics, pages 846-847 "A New 12-Pulse Rectifier Circuit with Line-Side Interphase Transformer and Nearly Sinusoidal Line Currents" by Manfred Depenbrock and Clemens Niermann, Proc. of 6th Conference on PEMC, vol.2, pp.374-378 (1990年)"A New 12-Pulse Rectifier Circuit with Line-Side Interphase Transformer and Nearly Sinusoidal Line Currents" by Manfred Depenbrock and Clemens Niermann, Proc. Of 6th Conference on PEMC, vol.2, pp.374-378 (1990) 特開2000−358372号公報(請求項1,請求項4、段落[0019]〜[0025]、図1,図2等)JP 2000-358372 A (Claims 1 and 4, paragraphs [0019] to [0025], FIG. 1, FIG. 2, etc.)

さて、金属の誘導加熱分野に適用されるインバータ用の直流電源や非鉄金属の製造に用いられる電解用の直流電源などでは、例えば電圧が数百V、出力が数千kW以上の低圧大容量の直流電源が必要になる。この種の直流電源は6kV級以上の高圧商用電源から得るのが望ましいので、降圧変圧器が必要になる。
上述したような分野において、例えば非特許文献1に記載された図3の回路を用いて3巻線変圧器2を降圧変圧器とすることにより、低圧大容量の整流回路(直流電源)を構成し、しかも電源の高調波を低減することが可能である。しかし、その場合には次のような問題が生じる。
Now, in a DC power source for inverters applied to the induction heating field of metals and a DC power source for electrolysis used in the production of non-ferrous metals, for example, a voltage of several hundred volts and an output of several thousand kW or more are low voltage and large capacity. A DC power supply is required. Since this type of DC power supply is desirably obtained from a high-voltage commercial power supply of 6 kV class or higher, a step-down transformer is required.
In the field as described above, for example, by using the circuit of FIG. 3 described in Non-Patent Document 1 as the three-winding transformer 2 as a step-down transformer, a low-voltage and large-capacity rectifier circuit (DC power supply) is configured. In addition, the harmonics of the power supply can be reduced. However, in that case, the following problems occur.

例えば6kV級以上の交流高電圧から最終的に数百V級の直流電圧を得ようとすると、3巻線変圧器2の2次巻線の巻数は必然的に多くできない。このため、変圧比の大きな降圧用の3巻線変圧器を用いる必要があるが、この種の3巻線変圧器では、スター側とデルタ側の2組の2次電圧に実効値の誤差が生じやすくなる。
この電圧実効値誤差は、2台の3相ブリッジ整流器1A,1Bの直流電圧誤差となって現れるが、直流相間リアクトル5ではこの直流電圧誤差を補償できないので、両整流器1A,1B間を流れる直流成分の横流が過大になる。この結果、大きな容量をもった3相ブリッジ整流器1A,1Bや3巻線変圧器2が必要になる。同時に、3巻線変圧器2の2次電流には第5次及び第7次高調波が多く含まれるため、この高調波も3巻線変圧器2の容量増加の原因となる。
For example, when trying to finally obtain a DC voltage of several hundreds V from an AC high voltage of 6 kV or higher, the number of turns of the secondary winding of the three-winding transformer 2 cannot be increased. For this reason, it is necessary to use a step-down three-winding transformer with a large transformation ratio. However, in this type of three-winding transformer, there is an error in effective value between two sets of secondary voltages on the star side and the delta side. It tends to occur.
This voltage effective value error appears as a DC voltage error of the two three-phase bridge rectifiers 1A and 1B. However, since the DC voltage error cannot be compensated for by the DC interphase reactor 5, the DC current flowing between the rectifiers 1A and 1B. Ingredient cross current becomes excessive. As a result, the three-phase bridge rectifiers 1A and 1B and the three-winding transformer 2 having a large capacity are required. At the same time, the secondary current of the three-winding transformer 2 includes many fifth and seventh harmonics, and this harmonic also causes an increase in the capacity of the three-winding transformer 2.

