JPS5933715A - Charging current breakage testing circuit for sf6 gas interrupter - Google Patents

Charging current breakage testing circuit for sf6 gas interrupter

Info

Publication number
JPS5933715A
JPS5933715A JP14244782A JP14244782A JPS5933715A JP S5933715 A JPS5933715 A JP S5933715A JP 14244782 A JP14244782 A JP 14244782A JP 14244782 A JP14244782 A JP 14244782A JP S5933715 A JPS5933715 A JP S5933715A
Authority
JP
Japan
Prior art keywords
disconnector
voltage
charging current
power supply
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14244782A
Other languages
Japanese (ja)
Inventor
進 西脇
克己 鈴木
悟 柳父
萩森 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14244782A priority Critical patent/JPS5933715A/en
Publication of JPS5933715A publication Critical patent/JPS5933715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、接地電位の金属容器内にSF6ガスととも
に断路部が収納されたSF6ガス断路器の充電電流しゃ
断時の再点弧サージによる地絡現象に対する充電電流し
ゃ断試験回路に関する。
Detailed Description of the Invention [Technical Field of the Invention] This invention is directed to a ground fault caused by a restriking surge when the charging current is cut off in an SF6 gas disconnector in which a disconnection section is housed together with SF6 gas in a metal container at ground potential. This invention relates to a charging current cutoff test circuit for phenomena.

〔発明の技術的背景〕[Technical background of the invention]

変電所において、断路器は変電所内機器の電力系統から
の切シ離しゃ、回路の切シ換えの目的で開閉操作される
。断路器の開閉は隣接したしゃ断器が開路の状態で行わ
れ、断路器はそのし中断器に至る変電所内の短い線路の
微少な充電電流を開閉する。
In substations, disconnectors are opened and closed for the purpose of disconnecting equipment within the substation from the power system and switching circuits. The disconnector opens and closes while the adjacent circuit breaker is open, and the disconnector then switches on and off a minute charging current in a short line within the substation leading to the interrupter.

第1図は変電所の構成の一例を示すもので、BUS J
 、 BUS 2は母線、A、B、CID、E。
Figure 1 shows an example of the configuration of a substation.
, BUS 2 is the bus bar, A, B, CID, E.

F z G t Hp I t J t K 、L p
 M t N + Oは断路器、a、b、c、d、e、
fはしゃ断器、TRJ 、TR2は変圧器、PLJ 、
PL2 *PLJは送電線である。
F z G t Hp I t J t K , L p
M t N + O is a disconnector, a, b, c, d, e,
f is the breaker, TRJ, TR2 is the transformer, PLJ,
PL2 *PLJ is a power transmission line.

このような構成のものにおいて、例えば断路器Aは、し
ゃ断器aまでの短い線路mを開閉し、断路器りは断路器
Eおよびしゃ断器すが開路のときに線路区間nを開閉す
る。また、断路器C1E、に、N、l、中断器fが開の
状態で、断路器Iは−は紗(・〉1を、開閉する・ このように接続されたものにおいて、断路器A−Dとし
てSF6ガス断路器が用いられる変電所は、第1図に示
す断路器A−D、j、や断器a〜f1母線BUS 1 
、 BUS 2などを全て、SF、ガスを封入した金属
容器に収納した全ガス絶縁変電所と、母線だけを架空線
とした複合形ガス絶縁変電所とに大別される。
In such a configuration, for example, the disconnector A opens and closes the short line m to the breaker a, and the disconnector opens and closes the line section n when the disconnector E and the breaker are open. In addition, when the disconnector C1E, N, l, and the interrupter f are open, the disconnector I opens and closes the gauze (・〉1). Substations in which SF6 gas disconnectors are used as D include disconnectors A-D and j shown in Fig. 1, and disconnectors a to f1 bus line BUS 1.
, BUS 2, etc. are all housed in a metal container filled with SF and gas, and composite gas insulated substations have only the busbar as an overhead wire.

断路器による充電電流しゃ断の際に、多数回の再点弧が
発生し、第2図に示すような負荷側線路対地電圧波形が
得られることが知られている。す々わち、開極時点OC
とほぼ同時に微少の充電電流がしゃ断され、その時負荷
側の線路にはしゃ断瞬時の電源電圧v1が残留している
It is known that when the charging current is cut off by a disconnector, many restrikes occur, resulting in a load-side line-to-ground voltage waveform as shown in FIG. Well, the opening point OC
Almost at the same time, the small charging current is cut off, and at that time, the power supply voltage v1 at the instant of the cutoff remains on the line on the load side.

電流電圧’V1は交流であって変化するから、断路器の
極間にはこの線路の残留電圧と電源電圧の差が印加され
る。このとき断路器はまだ開極途中であって、極間絶縁
回復が十分でガく、極間電圧el で再点弧する。する
と、線路の静電容量は数百〜数千ピコファラッド程度で
あるから、流れる過渡電流が減衰するとすぐしゃ断が成
立し、負荷側線路の電圧はそのときの電源電圧v2と一
致した大きさで残留する。電源電圧v2はさらに変化す
るから、極間電圧e2でふたたび再点弧を発生する。以
下同様にして極間電圧83  p 64 1 elt 
 + e6  +67  t 118  +”’で再点
弧を繰返す。断路器の極間距離は次第に大きくなるので
、多くの場合ea)ey)・・・〉e2)elである断
路器の極間絶縁が回復して電源電圧波高値の2倍以上に
々れば、再点弧せずしゃ断は完了する。
Since the current voltage 'V1 is alternating current and changes, the difference between the residual voltage of this line and the power supply voltage is applied between the poles of the disconnector. At this time, the disconnector is still in the process of opening, and the inter-electrode insulation recovery is insufficient, and it is re-ignited at the inter-electrode voltage el. Then, since the capacitance of the line is on the order of several hundred to several thousand picofarads, as soon as the flowing transient current attenuates, breaker is established, and the voltage on the load side line is equal to the power supply voltage v2 at that time. remain. Since the power supply voltage v2 changes further, restriking occurs again at the interelectrode voltage e2. Similarly, the interelectrode voltage 83 p 64 1 elt
+ e6 +67 t 118 +"' Repeat the restriking. Since the distance between the poles of the disconnector gradually increases, in many cases the insulation between the poles of the disconnector is ea) ey)...> e2) el. When the power supply voltage recovers and reaches more than twice the peak value, the shutoff is completed without restarting.

