JPH055067B2 - - Google Patents

Info

Publication number
JPH055067B2
JPH055067B2 JP58118003A JP11800383A JPH055067B2 JP H055067 B2 JPH055067 B2 JP H055067B2 JP 58118003 A JP58118003 A JP 58118003A JP 11800383 A JP11800383 A JP 11800383A JP H055067 B2 JPH055067 B2 JP H055067B2
Authority
JP
Japan
Prior art keywords
phase
voltage
current
interrupting
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58118003A
Other languages
Japanese (ja)
Other versions
JPS6010182A (en
Inventor
Satoru Shiga
Atsushi Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58118003A priority Critical patent/JPS6010182A/en
Publication of JPS6010182A publication Critical patent/JPS6010182A/en
Publication of JPH055067B2 publication Critical patent/JPH055067B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は三相の遮断部が同一の接地金属容器
中に収容された開閉機器によつて変電所の母線や
送電回線の切換えの際に流れる三相ループ電流を
遮断する際のこの開閉機器の性能を検証する遮断
試験方法に使用される装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention provides a system in which a three-phase interrupting section is used when switching a substation busbar or power transmission line by switching equipment housed in the same grounded metal container. The present invention relates to a device used in a disconnection test method for verifying the performance of this switchgear when interrupting a flowing three-phase loop current.

一般に高電圧の変電所においては第1図の単線
結線図に示されるように平行に走る2組の母線
1,2によつて二重母線が形成され、両者の間に
母線連絡遮断器3、断路器4,5,6,7、遮断
器8,9を備えている。10は変圧器、11は送
電線である。いま変圧器10が送電線11からの
電力を、断路器4、母線1、断路器6、遮断器9
を介して受けているとし、断路器5,7は開路し
ているものとする。変電所の運転上の理由によつ
てこの電力を母線2を介して受けようとする場合
にはまず断路器5を投入し、つづいて4を開路す
る。この断路器5の投入時に送電線11からの電
流はこれら両断路器に分流するが、断路器4の方
を流れる分流電流は断路器4の開路によつて断路
器5に転流する。この転流現象は断路器4の分流
電流と大きさが同じで方向が反対の電流をループ
12に沿つて強制的に流通させるのに等しい。こ
の強制流通に要する電圧はループ12の有するイ
ンピーダンスと断路器4を流れる分流電流との積
に等しく、この電圧が断路器4の開路後に回復電
圧としてその断路接点間に現われる。つぎに断路
器7を投入し、6を開路する際の転流現象も同様
に、ループ13に沿つて断路器6の方の分流電流
と同じ大きさの電流をこれと反対方向に流通させ
るのに等しく、断路器6の開路後にその断路接点
間に現われる電圧は、ループ13のインピーダン
スと断路器6の分流電流との積に等しい。また送
電回線においてはたとえば第2図に示すように上
位変電所の母線14と下位変電所の母線15との
間に走つている並行2回線のうち、電流が流れて
いる1つの回線16から電流の流れていない他の
回線17に電流を移すときにも、電流を一旦2回
線に分流させた後、はじめの回線の分流電流と大
きさが同じで方向が反対の電流をループ18に沿
つて流通させることにより、開閉機器19が分流
電流に等しいループ電流を遮断したのと同一の結
果となり、送電回線の切換えが行われることにな
る。
Generally, in a high-voltage substation, a double busbar is formed by two sets of busbars 1 and 2 running in parallel, as shown in the single-line diagram in Figure 1, and a busbar connection breaker 3, It is equipped with disconnectors 4, 5, 6, 7 and circuit breakers 8, 9. 10 is a transformer, and 11 is a power transmission line. Now, the transformer 10 transfers power from the power transmission line 11 to the disconnector 4, the bus 1, the disconnector 6, and the circuit breaker 9.
, and disconnectors 5 and 7 are assumed to be open. If this power is to be received via the bus bar 2 for reasons of operation of the substation, first the disconnector 5 is turned on, and then the disconnector 4 is opened. When this disconnector 5 is turned on, the current from the power transmission line 11 is divided into these two disconnectors, but the shunt current flowing through the disconnector 4 is commutated to the disconnector 5 when the disconnector 4 is opened. This commutation phenomenon is equivalent to forcing a current of the same magnitude and opposite direction as the shunt current of the disconnector 4 to flow along the loop 12. The voltage required for this forced flow is equal to the product of the impedance of the loop 12 and the shunt current flowing through the disconnector 4, and this voltage appears across the disconnector contacts as a recovery voltage after the disconnector 4 is opened. Next, the commutation phenomenon when the disconnector 7 is turned on and the disconnector 6 is opened is similar to that in which a current of the same magnitude as the shunt current of the disconnector 6 flows in the opposite direction along the loop 13. , and the voltage appearing across its disconnecting contacts after opening of the disconnector 6 is equal to the product of the impedance of the loop 13 and the shunt current of the disconnector 6. In addition, in the power transmission line, for example, as shown in Fig. 2, among the two parallel lines running between the bus 14 of the upper substation and the bus 15 of the lower substation, current flows from one line 16 through which current flows. When transferring a current to another line 17 that is not flowing, the current is once divided into two lines, and then a current of the same magnitude and opposite direction as the branched current of the first line is passed along the loop 18. By allowing it to flow, the result is the same as when the switching device 19 interrupts the loop current equal to the shunt current, and the power transmission line is switched.