一方、非特許文献2や特許文献1に記載された従来技術は、絶縁変圧器や直流相間リアクトルを不要にした点に特徴がある。しかしながら、これらの従来技術により、上述したように交流高電圧を降圧して最終的に所定の直流電圧を得る場合、確かに直流相間リアクトルは不要になるが、3巻線変圧器に代わるものとして大形かつ高価な交流相間リアクトル31,32が必要になる。
以下に、交流相間リアクトルが大形かつ高価になる理由を説明する。
On the other hand, the prior art described in Non-Patent Document 2 and Patent Document 1 is characterized in that an insulating transformer and a DC interphase reactor are not required. However, with these conventional techniques, as described above, when the AC high voltage is stepped down to finally obtain a predetermined DC voltage, a DC interphase reactor is certainly unnecessary, but it is an alternative to a three-winding transformer. Large and expensive AC interphase reactors 31 and 32 are required.
The reason why the AC phase reactor is large and expensive will be described below.

まず第1の理由として、非特許文献2や特許文献1における交流相間リアクトル31,32は移相特性を持っている。このため、交流相間リアクトルの入力電圧に対して出力電圧の位相を変化させようとすると、交流相間リアクトル内の結合リアクトルの入出力間には移相に伴った基本波成分の電圧降下が生じ、更に、高調波分による電圧降下が生じる。
ここで、交流相間リアクトルの容量は、基本波成分の電圧降下と高調波成分の電圧降下とを加算した電圧と、交流相間リアクトルを流れる電流との積によって決定される。
First, as a first reason, the inter-phase reactors 31 and 32 in Non-Patent Document 2 and Patent Document 1 have phase shift characteristics. For this reason, when the phase of the output voltage is changed with respect to the input voltage of the AC phase reactor, a voltage drop of the fundamental wave component caused by the phase shift occurs between the input and output of the coupling reactor in the AC phase reactor, Furthermore, a voltage drop due to the harmonic component occurs.
Here, the capacity of the reactor between the AC phases is determined by the product of the voltage obtained by adding the voltage drop of the fundamental component and the voltage drop of the harmonic component and the current flowing through the reactor between the AC phases.

交流相間リアクトルの容量を決定するのは基本波成分の電圧降下の方が支配的であるが、図3に示した直流相間リアクトル5の容量決定にあたっては、基本波成分の電圧降下に相当する成分はない。すなわち、図4,図5のように交流相間リアクトル31,32を用いる場合には、その容量決定に支配的である基本波成分の電圧降下分だけ、交流相間リアクトル31,32の容量を直流相間リアクトル5の容量に比べて大きくする必要がある。   The capacity of the AC interphase reactor is determined by the voltage drop of the fundamental wave component. However, in determining the capacity of the DC interphase reactor 5 shown in FIG. 3, the component corresponding to the voltage drop of the fundamental wave component is determined. There is no. That is, when the AC interphase reactors 31 and 32 are used as shown in FIGS. 4 and 5, the capacity of the AC interphase reactors 31 and 32 is set between the DC phases by the voltage drop of the fundamental wave component that is dominant in determining the capacity. It is necessary to increase the capacity of the reactor 5.

第2の理由として、2台の3相ブリッジ整流器1A,1B間に流れようとする横流には零相成分も存在する。この零相成分の電流に対して横流の抑制効果を持たせようとすると、例えば3台の単相リアクトルが必要になる。このため、直流相間リアクトル5を用いる場合に比べて機器台数が増えることが大形化の要因になる。また、交流相間リアクトル31,32の同一鉄心上に巻かれた3巻線の巻数N,N,Nの比が整数にならない点も設計上の課題となる。 As a second reason, a zero-phase component also exists in the cross current that flows between the two three-phase bridge rectifiers 1A and 1B. For example, three single-phase reactors are required to have a cross current suppressing effect on the zero-phase component current. For this reason, an increase in the number of devices compared to the case where the DC interphase reactor 5 is used becomes a factor of an increase in size. Another design problem is that the ratio of the number of turns N 1 , N 2 , and N 3 of the three windings wound on the same iron core of the interphase reactors 31 and 32 does not become an integer.

