JPS59221680A - Testing method of reignition surge of gas insulation disconnecting switch - Google Patents

Testing method of reignition surge of gas insulation disconnecting switch

Info

Publication number
JPS59221680A
JPS59221680A JP58095009A JP9500983A JPS59221680A JP S59221680 A JPS59221680 A JP S59221680A JP 58095009 A JP58095009 A JP 58095009A JP 9500983 A JP9500983 A JP 9500983A JP S59221680 A JPS59221680 A JP S59221680A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
surge
disconnector
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58095009A
Other languages
Japanese (ja)
Other versions
JPH0425506B2 (en
Inventor
Susumu Nishiwaki
進 西脇
Noriyuki Takahashi
宣之 高橋
Ikuo Miwa
三輪 郁夫
Satoru Yagiu
悟 柳父
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58095009A priority Critical patent/JPS59221680A/en
Publication of JPS59221680A publication Critical patent/JPS59221680A/en
Publication of JPH0425506B2 publication Critical patent/JPH0425506B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To obtain a large surge voltage by connecting in series a switch consists of an auxiliary gap part and a movable electrode which are driven till halfway and fixed, and connecting capacitors to both ends, and applying an opposite-polarity DC voltage or a voltage close to the rising of a commercial frequency voltage. CONSTITUTION:The switch part 14 consisting of a fixed electrode part 13 and the movable electrode part 12, and the auxiliary gap part 15 are connected in series and stored in a metallic container 11, and insulating gas is enclosed therein. A negative-side capacitor 18 and a DC voltage generator 20 are connected to one terminal, and a power-source side capacitor 22 and the secondary-side winding 23a of a transformer 23 are connected to the other through a reactor 21. The movable electrode part 12a is driven till halfway and then fixed, and a breaker 25 and a connector 26 are operated after the negative side capacitor 18 is charged so that the polarity of the rising voltage on the secondary side is opposite to that of the charging voltage of the capacitor 18. At this time, a large surge voltage is generated to test the switch.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガス絶縁断路器の充電電流しゃ断時の再点弧サ
ージによる地絡現象に対するガス絶縁断路器の再点弧サ
ージ試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a restriking surge testing method for a gas insulated disconnector against a ground fault phenomenon caused by a restriking surge when the charging current of the gas insulated disconnector is cut off.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

変電所において、断路器は変電所内機器をその電力系統
から切り離し、あるいは回路の切り換えのために開閉操
作される。断路器の開閉は隣接したしゃ断器が開路して
いる状態のとき行われ、また断路器はそのしゃ断器に至
る変電所内の短い線路の微少な充電電流を開閉する。
In a substation, disconnectors are opened and closed to disconnect equipment within the substation from the power system or to switch circuits. A disconnector opens and closes when an adjacent breaker is open, and the disconnector also switches on and off a minute charging current in a short line within the substation leading to the breaker.

第1図は変電所の構成の一例を示すが、例えば断路器D
1はしゃ断器CBIまでの短い線路区間mを開閉し、断
路器D4は断路器D5およびしゃ断器CB2が開路のと
きに線路区間nを開閉する。
Figure 1 shows an example of the configuration of a substation. For example, disconnector D
1 opens and closes the short line section m up to the circuit breaker CBI, and the disconnector D4 opens and closes the line section n when the circuit breaker D5 and the circuit breaker CB2 are open.

また断路器Da t Ds 、 DIl t D14、
しゃ断器CB 6が開路の状態で、断路器D9は母線B
1を開閉する。ここにTI、T2は変圧器、Llないし
L3は送電線である。
Also, disconnectors Da t Ds, DIlt D14,
When circuit breaker CB 6 is open, circuit breaker D9 is connected to bus B
Open and close 1. Here, TI and T2 are transformers, and Ll to L3 are power transmission lines.

例えばSF、ガスのような絶縁ガスを封入したガス絶縁
断路器が用いられる変電所は、第1図に示す断路器、し
ゃ断器、母線などを全てSF8ガスを封入した金属容器
に収納した全ガス絶縁変電所と、母線だけを架空線とし
た複合形ガス絶縁変電所とに大別される。
For example, in a substation that uses a gas insulated disconnect switch filled with insulating gas such as SF, gas, the disconnect switch, breaker, bus bar, etc. shown in Figure 1 are all housed in a metal container filled with SF8 gas. They are broadly divided into insulated substations and composite gas-insulated substations, where only the busbar is an overhead line.