このようなループ電流の遮断が通常の短絡電流
の遮断と異なるところは、遮断電流が数百ないし
数千アンペアと小さく、回復電圧も数百ないし数
千ボルトと低いことはもちろんであるが、電流の
遮断中および遮断後において各相の遮断接点が電
源側、負荷側ともに大地に対して相電圧に等しい
電位をもち、かつ各相の遮断部相互間に線間電圧
が課電されていることである。この発明はこのよ
うな電圧条件の下で遮断される三相ループ電流の
遮断試験方法に使用される装置に関するものであ
る。
The difference between breaking a loop current like this and breaking a normal short-circuit current is that the breaking current is small, ranging from several hundred to several thousand amperes, and the recovery voltage is low, ranging from several hundred to several thousand volts. During and after disconnection, the disconnection contacts of each phase have a potential equal to the phase voltage with respect to the ground on both the power supply side and the load side, and line voltage is applied between the disconnection parts of each phase. It is. The present invention relates to a device used in a method for testing the interruption of three-phase loop currents that are interrupted under such voltage conditions.

〔従来技術とその問題点〕[Prior art and its problems]

第3図に従来の遮断試験方法の一例を示す。図
において21は三相電源であつてその各相はそれ
ぞれ単相または三相変圧器の各相22a,22
b,22cの2次側の低圧巻線23a,23b,
23cを介して供試開閉機器25の各相の遮断部
25a,25b,25cに所定の遮断電流と回復
電圧とを供給するとともに、高圧巻線24a,2
4b,24cを介して開閉機器の各相の遮断部2
5a,25b,25cとこれら遮断部を収容する
接地金属容器25dとの間にこの開閉機器の定格
電圧に相当した相電圧を供給している。
FIG. 3 shows an example of a conventional interruption test method. In the figure, 21 is a three-phase power supply, each phase of which is a single-phase or three-phase transformer.
b, 22c secondary side low voltage windings 23a, 23b,
A predetermined breaking current and recovery voltage are supplied to the breaking parts 25a, 25b, 25c of each phase of the test switchgear 25 through the high voltage windings 24a, 23c.
4b, 24c to the cutoff section 2 of each phase of the switching equipment
A phase voltage corresponding to the rated voltage of the switchgear is supplied between 5a, 25b, 25c and a grounded metal container 25d that accommodates these interrupting parts.