そこで、本発明の解決課題は、降圧のために絶縁変圧器が必要になる低圧大容量の用途に対して上記課題を解決し、小形かつ安価で設計自由度の高い整流回路を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a rectifier circuit that is small, inexpensive, and has a high degree of design freedom by solving the above-mentioned problems for low-voltage and large-capacity applications that require an insulating transformer for step-down. is there.

上記課題を解決するため、請求項1に係る発明は、3相交流電圧を整流して直流電圧に変換する整流回路において、
3相入力端子と第1,第2の3相出力端子との間に接続された2組の3相巻線を有する交流相間リアクトルと、
前記第1,第2の3相出力端子に1次側がそれぞれ接続され、かつ2次電圧の位相差がほぼ30度である第1,第2の絶縁変圧器と、
前記第1,第2の絶縁変圧器の2次側に交流回路がそれぞれ接続され、かつ直流回路が並列接続された2台の3相ブリッジ整流器と、を備え、
前記交流相間リアクトル内の2組の3相巻線は何れも巻数がほぼ等しく、かつ同一鉄心上に巻かれていることを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a rectifier circuit that rectifies a three-phase AC voltage and converts it into a DC voltage.
An AC interphase reactor having two sets of three-phase windings connected between the three-phase input terminal and the first and second three-phase output terminals;
First and second isolation transformers each having a primary side connected to the first and second three-phase output terminals and having a phase difference of a secondary voltage of approximately 30 degrees;
Two three-phase bridge rectifiers in which an AC circuit is connected to the secondary side of each of the first and second isolation transformers, and the DC circuits are connected in parallel;
The two sets of three-phase windings in the AC phase reactor are both substantially equal in number of turns and wound on the same iron core.

本発明においては、並列12パルス整流回路を実現するための移相作用を第1,第2の絶縁変圧器により行い、これら絶縁変圧器の1次側に接続された2組の3相巻線を有する交流相間リアクトルによって入力電流を平衡化するものである。これにより、降圧のために絶縁変圧器が必要になる低圧大容量の用途に対して、交流相間リアクトルの容量、電流を低減して小形化、低価格化を図り、設計の自由度を高めることができる。   In the present invention, two sets of three-phase windings connected to the primary side of these isolation transformers are performed by the first and second isolation transformers in order to realize a phase shift operation for realizing a parallel 12-pulse rectifier circuit. The input current is balanced by an AC interphase reactor. As a result, for low voltage and large capacity applications where an insulation transformer is required for step-down, the capacity and current of the reactor between the AC phases can be reduced to reduce size and price, and increase design flexibility. Can do.

以下、図に沿って本発明の実施形態を説明する。
図1は、本発明の実施形態に係る並列12パルス整流回路の回路図である。図1において、3は、2組の3相巻線3U,3V,3W及び3U,3V,3Wを備えた交流相間リアクトルである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram of a parallel 12-pulse rectifier circuit according to an embodiment of the present invention. In FIG. 1, reference numeral 3 denotes an AC interphase reactor including two sets of three-phase windings 3U 1 , 3V 1 , 3W 1 and 3U 2 , 3V 2 , 3W 2 .