断路器による充電電流しゃ断の際に、多数回の再点弧が
発生し、第2図に示すような負荷側線路対地電圧波形が
得られることが知られている。すなわち、開極とほぼ同
時に微小な充電電流はしゃ断され、そのとき負荷側の線
路にはしゃ断瞬時の電源電圧v1が残留している。電源
電圧は交流であって変化するから、断路器の極間にはこ
の線路の残留電圧と電源電圧の差が印加される。このと
き断路器はまだ開極途中であって、極間絶縁回復が十分
でなく、極間電圧e、で再点弧する。このように再点弧
すると、線路の静電容量は数百ないし数千ピコファラッ
ド程度であるから、流れる過渡電流が減衰するとすぐし
ゃ断が成立し、負荷側線路の電圧はそのときの電源電圧
v2と一致した大きさで残留する。電源電圧はさらに変
化するから、極間電圧e2で再び再点弧を発生する。以
下同様にして極間電圧ea 、e4 、e51e61e
7 ze8+・・・で再点弧を繰返す。断路器の極間距
離は次第に大きくなるので、多くの場合e6)a7)・
・・・> 82 > e tである断路器の極間絶縁が
回復して電源電圧波高値の2倍以上になれば、再点弧せ
ずしゃ断は完了する。
It is known that when the charging current is cut off by a disconnector, many restrikes occur, resulting in a load-side line-to-ground voltage waveform as shown in FIG. That is, the minute charging current is cut off almost simultaneously with the opening, and at that time, the power supply voltage v1 at the instant of the cutoff remains on the line on the load side. Since the power supply voltage is alternating current and changes, the difference between the residual voltage of this line and the power supply voltage is applied between the poles of the disconnector. At this time, the disconnector is still in the process of opening, and the inter-electrode insulation recovery is not sufficient, and it is re-ignited at the inter-electrode voltage e. When the line is re-ignited in this way, since the capacitance of the line is on the order of several hundred to several thousand picofarads, as soon as the flowing transient current attenuates, breaker is established, and the voltage on the load side line becomes equal to the power supply voltage v2 at that time. remains at a size consistent with that of Since the power supply voltage changes further, restriking occurs again at the electrode-to-electrode voltage e2. Similarly, the interelectrode voltages ea, e4, e51e61e
7 Repeat the re-ignition with ze8+... Since the distance between the poles of the disconnector gradually increases, in many cases e6) a7)
... > 82 > et When the interpole insulation of the disconnector recovers and the voltage becomes more than twice the peak value of the power supply voltage, the disconnection is completed without restarting.

そして、これら再点弧のときにサージ電圧が発生する。A surge voltage is generated during these restrikes.

例えば第2図に示したa点における再点弧サージは直線
で図示されているが、この再点弧の現象を時間的に拡大
し、概念的に示すと第3図のようになる。このときのサ
ージ電圧は開閉する負荷側の線路が短いため周波数が高
く、多くの場合その基本振動は数百kHzに達する。
For example, the restriking surge at point a shown in FIG. 2 is illustrated by a straight line, but if this restriking phenomenon is temporally expanded and conceptually illustrated, it becomes as shown in FIG. 3. The surge voltage at this time has a high frequency because the line on the load side that is opened and closed is short, and in many cases, its fundamental vibration reaches several hundred kHz.

再点弧時に断路器の極間には高周波電流が流れる。もし
断路器がこの高周波電流を第3図(b)のX点に示すよ
うに最初の電流零点でしゃ断すると、負荷側線路の電圧
は第3図(a)のy点の電圧で残留することになる。し
かし、実系統ではこのようなことは発生しない。再点弧
時の過渡電流が十分減衰した時点でしゃ断が成立し、負
荷側線路の電圧が電源電圧と一致した後でしゃ断される
。新路器によって充電電流をしゃ断する際に多数回の再
点弧が発生するが、線路側の残留電圧は最大であって電
源側電圧波高値である。最大の再点弧サージを考える場
合、電源側線路が電源電圧の波高値(以後1puと表わ
す)、負荷側線路が逆極性の電源電圧波高値(以下−1
puと表わす)で再点弧したときを検討すれば十分であ
る。
At the time of restriking, a high frequency current flows between the poles of the disconnector. If the disconnector cuts off this high-frequency current at the first current zero point as shown at point X in Figure 3(b), the voltage on the load side line will remain at the voltage at point y in Figure 3(a). become. However, this does not occur in real systems. Shutoff is established when the transient current at the time of restriking has sufficiently attenuated, and is shut off after the voltage on the load side line matches the power supply voltage. When the charging current is cut off by the new circuit switch, many restrikes occur, but the residual voltage on the line side is at its maximum, which is the peak value of the voltage on the power supply side. When considering the maximum restriking surge, the power supply line is at the peak value of the power supply voltage (hereinafter referred to as 1pu), and the load side line is at the peak value of the power supply voltage with the opposite polarity (hereinafter referred to as -1pu).
It is sufficient to consider the case of restriking with pu).

実系統において、上記のような現象を示す断路器の充電
電流をしゃ断する従来の試験回路の一例を第4図に示す
。供試断路器(1)は接地された金属容器(1a)の内
部にしゃ断部(1b)を収納して、絶縁ガス(1c)を
封入し、このしゃ断部(1b)は端子(2)、(3)に
よって外部に導出される。端子(2)は負荷側コンデン
サ(5)を介して接地に接続する。端子(3)はりアク
ドル(6)を介して変圧器(8)の高圧側巻線(8a)
に接続し、この高圧側巻線(8a)の両端に電源側コン
デンサ(7)を並列に接続し、変圧器(8)の低圧側巻
線(8b)は短絡発電機(9)に接続される。負荷側コ
ンデンサ(5)は供試断路器(1)の負荷側線路の静電
容量を模擬したものである。試験は供試断路器(1)を
開閉操作して行なう。
FIG. 4 shows an example of a conventional test circuit that cuts off the charging current of a disconnector that exhibits the above phenomenon in an actual system. The test disconnector (1) houses a breaker (1b) inside a grounded metal container (1a) and fills it with insulating gas (1c), and this breaker (1b) has terminals (2), (3). Terminal (2) is connected to ground via a load-side capacitor (5). High voltage side winding (8a) of transformer (8) via terminal (3) beam axle (6)
The power supply side capacitor (7) is connected in parallel to both ends of this high voltage side winding (8a), and the low voltage side winding (8b) of the transformer (8) is connected to the short circuit generator (9). Ru. The load side capacitor (5) simulates the capacitance of the load side line of the test disconnector (1). The test is conducted by opening and closing the disconnector (1) under test.