この試験方法によれば各相の遮断部25a,2
5b,25c中におけるアーク電流の継続中も、
また遮断後においても遮断部と大地との間に相電
圧、遮断部相互間に相間電圧が課電され、実回路
と全く同一条件のもとで、しかもただ1回の試験
によつて所定の三相ループ電流を遮断する際の遮
断部の遮断性能の検証と、遮断部と大地および遮
断部相互間の絶縁性能の検証とを行なうことがで
きるという長所を有している。他方、この試験方
法においてはアーク電流の継続中においても供試
開閉機器の定格電圧相当の相電圧が変圧器の高圧
巻線24a,24b,24cに発生していなけれ
ばならないから、三相電源21の各相21a,2
1b,21cの内部インピーダンスと、変圧器の
1次側巻線と低圧巻線間の漏れインピーダンスと
による電圧降下を僅少にとどめる必要がある。こ
れらのインピーダンスのうち三相電源の内部イン
ピーダンスは、三相電源として通常大容量の短絡
発電機が使用されることからすでに小さい値が得
られているので、変圧器の漏れインピーダンスを
小さくする必要があり、このことは大容量の変圧
器を必要とすることを意味する。また変圧器2次
側の低圧巻線の発生する電圧は供試開閉機器の回
復電圧相当の低い電圧であるが、この低圧巻線の
対地絶縁は供試開閉機器の定格電圧相当のものと
する必要があり、しかも高圧巻線とともに3相分
を必要とし、試験方法として経済性に問題があつ
た。
According to this test method, the blocking portions 25a, 2 of each phase
During the continuation of the arc current in 5b and 25c,
In addition, even after the cutoff, phase voltage is applied between the cutoff part and the ground, and interphase voltage is applied between the cutoff parts, and the specified voltage is applied under exactly the same conditions as the actual circuit and in just one test. It has the advantage that it is possible to verify the breaking performance of the breaking section when interrupting a three-phase loop current, and to verify the insulation performance between the breaking section and the ground and between the breaking sections. On the other hand, in this test method, a phase voltage equivalent to the rated voltage of the switching equipment under test must be generated in the high voltage windings 24a, 24b, and 24c of the transformer even while the arc current continues, so the three-phase power supply 21 Each phase 21a, 2
It is necessary to minimize the voltage drop due to the internal impedance of 1b and 21c and the leakage impedance between the primary winding and the low voltage winding of the transformer. Among these impedances, the internal impedance of a three-phase power supply is already a small value because a large-capacity short-circuit generator is usually used as a three-phase power supply, so it is necessary to reduce the leakage impedance of the transformer. Yes, this means that a large capacity transformer is required. In addition, the voltage generated by the low-voltage winding on the secondary side of the transformer is a low voltage equivalent to the recovery voltage of the switchgear under test, but the ground insulation of this low-voltage winding shall be equivalent to the rated voltage of the switchgear under test. Moreover, it required three phases as well as a high voltage winding, which posed an economical problem as a test method.

第4図に経済性に配慮した従来の遮断試験方法
の別の例を示す。この試験方法は単相電源26を
使用し、遮断部の電流遮断性能の検証にはまずこ
の単相電源からたとえば遮断部25aに所定の遮
断電流と回復電圧とを供給して遮断性能を検証
し、つぎにアーク電流の継続中および遮断後にお
ける遮断部相互間の絶縁性能の検証には、金属容
器を大地から絶縁支持するとともに、三相ループ
電流を遮断したときに金属容器中に生ずるアーク
エネルギと同一のアークエネルギを生ずる等価単
相電流を単相電源26から遮断部25aに供給し
かつこの遮断部25aと、一括接続された他相の
遮断部との間に別の単相電源27から相間電圧を
供給するものである。この試験方法は、密閉され
た金属容器中においてアークによつて加熱され、
熱分解し、電離した絶縁性ガスの絶縁性能が、遮
断部におけるアーク電流の瞬時値とは一義的に関
連せず、金属容器中に放出されたアークエネルギ
の総和によつてきまるという試験結果に基づくも
のであつて、単相電源26の容量は、アーク電流
継続中の端子電圧がほとんど零まで低下すること
が許されることから小容量のものですみ、また単
相電源27の容量は出力電流を必要としないので
試験用変圧器のような極めて小容量のものですむ
という設備費用上の利点を有する。また上述の遮
断部相互間のかわりに遮断部と大地との間の絶縁
性能を検証するときには、金属容器25dを接地
しかつ試験用変圧器27の出力電圧を相電圧とし
て遮断部25b,25cの対地絶縁性能を検証す
る。なお参考として遮断部25aの対地絶縁性能
をも検証するときは、接地された金属容器25d
を再び絶縁支持してこれを試験用電源27に接続
すればよい。
FIG. 4 shows another example of a conventional interruption test method that takes economic efficiency into consideration. This test method uses a single-phase power supply 26, and in order to verify the current interrupting performance of the interrupter, first, a predetermined interrupting current and recovery voltage are supplied from the single-phase power supply to the interrupter 25a, for example, and the interrupting performance is verified. Next, in order to verify the insulation performance between the interrupting parts while the arc current is continuing and after the interruption, the metal container is insulated from the ground, and the arc energy generated in the metal container when the three-phase loop current is interrupted is verified. An equivalent single-phase current that produces the same arc energy as is supplied from the single-phase power supply 26 to the cut-off part 25a, and an electric current from another single-phase power supply 27 is supplied between the cut-off part 25a and the cut-off parts of the other phases that are connected together. It supplies phase-to-phase voltage. This test method involves heating by an arc in a sealed metal container.
Test results show that the insulation performance of thermally decomposed and ionized insulating gas is not uniquely related to the instantaneous value of the arc current at the interrupting part, but is determined by the total arc energy released into the metal container. The capacity of the single-phase power supply 26 is small because the terminal voltage is allowed to drop to almost zero while the arc current continues, and the capacity of the single-phase power supply 27 is based on the output. Since it does not require current, it has the advantage of requiring equipment of extremely small capacity, such as a test transformer, in terms of equipment costs. Moreover, when verifying the insulation performance between the interrupting parts and the ground instead of between the above-mentioned interrupting parts, the metal container 25d is grounded and the output voltage of the test transformer 27 is used as the phase voltage to connect the interrupting parts 25b and 25c. Verify ground insulation performance. For reference, when also verifying the ground insulation performance of the interrupting part 25a, use the grounded metal container 25d.
It is sufficient to insulate and support it again and connect it to the test power supply 27.