この交流相間リアクトル3において、3相入力端子U,V,Wは3相交流電源(図示せず)に接続されており、第1の3相出力端子U,V,W及び第2の3相出力端子U,V,Wは、第1の3相絶縁変圧器2Aの1次巻線2Aと第2の3相絶縁変圧器2Bの1次巻線2Bとにそれぞれ接続されている。
前記入力端子Uと出力端子U,Uとの間には巻線3U,3Uが接続され、入力端子Vと出力端子V,Vとの間には巻線3V,3Vが接続され、入力端子Wと出力端子W,Wとの間には巻線3W,3Wが接続されている。ここで、巻線3U,3U,3V,3V,3W,3Wの巻数は等しく、何れも同一の鉄心に巻かれていて磁気結合されている。
In this AC interphase reactor 3, the three-phase input terminals U, V, W are connected to a three-phase AC power source (not shown), and the first three-phase output terminals U 1 , V 1 , W 1 and second of 3-phase output terminals U 2, V 2, W 2 is the primary winding 2B 1 and the primary winding 2A 1 and second 3-phase isolation transformer 2B of the first three-phase isolation transformer 2A Each is connected.
Windings 3U 1 and 3U 2 are connected between the input terminal U and the output terminals U 1 and U 2, and windings 3V 1 and 3V are connected between the input terminal V and the output terminals V 1 and V 2. 2 are connected, and windings 3W 1 and 3W 2 are connected between the input terminal W and the output terminals W 1 and W 2 . Here, the windings 3U 1 , 3U 2 , 3V 1 , 3V 2 , 3W 1 , 3W 2 are equal in number, and are wound around the same iron core and magnetically coupled.

前記出力端子U,V,Wに接続された第1の絶縁変圧器2Aは、1次巻線2Aがデルタ結線、2次巻線2Aがスター結線であり、前記出力端子U,V,Wに接続された第2の3相絶縁変圧器2Bは、1次巻線2B及び2次巻線2Bがデルタ結線となっている。また、両変圧器2A,2Bの変成比は等しく設定されている。
このため、各2次巻線2A,2Bから出力される3相交流電圧の位相差は30度となり、これらの3相交流電圧がダイオードからなる3相ブリッジ整流器1A,1Bの交流回路にそれぞれ供給されるようになっている。
なお、図4,図5と同様に3相ブリッジ整流器1A,1Bの直流回路は並列接続されており、直流出力端子P,N間には平滑コンデンサ4が接続されている。
The first isolation transformer 2A connected to the output terminals U 1 , V 1 , W 1 has a primary winding 2A 1 having a delta connection, a secondary winding 2A 2 having a star connection, and the output terminal U In the second three-phase isolation transformer 2B connected to 2 , V 2 and W 2 , the primary winding 2B 1 and the secondary winding 2B 2 are delta-connected. Moreover, the transformation ratio of both the transformers 2A and 2B is set equal.
Therefore, the phase difference between the three-phase AC voltages output from the secondary windings 2A 2 and 2B 2 is 30 degrees, and these three-phase AC voltages are applied to the AC circuit of the three-phase bridge rectifiers 1A and 1B including diodes. Each is supplied.
4 and 5, the DC circuits of the three-phase bridge rectifiers 1A and 1B are connected in parallel, and the smoothing capacitor 4 is connected between the DC output terminals P and N.

上記実施形態において、3相ブリッジ整流器1A,1Bに流れる電流の方向を交流電流の正方向と仮定したとすると、交流相間リアクトル3は、同一鉄心上に、互いに逆極性に磁気結合されて巻数が等しい2組の巻線3U,3V,3W及び3U,3V,3Wが巻かれていることになる。 In the above embodiment, assuming that the direction of the current flowing through the three-phase bridge rectifiers 1A and 1B is the positive direction of the AC current, the AC interphase reactors 3 are magnetically coupled to each other in opposite polarities on the same iron core and have a number of turns. Two equal sets of windings 3U 1 , 3V 1 , 3W 1 and 3U 2 , 3V 2 , 3W 2 are wound.

一方、交流相間リアクトルは、同一鉄心に作用する合成起磁力がほぼゼロになるように作用する。このため、図1における交流相間リアクトル3は、絶縁変圧器2A側の出力端子U,V,Wに流れる電流と、絶縁変圧器2B側の出力端子U,V,Wに流れる電流とが等しくなるように作用する。
別の見方をするならば、所定値より2次電圧が低い絶縁変圧器に対しては1次電圧を増加させ、所定値より2次電圧が高い絶縁変圧器に対しては1次電圧を減少させることによって電流を平衡化させることができる。
On the other hand, the AC interphase reactor acts so that the resultant magnetomotive force acting on the same iron core becomes almost zero. Therefore, the AC interphase reactor 3 in FIG. 1 is connected to the output terminals U 1 , V 1 , W 1 on the side of the isolation transformer 2A and the output terminals U 2 , V 2 , W 2 on the side of the isolation transformer 2B. It acts so that the flowing current becomes equal.
Another way of looking at this is to increase the primary voltage for isolation transformers whose secondary voltage is lower than the predetermined value, and decrease the primary voltage for isolation transformers whose secondary voltage is higher than the predetermined value. Current can be balanced.