しかし、ガス絶縁断路器は再点弧時に、その際発生する
サージ電圧によって極間と接地電位の金属容器との間で
地絡する場合があることが知られてきた。地絡電圧は断
路器が開または閑の状態、さらに極間に再点弧アークを
模擬した針金を設置した状態における静電容量よりもか
なり低い。地絡現象には断路器間のアーク放電が大きく
影響している。
However, it has been known that when a gas insulated disconnect switch is re-ignited, a surge voltage generated at that time may cause a ground fault between the poles and a metal container at ground potential. The ground fault voltage is considerably lower than the capacitance when the disconnector is open or idle, and when a wire simulating a restriking arc is installed between the poles. The arc discharge between disconnectors has a large influence on the ground fault phenomenon.

ガス絶縁断路器の充電電流の再点弧サージによる地絡現
象に着目して、実系統と等価な試験を行なうためには、
再点弧の際に発生するサージ電圧を実系統と等価にしな
ければならない。しかし、第4図に示す従来の試験回路
における供試ガス絶縁断路器の開閉操作ではこれが困難
である場合がある。再点弧時のサージ電圧は主として電
源側コンデンサ(7)、リアクトル(6)、供試ガス絶
縁断路器(1)(以下供試断路器とする)、負荷側コン
デンサ(5)の回路によって決定する。一般に、電源側
コンデンサ(7)の静電容量が負荷側コンデンサ(5)
の静電容量に比べて大きいほどサージ電圧の波高値は大
きくなる。断路器の両端子において、それぞれlpu、
 −1puの電圧で再点弧する最大のサージ電圧が発生
する場合において、供試断路器(1)のブッシング(2
) 、 (3)の静電容量がないものとすれば理論的に
最大で3.0倍のサージ電圧が供試断路器(1)の端子
に発生する。しかし実際にはブッシング(2)、(3)
の静電容量のためにサージ電圧の大きさはこれより小さ
くなる。すなわち、供試断路器(1)の負荷側が一1p
u、電源側がlpuで再点弧する場合、両ブッシング(
2)、(3)の静電容量の電圧もそれぞれ一1pu、l
puであるから再点弧瞬時に、両ブッシング(2) 、
 (3)の静電容量と負荷側コンデンサ(5)の充電電
圧は一1puよりも小さくなってしまう。サージ電圧は
主としてこの両ブッシング(2)、(3)の静電容量と
負荷側コンデンサ(5)を並列にした回路とりアクドル
(6)、電源側コンデンサ(7)の回路で決まるから、
サージ電圧の大きさは3倍より小さくなる。この他に設
備的に電源側コンデンサ(7)を大きくできないとか、
回路の損失を避けることができないことなどのために。
In order to conduct a test equivalent to the actual system, focusing on the ground fault phenomenon caused by the restriking surge of the charging current of the gas insulated disconnect switch,
The surge voltage generated during restriking must be made equivalent to that of the actual system. However, this may be difficult in the opening/closing operation of the gas insulation disconnector under test in the conventional test circuit shown in FIG. The surge voltage at the time of restriking is mainly determined by the circuits of the power supply side capacitor (7), reactor (6), test gas insulation disconnector (1) (hereinafter referred to as test disconnector), and load side capacitor (5). do. Generally, the capacitance of the power supply side capacitor (7) is the same as that of the load side capacitor (5).
The larger the capacitance is, the larger the peak value of the surge voltage becomes. At both terminals of the disconnector, lpu,
In the case where the maximum surge voltage that causes re-ignition occurs at a voltage of -1 pu, the bushing (2) of the test disconnector (1)
), assuming that there is no capacitance in (3), a surge voltage of up to 3.0 times the theoretical maximum would occur at the terminals of the disconnector under test (1). However, in reality, bushings (2), (3)
The magnitude of the surge voltage will be smaller than this due to the capacitance of . In other words, the load side of the test disconnector (1) is 11p.
u, If the power supply side is re-ignited with lpu, both bushings (
The voltages of the capacitances in 2) and (3) are also 1 pu and 1 pu, respectively.
Since it is PU, both bushings (2) are immediately re-ignited.
The capacitance of (3) and the charging voltage of the load-side capacitor (5) become smaller than -1 pu. Surge voltage is mainly determined by the circuit that connects the capacitance of both bushings (2) and (3) in parallel with the load side capacitor (5), the axle (6), and the power supply side capacitor (7).
The magnitude of the surge voltage will be less than three times smaller. In addition to this, the power supply side capacitor (7) cannot be made large due to equipment reasons.
Due to unavoidable circuit losses, etc.