第5図に第4図と同様に単相電源を使用するさ
らに別の従来の遮断試験方法の例を示す。第4図
の例とくらべて最も大きく相異する点は、供試開
閉機器の使用状態に対応して供試遮断部25aの
対地電位を相電圧としたことと、この供試遮断部
の電位から単相電源28の絶縁を保護するために
この供試遮断部と単相電源28との間に単相変圧
器29を介在させたことである。この単相変圧器
の2次側には遮断部25aに対して所定の遮断電
流と回復電圧とを供給するための低圧巻線30a
と遮断部25aの対地絶縁性能を検証する高圧巻
線30bとを有し、また低圧巻線30aと遮断部
25aとの間には電流調整用のリアクトル31が
設けられている。
FIG. 5 shows an example of yet another conventional interruption test method that uses a single-phase power source similarly to FIG. 4. The biggest difference compared to the example in FIG. In order to protect the insulation of the single-phase power supply 28 from the above, a single-phase transformer 29 is interposed between this test cutoff section and the single-phase power supply 28. On the secondary side of this single-phase transformer, there is a low voltage winding 30a for supplying a predetermined breaking current and recovery voltage to the breaking section 25a.
and a high-voltage winding 30b for verifying the ground insulation performance of the interrupter 25a, and a reactor 31 for current adjustment is provided between the low-voltage winding 30a and the interrupter 25a.

第5図の試験回路によつて試験を行なうには、
まず変圧器2次側の低圧巻線30aからリアクト
ル31を経由して所定の遮断電流と回復電圧とを
遮断部25aに供給することにより、遮断部25
aの電流遮断性能の検証を行なう。もちろんこの
ときには高圧巻線30bに供試開閉機器の定格電
圧相当の相電圧を発生しているから第4図の試験
方法において説明したようにこの遮断電流を等価
単相電流と考えた場合の、もとのより小さい遮断
電流に相当した対地絶縁性能も同時に検証されて
いることになる。所定の遮断電流を三相の遮断部
に流した場合の対地絶縁性能の検証には、すでに
説明したように三相のアークエネルギと同一のア
ークエネルギを生ずる等価単相電流を遮断部25
aに流してこれを遮断することにより、遮断部2
5aと大地すなわち接地された金属容器25dと
の間の絶縁性能を検証することができる。また遮
断部相互間の絶縁性能を検証するには金属容器2
5dを大地から絶縁支持するとともに高圧巻線3
0bの発生電圧が相間電圧となるようなタツプを
用いればよい。この試験方法においてはアーク電
流継続中も高圧巻線30bに所要電圧を発生して
いなければならないから単相電源28、単相変圧
器29ともに比較的大容量のものを必要とするが
個数はいずれも1個ですむから設備に対する経済
的負担は第3図のものにくらべれば小さい。しか
し第4図、第5図の試験方法はともに単相試験に
よる等価試験方法であつて、これらの方法による
試験結果の信頼性は前記第3図の方法によるもの
に及ばないという欠点があつた。
To perform a test using the test circuit shown in Figure 5,
First, a predetermined cutoff current and recovery voltage are supplied to the cutoff section 25a from the low voltage winding 30a on the secondary side of the transformer via the reactor 31.
Verify the current interrupting performance of a. Of course, at this time, a phase voltage equivalent to the rated voltage of the test switchgear is generated in the high-voltage winding 30b, so when this breaking current is considered as an equivalent single-phase current as explained in the test method of Fig. 4, This means that the ground insulation performance equivalent to the original smaller breaking current has also been verified at the same time. To verify the ground insulation performance when a predetermined breaking current is passed through the three-phase breaking section, as described above, an equivalent single-phase current that produces the same arc energy as the three-phase arc energy is applied to the breaking section 25.
By flowing through a and blocking this, the blocking section 2
It is possible to verify the insulation performance between 5a and the earth, that is, the grounded metal container 25d. In addition, to verify the insulation performance between the interrupting parts, the metal container 2
5d is insulated and supported from the ground, and the high voltage winding 3
It is sufficient to use a tap such that the voltage generated at 0b becomes the phase-to-phase voltage. In this test method, the required voltage must be generated in the high-voltage winding 30b even while the arc current continues, so both the single-phase power supply 28 and the single-phase transformer 29 require relatively large capacities, but the number of Because only one piece is required, the economic burden on the equipment is smaller than that shown in Figure 3. However, the test methods shown in Figures 4 and 5 are both equivalent test methods using a single phase test, and the reliability of the test results obtained by these methods is not as good as that of the method shown in Figure 3 above. .