仮に、2台の絶縁変圧器2A,2Bの変成比が完全に同一ではなく出力電圧の大きさに誤差がある場合でも、交流相間リアクトル3により各絶縁変圧器2A,2Bに入力される1次電圧が補償されるので、非特許文献1に存在するような3相ブリッジ整流器1A,1B間を流れる直流成分の横流は原理的には発生しない。従って、整流器1A,1Bの容量が増大するのを防ぐことができる。
また、交流相間リアクトル3は平滑リアクトルとしても作用するので、絶縁変圧器2A,2Bの電流は第5次及び第7次の高調波電流が少ない正弦波状の電流となる。このため、非特許文献1の従来技術に比べて絶縁変圧器2A,2Bの容量低減が可能である。
Even if the transformation ratios of the two isolation transformers 2A and 2B are not completely the same and there is an error in the magnitude of the output voltage, the primary input to each isolation transformer 2A and 2B by the AC phase reactor 3 Since the voltage is compensated, the cross current of the DC component flowing between the three-phase bridge rectifiers 1A and 1B as in Non-Patent Document 1 does not occur in principle. Therefore, it is possible to prevent the capacity of the rectifiers 1A and 1B from increasing.
Further, since the AC interphase reactor 3 also functions as a smoothing reactor, the currents of the isolation transformers 2A and 2B are sinusoidal currents with less fifth and seventh harmonic currents. For this reason, the capacity | capacitance reduction of insulation transformer 2A, 2B is possible compared with the prior art of a nonpatent literature 1. FIG.

本実施形態において、並列12パルス整流回路とするための移相は前述した如く絶縁変圧器2A,2Bが行なっている。このため、交流相間リアクトル3には、非特許文献2や特許文献1におけるような基本波成分の電圧降下が発生せず、その容量を増加させる要因とならないため、交流相間リアクトル3の容量を低減して小形化を図ることができる。
また、交流相間リアクトル3は絶縁変圧器2A,2Bの高圧側に接続される構成であるため、非特許文献2や特許文献1のように同一の低圧・大電流回路の3相ブリッジ整流器1A,1Bに直接接続される場合に比べて、交流相間リアクトル3を流れる電流が減少し、小形化、小容量化に寄与する。
In the present embodiment, the phase shift for the parallel 12-pulse rectifier circuit is performed by the isolation transformers 2A and 2B as described above. For this reason, since the voltage drop of the fundamental wave component does not occur in the AC interphase reactor 3 as in Non-Patent Document 2 and Patent Document 1, and the capacity is not increased, the capacity of the AC interphase reactor 3 is reduced. Thus, the size can be reduced.
Further, since the AC interphase reactor 3 is connected to the high voltage side of the isolation transformers 2A and 2B, the three-phase bridge rectifier 1A of the same low-voltage and high-current circuit as in Non-Patent Document 2 and Patent Document 1, Compared with the case where it is directly connected to 1B, the current flowing through the AC interphase reactor 3 is reduced, which contributes to downsizing and capacity reduction.

交流相間リアクトル3における第1の3相出力端子U〜Wと第2の3相出力端子U〜Wとは、絶縁変圧器2A,2Bによって互いに絶縁されている。従って、各端子には零相電流が流れないので、交流相間リアクトル3には3脚鉄心を使用した3相リアクトルを用いることができる。従って、零相電流を抑制するために、例えば3台の単相リアクトルを使用するよりも装置全体の小形化が可能である。 The first three-phase output terminals U 1 to W 1 and the second three-phase output terminals U 2 to W 2 in the AC interphase reactor 3 are insulated from each other by the isolation transformers 2A and 2B. Therefore, zero-phase current does not flow through each terminal, and therefore a three-phase reactor using a three-leg iron core can be used as the AC interphase reactor 3. Therefore, in order to suppress the zero-phase current, for example, the entire apparatus can be miniaturized rather than using three single-phase reactors.