一般には2倍前後のサージ電圧しか発生できない。第4
図に示す試験回路で発生するサージ電圧の大きさが、フ
ィールドにおいて発するサージ電圧の大きさよりも小さ
い場合には、このフィールドにおけるサージ電圧に供試
断路器(1)が耐えることが可能か否かの検証は、第4
図に示す従来の試験回路ではできないという解決すべき
問題点があった。
Generally, only about twice the surge voltage can be generated. Fourth
If the magnitude of the surge voltage generated in the test circuit shown in the figure is smaller than the magnitude of the surge voltage generated in the field, check whether the disconnector under test (1) can withstand the surge voltage in the field. The verification of
There was a problem to be solved that could not be achieved using the conventional test circuit shown in the figure.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点を考心してなされたもので、その目的
とするところは、サージ電圧の大きさを大きくすること
ができるガス絶縁断路f(3の再点弧サージ試験方法を
提供することにある。
The present invention has been made with the above points in mind, and its purpose is to provide a restriking surge test method for gas-insulated disconnect f(3) that can increase the magnitude of surge voltage. be.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために本発明は、供試ガス絶縁断
路器内部に開閉部と補助ギャップ部とを直列接続して収
納し、この直列接続した両端をそれぞれ供試ガス絶縁新
路器の第1及び第2の端子に接続して導出し、第1の端
子と接地間に第1のコンデンサを接続し、第2の端子に
リアクトルを介して接地との間に第2のコンデンサを接
続し、開閉部の可動電極を途中まで駆動して固定し、第
1及び第2のコンデンサのそれぞれの高電位側にそれぞ
れ逆極性の直流または商用周波電圧の立ち上がりに近い
電圧を印加することにより、供試ガス絶縁断路器の再点
弧サージ試験においてサージ電圧の大きさを大きくする
ことをその特徴とする。
In order to achieve such an object, the present invention stores a switching section and an auxiliary gap section connected in series inside a gas insulated disconnector under test, and connects both ends of the series connection to each end of the gas insulated disconnect switch under test. Connect the first capacitor between the first terminal and ground, and connect the second capacitor between the second terminal and ground via the reactor. , by driving the movable electrode of the opening/closing part halfway and fixing it, and applying a voltage close to the rise of direct current or commercial frequency voltage of opposite polarity to the high potential side of each of the first and second capacitors. Its feature is to increase the magnitude of the surge voltage in the restriking surge test of the test gas insulating disconnector.

また、第1のコンデンサの高電位側に抵抗を通して直流
電圧発生装置を接続し、第2のコンデンサの高電位側と
接地との間に電源変圧器の二次側巻線を接続し、この電
源変圧器の一次側巻線の一方の端子を接地に接続し、−
次巻線の他方の端子と接地との間にしゃ断器、投入器及
び商用周波交流電源とを直列にして接続し、直流電圧発
生装置によって第1のコンデンサを充電し、しゃ断器を
投入した状態において投入器を投入して、電源変圧器の
二次側巻線に電圧を発生させ、しかるのちにしゃ断器を
開極させるようにするのが好適である。
In addition, a DC voltage generator is connected to the high potential side of the first capacitor through a resistor, and the secondary winding of a power transformer is connected between the high potential side of the second capacitor and ground. Connect one terminal of the primary winding of the transformer to ground and −
A state in which a breaker, a closing device, and a commercial frequency AC power source are connected in series between the other terminal of the next winding and the ground, the first capacitor is charged by a DC voltage generator, and the breaker is closed. Preferably, a switch is turned on to generate a voltage in the secondary winding of the power transformer, and then the circuit breaker is opened.

さらに直流電圧発生装置を多数の充電されたコンデンサ
を多数のギャップの放電によって直列接続して高電圧を
発生する装置とするのが好適がある。
Furthermore, it is preferable that the DC voltage generator is a device that generates a high voltage by connecting a number of charged capacitors in series by discharging a number of gaps.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例のガス絶縁断路器の再点弧サージ
試験方法を図面を参照して説明する。第5図において、
供試ガス絶縁断路器(10)は大地電位の金属容器(1
1)内部に可動電極部(12)と、これと対向する固定
電極部(13)とからなる開閉部(14)と、この開閉
部(14)と直列接続される補助ギャップ部(15)と
を収納するとともに、SFeガスのような絶縁ガス(1
0a)を封入する。この直列接続した例えば一方の可動
電極部(12)側を第1の端子となるブッシング(16
a)を介して導出し、他方の補助ギャップ部(15)側
を第2の端子となるブッシング(16b)を介して導出
する。また可動電極部(12)は支持部(12a)と可
動電極(12b)とからなり、可動電極(]、2b)は
図示しない操作装置により開閉操作される。さらに補助
ギャップ部(15)は補助ギャップ(15a)を接地容
器(1,1c)内部に例えば絶縁スペーサのような絶縁
部椙’ (15b) 、 (15b)によって支持して
収納し、接地容器(11)は開閉部(14)を収納した
接地容器(lla)と、ブッシング(1,6b)側の接
地容器(llb)とを接地容器(]、1c)によって接
合して構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A restriking surge test method for a gas insulated disconnector according to an embodiment of the present invention will be described below with reference to the drawings. In Figure 5,
The test gas insulated disconnector (10) is a metal container (1) at earth potential.
1) An opening/closing part (14) consisting of a movable electrode part (12) and a fixed electrode part (13) facing therein, and an auxiliary gap part (15) connected in series with this opening/closing part (14). Insulating gas such as SFe gas (1
0a) is enclosed. For example, one of the movable electrode parts (12) connected in series is connected to the bushing (16) which becomes the first terminal.
a), and the other auxiliary gap section (15) side is led out through the bushing (16b) which becomes the second terminal. The movable electrode section (12) is composed of a support section (12a) and a movable electrode (12b), and the movable electrode (2b) is opened and closed by an operating device (not shown). Further, the auxiliary gap part (15) stores the auxiliary gap (15a) inside the grounding container (1, 1c) supported by insulating parts (15b), (15b) such as insulating spacers, 11) is constructed by joining a grounding container (lla) housing the opening/closing part (14) and a grounding container (llb) on the bushing (1, 6b) side by a grounding container (], 1c).