〔発明の目的〕[Purpose of the invention]

この発明は試験結果の信頼性にすぐれかつ試験
設備の面で経済的な三相ループ電流の遮断試験方
法に使用される装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device used in a three-phase loop current interruption test method that is highly reliable in test results and economical in terms of test equipment.

〔発明の要点〕[Key points of the invention]

この発明は三相の遮断部が同一の接地金属容器
中に収容された開閉機器に対する三相ループ電流
の遮断性能を検証する試験装置であつて、三相電
源の各相に一次側巻線が接続された変圧器のそれ
ぞれの2次側の低圧巻線を介して前記開閉機器の
各相のそれぞれの遮断部に所定の遮断電流と回復
電圧とを供給する構成とするとともに、前記三相
電源の各相の少なくとも一相に前記変圧器とは別
の一次巻線を有する変圧器を設けこの変圧器の2
次側に設けられた高圧巻線を介してその相の遮断
部と大地との間または他相の遮断部との間に絶縁
性能を検証する電圧を供給することにより、遮断
部の全相にて所定のループ電流を遮断する際の遮
断部の電流遮断性能と、遮断部の対地または相間
絶縁性能とを同時に検証して、実回路と同一条件
下の試験結果を経済的に得ようとするものであ
る。
This invention is a test device for verifying the interrupting performance of a three-phase loop current for switchgear whose three-phase interrupting parts are housed in the same grounded metal container. The configuration is such that a predetermined breaking current and recovery voltage are supplied to each breaking section of each phase of the switchgear through the low voltage winding on the secondary side of each of the connected transformers, and the three-phase power supply A transformer having a primary winding separate from the transformer is provided in at least one of each phase of the transformer.
By supplying voltage for verifying insulation performance between the interrupting section of that phase and the ground or between the interrupting section of other phases through the high voltage winding installed on the next side, all phases of the interrupting section are In order to economically obtain test results under the same conditions as the actual circuit, the current interrupting performance of the interrupting section and the grounding or phase-to-phase insulation performance of the interrupting section are simultaneously verified when interrupting a predetermined loop current. It is something.

〔発明の実施例〕[Embodiments of the invention]

第6図に本発明による三相ループ電流の遮断試
験方法に使用する回路構成の実施例を示す。図に
おいて33は三相電源、33a,33b,33c
はその各相、37a,37b,37cはその各相
に接続され、2次側に所定の遮断電流と回復電圧
とを供給する低圧巻線38a,38b,38cを
有する単相変圧器である。これらの変圧器は三相
変圧器として形成してもよい。39は変圧器37
a,37b,37cとは別の変圧器であつて、供
試開閉機器の遮断部25aと金属容器25dとの
間および他相の遮断部25b,25cとの間の絶
縁性能を検証する電圧を供給する巻線を2次側に
備え、タツプBと大地との間に相電圧を、またタ
ツプAと大地との間に相間電圧を発生する。また
35は実回路のループを代表するインピーダンス
であつて、複数個のインダクタンスとキヤパシタ
ンスとからなる分布定数回路として構成される。
FIG. 6 shows an embodiment of a circuit configuration used in the three-phase loop current interruption test method according to the present invention. In the figure, 33 is a three-phase power supply, 33a, 33b, 33c
is a single-phase transformer having low-voltage windings 38a, 38b, and 38c connected to each phase thereof, and 37a, 37b, and 37c connected to each phase thereof, and supplying a predetermined breaking current and recovery voltage to the secondary side. These transformers may also be configured as three-phase transformers. 39 is transformer 37
A, 37b, and 37c are different transformers, and the voltage is used to verify the insulation performance between the cutoff part 25a of the test switchgear and the metal container 25d and between the cutoff parts 25b and 25c of other phases. A supply winding is provided on the secondary side, and a phase voltage is generated between tap B and the ground, and an interphase voltage is generated between the tap A and the ground. Further, 35 is an impedance representing a loop of an actual circuit, and is configured as a distributed constant circuit including a plurality of inductances and capacitances.