更に、本実施形態の交流相間リアクトル3は、同一鉄心上に同一巻数の2組の3相巻線を巻くことによって構成可能であり、非特許文献2や特許文献1のように理想巻数比が非整数比となる問題もない。これにより、交流相間リアクトル3を構成する巻線の巻数を自由に設計でき、電流平衡化及び高調波低減の精度を従来よりも向上させることができる。また、設計の自由度が増えることは交流相間リアクトル3の小形化にも寄与するものである。   Furthermore, the AC interphase reactor 3 of the present embodiment can be configured by winding two sets of three-phase windings of the same number of turns on the same iron core, and the ideal turns ratio is as in Non-Patent Document 2 and Patent Document 1. There is no problem of non-integer ratios. Thereby, the number of windings constituting the AC interphase reactor 3 can be freely designed, and the accuracy of current balancing and harmonic reduction can be improved as compared with the prior art. Further, the increase in the degree of freedom of design contributes to the miniaturization of the reactor for interphase AC 3.

本発明の実施形態を示す回路図である。It is a circuit diagram showing an embodiment of the present invention. 非特許文献1に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in the nonpatent literature 1. 非特許文献1に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in the nonpatent literature 1. 非許文献2に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in Non-permitted Document 2. 特許文献1に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in Patent Document 1.

符号の説明Explanation of symbols

1A,1B:3相ブリッジ整流器
2,2A、2B:絶縁変圧器
2A,2B:1次巻線
2A,2B:2次巻線
3,31,32:交流相間リアクトル
3U,3U,3V,3V,3W,3W:巻線
4:平滑コンデンサ
5:直流相間リアクトル
U,V,W:3相入力端子
,V,W,U,V,W:3相出力端子
P,N:直流出力端子
1A, 1B: Three-phase bridge rectifiers 2, 2A, 2B: Insulation transformers 2A 1 , 2B 1 : Primary windings 2A 2 , 2B 2 : Secondary windings 3, 31, 32: Reactor 3U 1 , 3U between AC phases 2 , 3 V 1 , 3 V 2 , 3 W 1 , 3 W 2 : Winding 4: Smoothing capacitor 5: DC phase reactor U, V, W: 3-phase input terminals U 1 , V 1 , W 1 , U 2 , V 2 , W 2 : Three-phase output terminal P, N: DC output terminal

Claims (1)

3相交流電圧を整流して直流電圧に変換する整流回路において、
3相入力端子と第1,第2の3相出力端子との間に接続された2組の3相巻線を有する交流相間リアクトルと、
前記第1,第2の3相出力端子に1次側がそれぞれ接続され、かつ2次電圧の位相差がほぼ30度である第1,第2の絶縁変圧器と、
前記第1,第2の絶縁変圧器の2次側に交流回路がそれぞれ接続され、かつ直流回路が並列接続された2台の3相ブリッジ整流器と、を備え、
前記交流相間リアクトル内の2組の3相巻線は何れも巻数がほぼ等しく、かつ同一鉄心上に巻かれていることを特徴とする整流回路。
In a rectifier circuit that rectifies three-phase AC voltage and converts it to DC voltage,
An AC interphase reactor having two sets of three-phase windings connected between the three-phase input terminal and the first and second three-phase output terminals;
First and second isolation transformers each having a primary side connected to the first and second three-phase output terminals and having a phase difference of a secondary voltage of approximately 30 degrees;
Two three-phase bridge rectifiers in which an AC circuit is connected to the secondary side of each of the first and second isolation transformers, and the DC circuits are connected in parallel;
The two sets of three-phase windings in the AC interphase reactor have almost the same number of turns and are wound on the same iron core.
JP2007122339A 2007-05-07 2007-05-07 Rectifier circuit Pending JP2008278714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122339A JP2008278714A (en) 2007-05-07 2007-05-07 Rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122339A JP2008278714A (en) 2007-05-07 2007-05-07 Rectifier circuit