供試ガス絶縁断路器(10)のブッシング(16a)と
接地(17)間に第1のコンデンサとなる負荷側コンデ
ンサ(18)を接続し、またブッシング(1,6a)に
は高抵抗の抵抗(19)と、図示では略記しているが例
えばコツククロフト装置のような直流電圧発生装置(2
0)とを接続する。
A load-side capacitor (18) serving as the first capacitor is connected between the bushing (16a) of the test gas insulated disconnector (10) and the ground (17), and a high-resistance resistor is connected to the bushing (1, 6a). (19), although it is omitted in the illustration, for example, a DC voltage generator (2
0).

ブッシング(16b)にはりアクドル(21)を介して
接地(17)間に第2のコンデンサとなる電源側コンデ
ンサ(22)を接続する。この電源側コンデンサ(22
)の両端子には電源変圧器(23)の2次側巻線(23
a)を接続し、1次側巻線(23b)にはしゃ断器(2
5)及び投入器(26)を介して商用周波電圧発生装置
(27)とを接続する。
A power supply side capacitor (22) serving as a second capacitor is connected between the ground (17) and the bushing (16b) via the axle (21). This power supply side capacitor (22
) are connected to both terminals of the secondary winding (23) of the power transformer (23).
a), and a breaker (23b) is connected to the primary winding (23b).
5) and the commercial frequency voltage generator (27) via the input device (26).

次に本発明の作用効果を説明する。供試ガス絶縁断路器
(10)の開閉部(14)の可動電極(12b)を駆動
して、これを途中で固定し、開閉部(14)の極間にお
ける放電開始電圧が2puになるように設定する。ここ
に前述したように実系統の電源電圧の波高値をlpuと
し、また逆極性の電源電圧の波高値を一1puとした。
Next, the effects of the present invention will be explained. The movable electrode (12b) of the opening/closing part (14) of the test gas insulated disconnector (10) is driven and fixed in the middle so that the discharge starting voltage between the poles of the opening/closing part (14) becomes 2 pu. Set to . Here, as described above, the peak value of the power supply voltage of the actual system is set to lpu, and the peak value of the power supply voltage of the opposite polarity is set to -1pu.

しゃ断器(25)は投入しておき、投入器(26)は開
離しておく。商用周波電圧発生装置(27)の出力電圧
は投入器(26)の投入状確態における電源変圧器(2
3)の2次側電圧(第6図の3点鎖線で示した電圧波形
Aを参照)の波高値がlpuよりも若干高くなるように
設定しておく。そして、まず負荷側コンデンサ(18)
をIpuの電圧で充電する。次に商用周波電圧発生装置
(27)の出力電圧の電圧零点近傍において第6図にお
けるb点に示すように投入器(26)を投入する。なお
、第6図の1点鎖線Bは補助ギャップ(15a)のない
場合における負荷側コンデンサ(18)の電圧、また2
点鎖線Cは補助ギャップ(15a)のある場合における
負荷側コンデンサ(18)の電圧、また実線で示した電
圧波形りは電源側コンデンサ(22)の電圧である。
The circuit breaker (25) is closed and the switch (26) is opened. The output voltage of the commercial frequency voltage generator (27) is the same as that of the power transformer (2) when the closing device (26) is in the closing state.
3) The peak value of the secondary voltage (see voltage waveform A shown by the three-dot chain line in FIG. 6) is set to be slightly higher than lpu. First, load side capacitor (18)
is charged with the voltage of Ipu. Next, the input device (26) is turned on as shown at point b in FIG. 6 near the voltage zero point of the output voltage of the commercial frequency voltage generator (27). In addition, the one-dot chain line B in FIG.
The dashed dotted line C is the voltage of the load side capacitor (18) when there is the auxiliary gap (15a), and the voltage waveform shown by the solid line is the voltage of the power supply side capacitor (22).