変圧器37a,37b,37cの低圧巻線38
a,38b,38cのアーク電流継続中における
端子電圧は、ループインピーダンス35に抗して
所定のアーク電流を流すに足るだけの電圧まで降
下することが許されるから、変圧器37a,37
b,37cの容量は極めて小さくてすむ。またこ
のように小容量の変圧器においては1次側巻線と
2次側巻線との間の漏れインピーダンスが大きい
から、三相電源33として通常内部インピーダン
スの小さい大容量の短絡発電機が使用されること
とあわせて、1次側巻線入口の電圧は三相電源の
無負荷時とほゞ同じ値に保たれ、従つてアーク電
流継続中も変圧器39の高圧巻線40には所定の
絶縁検証電圧を発生することができる。なおこの
変圧器39は出力電流を必要としないから極めて
小容量のものでよい。
Low voltage winding 38 of transformers 37a, 37b, 37c
The terminal voltages of transformers 37a, 37a, 38b, and 38c are allowed to drop to a voltage sufficient to flow a predetermined arc current against the loop impedance 35 while the arc current continues.
The capacities of b and 37c can be extremely small. In addition, in such a small-capacity transformer, the leakage impedance between the primary winding and the secondary winding is large, so a large-capacity short-circuit generator with low internal impedance is usually used as the three-phase power supply 33. In addition to this, the voltage at the inlet of the primary winding is maintained at approximately the same value as when no load is applied to the three-phase power supply. can generate an insulation verification voltage of Note that this transformer 39 does not require an output current, so it may have an extremely small capacity.

この回路構成による三相ループ電流の遮断試験
はつぎのように行なわれる。すなわち変圧器39
の高圧巻線40のタツプBを低圧巻線38aの接
続端子Cと接続して遮断部25aの対地電位を相
電圧に保つとともに金属容器25dを接地して三
相の遮断部25a,25b,25cにより三相ル
ープ電流を遮断する。このとき遮断部25aと接
地された金属容器25dとの間にかかる電圧はア
ーク電流の継続中もまた遮断後も相電圧値に維持
され、実回路と同一条件下で遮断部25aの対地
絶縁性能が各相遮断部の電流遮断性能と同時に検
証される。つぎに変圧器39の高圧巻線40のタ
ツプBをタツプAに切り換えて高圧巻線の出力電
圧を相間電圧とするとともに、金属容器25dを
大地から絶縁支持した後、三相の遮断部25a,
25b,25cによつて三相ループ電流を遮断す
る。このとき遮断部25aと他相の遮断部25
b,25cとの間にかかる電圧はアーク電流の継
続中もまた遮断後も相間電圧に維持され、実回路
と同一条件下で遮断部25aと他相の遮断部25
b,25cとの間の絶縁性能が各相遮断部の電流
遮断性能と同時に検証される。
A three-phase loop current interruption test using this circuit configuration is performed as follows. That is, transformer 39
The tap B of the high-voltage winding 40 is connected to the connection terminal C of the low-voltage winding 38a to maintain the ground potential of the cut-off part 25a at the phase voltage, and the metal container 25d is grounded to connect the three-phase cut-off parts 25a, 25b, 25c. interrupts the three-phase loop current. At this time, the voltage applied between the interrupting part 25a and the grounded metal container 25d is maintained at the phase voltage value while the arc current continues and after the interruption, and the ground insulation performance of the interrupting part 25a is maintained under the same conditions as the actual circuit. is verified simultaneously with the current interrupting performance of each phase interrupter. Next, tap B of the high-voltage winding 40 of the transformer 39 is switched to tap A to make the output voltage of the high-voltage winding the phase-to-phase voltage, and after supporting the metal container 25d insulated from the ground, the three-phase interrupting section 25a,
25b and 25c interrupt the three-phase loop current. At this time, the blocking section 25a and the blocking section 25 of the other phase
b, 25c is maintained at the phase-to-phase voltage during the continuation of the arc current and even after the interruption, and the voltage applied between the interruption portion 25a and the interruption portion 25 of the other phase is maintained under the same conditions as in the actual circuit.
b, 25c is verified at the same time as the current interrupting performance of each phase interrupting section.