Publications (1)

Publication Number Publication Date
JP2008278714A true JP2008278714A (en) 2008-11-13

Family

ID=40056021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122339A Pending JP2008278714A (en) 2007-05-07 2007-05-07 Rectifier circuit

Country Status (1)

Country Link
JP (1) JP2008278714A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083916A1 (en) * 2013-12-03 2015-06-11 서울대학교산학협력단 Ac electric machine and driving apparatus including same
KR101572978B1 (en) 2013-12-03 2015-11-30 서울대학교산학협력단 Electrical machine and driving apparatus including the same
RU2599263C2 (en) * 2011-01-24 2016-10-10 Аег Пауэр Солюшнс Б.В. Rectifier circuit with at least two working points
JP2017153353A (en) * 2016-02-22 2017-08-31 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Method and apparatus for controlling charge station
RU2709454C1 (en) * 2019-02-19 2019-12-18 Илья Николаевич Джус Rectifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884476A (en) * 1994-09-09 1996-03-26 Toyo Electric Mfg Co Ltd Multiplex rectifier
JP2003169477A (en) * 2001-11-30 2003-06-13 Hitachi Ltd Multiplexing power converter and control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884476A (en) * 1994-09-09 1996-03-26 Toyo Electric Mfg Co Ltd Multiplex rectifier
JP2003169477A (en) * 2001-11-30 2003-06-13 Hitachi Ltd Multiplexing power converter and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2599263C2 (en) * 2011-01-24 2016-10-10 Аег Пауэр Солюшнс Б.В. Rectifier circuit with at least two working points
WO2015083916A1 (en) * 2013-12-03 2015-06-11 서울대학교산학협력단 Ac electric machine and driving apparatus including same
KR101572978B1 (en) 2013-12-03 2015-11-30 서울대학교산학협력단 Electrical machine and driving apparatus including the same
JP2017153353A (en) * 2016-02-22 2017-08-31 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Method and apparatus for controlling charge station
KR101947892B1 (en) 2016-02-22 2019-02-13 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Method and apparatus for operating charging stations
RU2709454C1 (en) * 2019-02-19 2019-12-18 Илья Николаевич Джус Rectifier

Similar Documents

Publication Publication Date Title
CA2576990C (en) Auto-transformer for use with multiple pulse rectifiers
US6101113A (en) Transformers for multipulse AC/DC converters
JP4973306B2 (en) Parallel 24 pulse rectifier circuit
US8243481B2 (en) Power transformer and power converter incorporating same
US7233506B1 (en) Low kVA/kW transformers for AC to DC multipulse converters
US7274280B1 (en) Nine-phase step-up/step-down autotransformer
EP2320551B1 (en) Thirty-six pulse power transformer and power converter incorporating same
US20020190697A1 (en) 18-pulse rectification system using a wye-connected autotransformer
US8923024B2 (en) Series connected multi-level power conversion device
JP2008178180A (en) Rectifier circuit
US7750782B1 (en) Nine-phase autotransformer
JP2008278714A (en) Rectifier circuit
US6982884B1 (en) Autotransformers to parallel AC to DC converters
US20160126857A1 (en) Autotransformer with wide range of, integer turns, phase shift, and voltage
JP4765006B2 (en) Power conversion system
JP5029129B2 (en) Parallel 18-pulse rectifier circuit
US11450477B2 (en) Phase-shift autotransformer, multi-pulse rectifier systems and fast charging
JP3696855B2 (en) Rectifier
CN112820524A (en) Multi-phase transformer and rectifier system
RU2488213C1 (en) Multipulse rectifier and autotransformer
JP4395669B2 (en) Three-phase rectifier
JP7099407B2 (en) Bidirectional isolated DC-DC converter
CN210518135U (en) Power supply device and electronic equipment
JP2023019118A (en) Power conversion device
JP2023113461A (en) Power conversion device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002