電源変圧器(23)の2次側には商用周波電圧に近い電
圧が立ち上がる。このとき投入器(26)の投入を、電
源変圧器(23)の2次側において立ち上がる電圧の極
性が負荷側コンデンサ(18)の充電電圧の極性と逆に
なるように行なう。このようにすると供試ガス絶縁断路
器(10)の開閉部(14)の極間と補助ギャップ部(
15)との直列回路には負荷側コンデンサ(18)の充
電電圧と電源変圧器(23)の2次電圧の差が印加され
る。第6図のd点に示すようにこの電圧が供試ガス絶縁
断路(10)の開閉部(14)の極間と補助ギャップ(
15a)との直列回路の放電電圧よりも大きくなると、
供試ガス絶縁断路器(10)の極間および補助ギャップ
(15a)は放電する。
A voltage close to the commercial frequency voltage rises on the secondary side of the power transformer (23). At this time, the closing device (26) is turned on so that the polarity of the voltage rising on the secondary side of the power transformer (23) is opposite to the polarity of the charging voltage of the load side capacitor (18). In this way, the gap between the poles and the auxiliary gap (
15), the difference between the charging voltage of the load-side capacitor (18) and the secondary voltage of the power transformer (23) is applied. As shown at point d in FIG.
When it becomes larger than the discharge voltage of the series circuit with 15a),
The gap between the poles and the auxiliary gap (15a) of the gas insulation disconnector (10) under test are discharged.

このとき主として電源側コンデンサ(22)、リアクト
ル(21)、補助ギャップ(15a)、負荷側コンデン
サ(18)の回路によって決定するサージ電圧が発生す
る。抵抗(19)は高抵抗であるため、サージ電圧には
殆んど影響を与えない。投入器(26)の投入によって
しゃ断器(25)に流れる電流は主として電源側コンデ
ンサ(22)のために進み電流であって、第6図に実線
で示した電流波彫工は電源変圧器(23)の1次側電流
である。この1次電流■を第6図のe点に示すように電
流零点においてしゃ断器(25)によってしゃ断する。
At this time, a surge voltage mainly determined by the circuit of the power supply side capacitor (22), the reactor (21), the auxiliary gap (15a), and the load side capacitor (18) is generated. Since the resistor (19) has a high resistance, it hardly affects the surge voltage. The current that flows through the breaker (25) when the input device (26) is turned on is mainly a leading current due to the power supply side capacitor (22), and the current wave carving shown by the solid line in FIG. ) is the primary current of This primary current (2) is cut off by a circuit breaker (25) at the current zero point as shown at point e in FIG.

このとき、電源変圧器(23)の2次側電圧はほぼ波高
値である。しゃ断器(25)によってしゃ断された後は
、電源変圧器(23)の電圧は電源側コンデンサ(22
)と電源変圧器(23)の回路で振動しながら減衰する
At this time, the secondary voltage of the power transformer (23) is approximately at the peak value. After being cut off by the circuit breaker (25), the voltage of the power transformer (23) is transferred to the power supply side capacitor (22).
) and the power transformer (23) circuit to vibrate and attenuate.

供試ガス絶縁断路器(10)の極間における放電開始電
圧は2puに設定されている。したがって、供試ガス絶
縁断路器(10)の極間と補助ギャップ(15a)との
直列回路の放電開始電圧は、直列の補助ギャップ(15
a)が設けられているために2puより大きくなる。第
6図に2点鎖線で示した補助ギャップ(15a)のある
場合におけるサージ電圧■1は、1点鎖線で示した補助
ギャップ(15a)のない場合のサージ電圧■2より大
きい。このことは放電開始の際における電源変圧器(2
3)の2次側の対地電圧はlpuよりも大きいことを意
味する。したがって、放電開始の際発生するサージ電圧
の大きさは、供試ガス絶縁断路器(10)の極間が2p
uの電圧で放電開始するときよりも大きくなる。第6図
の0点に示すように補助ギャップ(15a)を短絡、す
なわち補助ギャップ(15a)のない場合に、供試ガス
絶縁断路器(10)の極間が2puで放電した状態を示
している。
The discharge starting voltage between the electrodes of the gas insulated disconnector (10) under test was set to 2 pu. Therefore, the discharge starting voltage of the series circuit between the poles of the test gas insulated disconnector (10) and the auxiliary gap (15a) is as follows:
a) is provided, so it becomes larger than 2pu. The surge voltage (1) in the case where there is an auxiliary gap (15a) shown by the two-dot chain line in FIG. 6 is larger than the surge voltage (2) in the case where there is no auxiliary gap (15a) shown by the one-dot chain line. This means that the power transformer (2
3) means that the voltage to ground on the secondary side is greater than lpu. Therefore, the magnitude of the surge voltage generated at the start of discharge is determined by
It becomes larger than when discharge starts at a voltage of u. As shown at point 0 in Figure 6, when the auxiliary gap (15a) is short-circuited, that is, when there is no auxiliary gap (15a), it shows a state in which the gap between the poles of the test gas insulated disconnector (10) is discharged at 2 pu. There is.

このように本発明によれば供試ガス絶縁断路器(10)
の極間が2puで放電する状態において、第4図に示す
従来の試験方法よりも大きいサージ電圧を発生させるこ
とができる。このサージ電圧の大きさは補助ギャップ(
15a)のギャップ間距離を変えることによって調整す
ることができる。
As described above, according to the present invention, the test gas insulation disconnector (10)
In a state where the electrode gap is 2 pu and discharge occurs, a larger surge voltage can be generated than in the conventional test method shown in FIG. 4. The magnitude of this surge voltage is determined by the auxiliary gap (
It can be adjusted by changing the distance between the gaps in 15a).

次に本発明の他の実施例を図面を参照して説明する。第
5図と同一部分は同符号を(=J’ f、である。
Next, other embodiments of the present invention will be described with reference to the drawings. The same parts as in FIG. 5 have the same symbols (=J'f).