以上の実施例においては高圧巻線を有する変圧
器39が三相電源の1相(ここではa相)にのみ
接続される場合を示したが、第7図に示されるよ
うに相電圧のみを発生する高圧巻線を有する変圧
器をa相のみならず、39b,39cのように他
相にも配し、かつ金属容器25dを接地すれば、
変圧器39b,39cの容量が小さいことから試
験設備としていちじるしい経済的負担の増加を伴
うことなく、所定の三相ループ電流遮断時の各相
遮断部の電流遮断性能の検証と、遮断部と大地間
および相間の絶縁性能の検証とがただ1回の試験
によつて可能となる。
In the above embodiment, the transformer 39 having a high voltage winding is connected only to one phase (here, phase A) of a three-phase power supply, but as shown in FIG. If a transformer with a high voltage winding is placed not only in the a phase but also in other phases such as 39b and 39c, and the metal container 25d is grounded,
Because the capacity of the transformers 39b and 39c is small, it is possible to verify the current interrupting performance of each phase interrupting section when interrupting a predetermined three-phase loop current, and to connect the interrupting section to the earth without any significant increase in the economic burden as test equipment. Verification of insulation performance between and between phases is possible with a single test.

〔発明の効果〕〔Effect of the invention〕

この発明は三相の遮断部が同一の接地金属容器
中に収容された開閉機器に対する三相ループ電流
の遮断性能を検証する試験装置であつて、三相電
源の各相に一次側巻線が接続された変圧器のそれ
ぞれの2次側の低圧巻線を介して前記開閉機器の
各相のそれぞれの遮断部に所定の遮断電流と回復
電圧とを供給する構成とするとともに、前記三相
電源の各相の少なくとも一相に前記変圧器とは別
の一次巻線を有する変圧器を設けこの変圧器の2
次側に設けられた高圧巻線を介してその相の遮断
部と大地との間または他相の遮断部との間に、絶
縁性能を検証する電圧を供給するようにしたの
で、実回路と同一条件下の試験が可能となり、信
頼性の高い試験結果が得られるとともに、試験設
備を小容量のものとすることができて経済的負担
が軽くなるという効果が得られる。
This invention is a test device for verifying the interrupting performance of a three-phase loop current for switchgear whose three-phase interrupting parts are housed in the same grounded metal container. The configuration is such that a predetermined breaking current and recovery voltage are supplied to each breaking section of each phase of the switchgear through the low voltage winding on the secondary side of each of the connected transformers, and the three-phase power supply A transformer having a primary winding separate from the transformer is provided in at least one of each phase of the transformer.
A voltage for verifying insulation performance is supplied between the interrupting section of that phase and the ground or between the interrupting section of the other phase via the high-voltage winding installed on the next side, so that it can be compared with the actual circuit. Tests can be performed under the same conditions, highly reliable test results can be obtained, and the test equipment can have a small capacity, reducing the economic burden.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は変電所の母線を切り換える際の断路器
の操作順序と、ループ電流の経路とを説明する
図、第2図は送電回線を切り換える際の開閉機器
の操作順序と、ループ電流の経路とを説明する
図、第3図は三相電源を使用した従来の三相ルー
プ電流の遮断試験回路の例、第4図は単相試験に
よつて等価的に三相ループ電流の遮断試験を行な
う従来の試験回路の第1の例、第5図は単相試験
によつて等価的に三相ループ電流の遮断試験を行
なう従来の試験回路の第2の例、第6図は本発明
による三相ループ電流の遮断試験回路の第1の実
施例、第7図は同じく第2の実施例を示す。 21,33……三相電源、21a,21b,2
1c,33a,33b,33c……三相電源の各
相、25……開閉機器、25a,25b,25c
……開閉機器の各相の遮断部、25d……開閉機
器の接地金属容器、37a,37b,37c……
所定の遮断電流と回復電圧とを供給する変圧器、
39,39a,39b,39c……別の変圧器、
40,40a,40b,40c……高圧巻線。
Figure 1 is a diagram explaining the order of operation of disconnectors and the route of loop current when switching the busbar of a substation. Figure 2 is the order of operation of switchgear and the route of loop current when switching the power transmission line. Figure 3 is an example of a conventional three-phase loop current interruption test circuit using a three-phase power supply, and Figure 4 is an example of a three-phase loop current interruption test using a single-phase test. The first example of a conventional test circuit is shown in FIG. 5, and the second example of a conventional test circuit is shown in FIG. A first embodiment of a three-phase loop current interrupting test circuit, and FIG. 7 similarly shows a second embodiment. 21, 33...Three-phase power supply, 21a, 21b, 2
1c, 33a, 33b, 33c...Each phase of three-phase power supply, 25...Switching equipment, 25a, 25b, 25c
...Shutoff part for each phase of switching equipment, 25d... Grounding metal container of switching equipment, 37a, 37b, 37c...
a transformer that provides a predetermined breaking current and recovery voltage;
39, 39a, 39b, 39c...another transformer,
40, 40a, 40b, 40c...high voltage winding.