第7図において、この試験方法は直流電圧発生装置(2
0) (第5図参照)の代りにコンデンサバンク(30
)を用いたものである。このコンデンサバンク(30)
は、充電された複数個のコンデンサ(30a)を、この
コンデンサ(30a)の両端にそれぞれ設けられた複数
個のギャップ(30b)によって放電することによって
直列接続して直流高電圧を発生させる。
In Figure 7, this test method is applied to a DC voltage generator (2
0) (see Figure 5) instead of a capacitor bank (30
) is used. This capacitor bank (30)
generates a DC high voltage by connecting a plurality of charged capacitors (30a) in series by discharging them through a plurality of gaps (30b) provided at both ends of the capacitors (30a).

他の構成配置は第5図に示した本発明の第1の実施例と
同様であって、同様な作用効果が得られる。
Other configurations and arrangements are similar to those of the first embodiment of the present invention shown in FIG. 5, and similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のガス絶縁断路器の再点弧
サージ試験方法によれば、供試ガス絶縁断路器が2pu
で放電する状態において、従来の試験方法よりも大きな
サージ電圧を発生させることができる。
As explained above, according to the restriking surge test method for gas insulated disconnectors of the present invention, the test gas insulated disconnectors
It is possible to generate a larger surge voltage than the conventional test method in the discharge state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通常の変電所の構成を示す単線結線図、第2図
はガス絶縁断路器による充電電流しゃ断時における電圧
波形を示す線図、第3図は第2図における再点弧サージ
の拡大線図、第4図は従来のガス絶縁断路器の再点弧サ
ージ試験方法を示す回路図、 第5図は本発明のガス絶縁断路器の再点弧サージ試験方
法を示す回路図、第6図は第5図の試験方法を示す線図
、第7図は本発明の他の実施例を示す回路図である。 (10)・・・供試ガス絶縁断路器、(10a)・・・
絶縁ガス、(11) 、 (lla) 、 (llb)
 、 (llc)−接地容器、 (12)・・・可動電
極部、(12a)−支持部、(12b)−・・可動電極
、(13)・・・固定電極部、(14)・・・開閉部、
(15)・・・補助ギャップ部、(15a)・・・補助
ギャップ、(15b)・・・絶縁部材。 (16a) 、 (16b)−ブッシング、(]−7)
−=接地、(18)・・・負荷側コンデンサ、(19)
・・・抵抗、(20)・・・商用周波電圧発生装置、(
21)・・・リアクトル、(22)・・・電源側コンデ
ンサ、(23)・・・電源変圧器、(23a)・・・2
次側巻線、(23b)・・・1次側巻線、(25)・・
・しゃ断器、(26)・・・投入器、(27)・・商用
周波電圧発生装置、(30)・・・コンデンサバンク、
(30a)・・・コンデンサ、(30b)・・・ギャッ
プ。 代理人 弁理士 井 上 −男 第1図 第8図 (α) (ム) 第4図
Figure 1 is a single line diagram showing the configuration of a normal substation, Figure 2 is a line diagram showing the voltage waveform when the charging current is cut off by a gas-insulated disconnect switch, and Figure 3 is a diagram showing the restriking surge in Figure 2. An enlarged diagram, FIG. 4 is a circuit diagram showing a conventional re-striking surge test method for a gas insulated disconnect switch, and FIG. 5 is a circuit diagram showing a rest-striking surge test method for a gas insulated disconnect switch of the present invention. 6 is a diagram showing the test method of FIG. 5, and FIG. 7 is a circuit diagram showing another embodiment of the present invention. (10)...Test gas insulation disconnector, (10a)...
Insulating gas, (11), (lla), (llb)
, (llc) - grounding container, (12) - movable electrode part, (12a) - support part, (12b) - movable electrode, (13) - fixed electrode part, (14)... opening/closing part,
(15)...Auxiliary gap portion, (15a)...Auxiliary gap, (15b)...Insulating member. (16a), (16b)-bushing, (]-7)
-=ground, (18)...Load side capacitor, (19)
...Resistance, (20) ...Commercial frequency voltage generator, (
21)...Reactor, (22)...Power supply side capacitor, (23)...Power transformer, (23a)...2
Secondary winding, (23b)...Primary winding, (25)...
- Breaker, (26)...Closer, (27)...Commercial frequency voltage generator, (30)...Capacitor bank,
(30a)...Capacitor, (30b)...Gap. Agent Patent Attorney Mr. Inoue Figure 1 Figure 8 (α) (Mu) Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)供試ガス絶縁断路器内部に開閉部と補助ギャプ部
とを直列接続して収納し、この直列接続した両端をそれ
ぞれ供試ガス絶縁断路器の第1及び第2の端子に接続し
て導出し、前記第1の端子と接地間に第1のコンデンサ
を接続し、前記第2の端子にリアクトルを介して接地と
の間に第2のコンデンサを接続して成り、前記開閉部の
可動電極を途中まで駆動して固定し、前記第1及び第2
のコンデンサのそれぞれの高電位側にそれぞれ逆極性の
直流または商用周波電圧の立上がりに近い電圧を印加す
ることを特徴とするガス絶縁断路器の再点弧サージ試験
方法。
(1) A switching part and an auxiliary gap part are connected in series and housed inside the gas insulating disconnector under test, and both ends of the series connection are connected to the first and second terminals of the gas insulating disconnector under test, respectively. A first capacitor is connected between the first terminal and the ground, and a second capacitor is connected between the second terminal and the ground via a reactor. The movable electrode is driven halfway and fixed, and the first and second
A restriking surge test method for a gas insulated disconnect switch, characterized by applying a voltage close to the rising edge of a direct current or commercial frequency voltage of opposite polarity to each high potential side of the capacitor.
(2)第1のコンデンサの高電位側の抵抗を通して直流
電圧発生装置を接続し、第2のコンデンサの高電位側と
接地との間に電源変圧器の2次側巻線を接続し、この電
源変圧器の1次側巻線の一方の端子を接地に接続し、前
記1次側巻線の他方の端子と接地との間にしゃ断器、投
入器及び商用周波電圧発生装置とを直列に接続し、前記
直流電圧発生装置によって前記第1のコンデンサを充電
し、前記しゃ断器を投入した状態において、前記投入器
を投入して、前記電源変圧器の2次側巻線に電圧を発生
させ、しかる後に前記しゃ断器を開極させるようにした
特許請求の範囲第1項記載のガス絶縁断路器の再点弧サ
ージ試験方法。
(2) Connect a DC voltage generator through the resistor on the high potential side of the first capacitor, connect the secondary winding of the power transformer between the high potential side of the second capacitor and ground, and One terminal of the primary winding of the power transformer is connected to ground, and a breaker, a energizer, and a commercial frequency voltage generator are connected in series between the other terminal of the primary winding and the ground. connected, the first capacitor is charged by the DC voltage generator, and with the breaker turned on, the closing device is turned on to generate a voltage in the secondary winding of the power transformer. The method for restriking surge testing of a gas insulated disconnector according to claim 1, wherein the circuit breaker is then opened.
(3)直流電圧発生装置を充電された複数個のコンデン
サを複数個のギャップの放電によって直列接続するよう
にして構成した特許請求の範囲第2項記載のガス絶縁断
路器の再点弧サージ試験方法。
(3) Re-ignition surge test of a gas insulated disconnector according to claim 2, in which the DC voltage generator is configured by connecting a plurality of charged capacitors in series by discharging a plurality of gaps. Method.
JP58095009A 1983-05-31 1983-05-31 Testing method of reignition surge of gas insulation disconnecting switch Granted JPS59221680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095009A JPS59221680A (en) 1983-05-31 1983-05-31 Testing method of reignition surge of gas insulation disconnecting switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095009A JPS59221680A (en) 1983-05-31 1983-05-31 Testing method of reignition surge of gas insulation disconnecting switch

Publications (2)

Publication Number Publication Date
JPS59221680A true JPS59221680A (en) 1984-12-13
JPH0425506B2 JPH0425506B2 (en) 1992-05-01

Family

ID=14125937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095009A Granted JPS59221680A (en) 1983-05-31 1983-05-31 Testing method of reignition surge of gas insulation disconnecting switch

Country Status (1)

Country Link
JP (1) JPS59221680A (en)

Also Published As

Publication number Publication date
JPH0425506B2 (en) 1992-05-01

Similar Documents

Publication Publication Date Title
Smeets et al. Capacitive current switching duties of high-voltage circuit breakers: Background and practice of new IEC requirements
Sheng Design consideration of Weil-Dobke synthetic testing circuit for the interrupting testing of HV AC circuit breakers
KR890000692B1 (en) Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
JPS59169306A (en) Gas insulated switching device
Srisongkram et al. Investigation on dielectric failure of high voltage equipment in substation caused by capacitor bank switching
JPS59221680A (en) Testing method of reignition surge of gas insulation disconnecting switch
JP3103262B2 (en) Circuit breaker test circuit for switchgear
Salceanu et al. Numerical Simulations and Experimental Tests for the Analysis of Capacitive Load Switching in Power Circuits
JPH0145592B2 (en)
Marin et al. Study of Overvoltages at the Extinguishing Coil Disconnection from Medium Voltage Networks in Stabilized Earthing Regime
JPS59220663A (en) Reignition surge testing method of gas insulated disconnecting switch
JPS61101926A (en) Refiring surge test for gas-insulated switch gear
Smeets et al. Development of synthetic test methods for high-voltage circuit breakers 145–1200 kV
JP2666946B2 (en) Capacitor switching performance test equipment
JPH0560062B2 (en)
Smeets et al. Testing of 800 and 1200 kV class circuit breakers
JPS5933715A (en) Charging current breakage testing circuit for sf6 gas interrupter
van der Sluis et al. A three phase synthetic test-circuit for metal-enclosed circuit-breakers
Smeets et al. Realization of transient recovery voltages for ultra high voltage circuit breakers in testing
Zajic et al. Multi-stage synthetic circuit for extra-high-voltage circuit-breaker testing
JPS5916231A (en) Charging current breakage testing circuit for sf6 gas disconnecting switch
JPH087712A (en) Composite testing device of high voltage breaker
Van der Sluis et al. Short circuit testing methods for generator circuit breakers with a parallel resistor
JPS5928816A (en) Gas insulated substation
Yamamoto et al. New short-circuit testing facilities to cope with the recent development of GIS