Claims (1)

【特許請求の範囲】[Claims] 1 三相の遮断部が同一の接地金属容器中に収容
された開閉機器に対する三相ループ電流の遮断性
能を検証する試験装置であつて、三相電源の各相
に一次側巻線が接続された変圧器のそれぞれの2
次側の低圧巻線を介して前記開閉機器の各相のそ
れぞれの遮断部に所定の遮断電流と回復電圧とを
供給する構成とするとともに、前記三相電源の各
相の少なくとも一相に前記変圧器とは別の一次巻
線を有する変圧器を設けこの変圧器の2次側に設
けられた高圧巻線を介してその相の遮断部と大地
との間または他相の遮断部との間に、絶縁性能を
検証する電圧を供給する構成としたことを特徴と
する三相ループ電流の遮断試験装置。
1 A test device for verifying the interrupting performance of three-phase loop current for switchgear in which the three-phase interrupting parts are housed in the same grounded metal container, and the primary winding is connected to each phase of the three-phase power supply. 2 of each of the transformers
The configuration is such that a predetermined cutoff current and recovery voltage are supplied to each cutoff section of each phase of the switching equipment via a low voltage winding on the next side, and the cutoff current and recovery voltage are supplied to at least one of each phase of the three-phase power supply. A transformer with a primary winding separate from the transformer is provided, and the connection between the interrupting part of that phase and the earth or with the interrupting part of other phases is provided through the high voltage winding provided on the secondary side of the transformer. A three-phase loop current interrupting test device characterized by having a configuration in which a voltage for verifying insulation performance is supplied between the three-phase loop currents.
JP58118003A 1983-06-29 1983-06-29 Testing for interruption of 3-phase loop current Granted JPS6010182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118003A JPS6010182A (en) 1983-06-29 1983-06-29 Testing for interruption of 3-phase loop current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118003A JPS6010182A (en) 1983-06-29 1983-06-29 Testing for interruption of 3-phase loop current

Publications (2)

Publication Number Publication Date
JPS6010182A JPS6010182A (en) 1985-01-19
JPH055067B2 true JPH055067B2 (en) 1993-01-21

Family

ID=14725643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118003A Granted JPS6010182A (en) 1983-06-29 1983-06-29 Testing for interruption of 3-phase loop current

Country Status (1)

Country Link
JP (1) JPS6010182A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810249B2 (en) * 1987-11-11 1996-01-31 三菱電機株式会社 Current interruption test method for three-phase collective disconnector

Also Published As

Publication number Publication date
JPS6010182A (en) 1985-01-19

Similar Documents

Publication Publication Date Title
Dugan et al. Distributed generation
Swindler et al. Transient recovery voltage considerations in the application of medium-voltage circuit breakers
Esmeraldo et al. Circuit-breaker requirements for alternative configurations of a 500 kV transmission system
Peelo et al. Mitigation of circuit breaker transient recovery voltages associated with current limiting reactors
Panasetsky et al. On the problem of shunt reactor tripping during single-and three-phase auto-reclosing
JPH055067B2 (en)
Cossé et al. IEC medium-voltage circuit-breaker interrupting ratings-unstated short-circuit considerations
JPH07264737A (en) Gas insulated switchgear
JP3103262B2 (en) Circuit breaker test circuit for switchgear
Van den Heuvel et al. Interruption of short-circuit currents in MV networks with extremely long time constants
JPH055066B2 (en)
JPS59222775A (en) Breaking test of three-phase loop current
SU1081725A1 (en) Method of extinguishing single-phase short circuit arc in system with solidly earthed neutral,which allows operation with isolated neutral as well with neutral via compensating coil
RU2016458C1 (en) Gear for termination of ferro-resonance processes in networks with insulated neutral
Grima et al. A new generation of materials for medium voltage, compensated neutral networks
Yamamoto et al. New short-circuit testing facilities to cope with the recent development of GIS
CN114325475A (en) Power supply circuit and method of ultra-high voltage transformer short-circuit test system
Ban et al. 750 kV reactive power control, automatic reclosing and overvoltage protection
Ashok 400KV SUBSTATION AREECODE POWER GRID CORPORATION OF INDIA
JPH0434111B2 (en)
Van der Sluis et al. Short circuit testing methods for generator circuit breakers with a parallel resistor
JPH0634028B2 (en) Switchgear test method and device
JPS6157870A (en) Three-phase equivalent testing method of breaker
JPH0738014B2 (en) Step-out synthesis tester for circuit breaker
JPH0560062B2 (en)