そして、これら再点弧のときにサージ電圧が発生する。A surge voltage is generated during these restrikes.

例えば第2図a点での再点弧の現象が生じ、これを時間
的に拡大し、概念的に示すと第3図のようになる。この
ときのサージ電圧は、開閉する負荷側の線路が短いため
周波数が高く、多くの場合その基本振動は数百kHzに
達する。
For example, a phenomenon of restriking occurs at point a in FIG. 2, and when this is expanded in time, it becomes conceptually shown in FIG. 3. The surge voltage at this time has a high frequency because the line on the load side that is opened and closed is short, and in many cases, its fundamental vibration reaches several hundred kHz.

再点弧時に断路器の極間には高周波電流が流れる。もし
断路器がこの高周波電流を第3図(b)のX点に示すよ
うに最初の電流零点でしゃ断すると、負荷側線路の電圧
は同図(、)のy点の電圧で残留することになる。しか
し、実系統ではこのようなことは発生しない。再点弧時
の過渡電流が十分減衰した時点でしゃ断が成立し、負荷
側線路の電圧が電源電圧と一致した後でしゃ断される。
At the time of restriking, a high frequency current flows between the poles of the disconnector. If the disconnector cuts off this high-frequency current at the first current zero point, as shown at point Become. However, this does not occur in real systems. Shutoff is established when the transient current at the time of restriking has sufficiently attenuated, and is shut off after the voltage on the load side line matches the power supply voltage.

断路器によって充電電流をしゃ断する際に多数回の再点
弧が発生するが、線路側の残留電圧は最大で電源側電圧
波高値である。最大の再点弧サージを考える場合、電源
側が電源電圧の波高値、負荷側線路が逆極性の電源電圧
波高値で再点弧したときを検討すれば十分である。
Many restrikes occur when the charging current is cut off by a disconnector, but the maximum residual voltage on the line is the peak value of the voltage on the power supply side. When considering the maximum restriking surge, it is sufficient to consider when the power supply side is restriked at the peak value of the power supply voltage and the load side line is restriked at the peak value of the power supply voltage of opposite polarity.

実系統において以上のような現象を示す断路5− 器の充電電流をしゃ断するため、従来第4図に示す充電
電流しゃ断試験回路が用いられている。
In order to cut off the charging current of a disconnector which exhibits the above-mentioned phenomenon in an actual system, a charging current cutoff test circuit shown in FIG. 4 has been conventionally used.

1は供試SF、ガス断路器、2は負荷側コンデンサ、3
は変圧器、4は短絡発電機、5はリアクトル、6は電源
側コンデンサ、7,8けそれぞれ前記供試SF、ガス断
路器1の電源側、負荷側のブッシング9は進み電流の補
償用のりアクドルである。
1 is the SF under test, gas disconnector, 2 is the load side capacitor, 3
is a transformer, 4 is a short-circuit generator, 5 is a reactor, 6 is a capacitor on the power supply side, 7 and 8 are respectively the above-mentioned SF under test, the power supply side of the gas disconnector 1, and the bushing 9 on the load side is a glue for compensating the lead current. It's Akudol.

このような構成のものにおいて、再点弧サージの波形と
大きさは主として、負荷側コンデンサ2、リアクトル5
、コンデンサ6の直列回路で決定される。
In such a configuration, the waveform and magnitude of the restriking surge are mainly determined by the load side capacitor 2 and reactor 5.
, is determined by a series circuit of capacitor 6.

第4図の試験回路において、供試断路器1によりコンデ
ンサ2に流れる充電電流をしゃ断することによシ、第2
図と同様の電圧波形が得られる。しかし、実系統に適用
される断路器をそのまま供試するとその開極速度が速い
ので、再点弧の発生回数が限られる。再点弧によるサー
ジ電圧は、前述のように、断路器の電源側と負荷側が各
々電源電圧の逆極性の波高値で再点弧6− したと封に最大の大きさとなる。これは、第2図におい
て、a点−またはb点に示される。SF6ガス断路器1
の再点弧サージによる地絡は、サージ電圧が大きいほど
発生しやすく、また地絡電圧はバラツキを有し、確率的
である。従って、1のし中断で断路器1の電源側と負荷
側が各々電源電圧の波高値で再点弧する場合が必ずしも
得られないと、またこの回数が少ないと、多数回のし中
断をして試験しなければならない。
In the test circuit shown in FIG.
A voltage waveform similar to the one shown in the figure is obtained. However, if a disconnector applied to an actual system is used as is, its opening speed is fast, so the number of times that restriking occurs is limited. As mentioned above, the surge voltage due to restriking reaches its maximum level when the power supply side and load side of the disconnector are respectively restriked at peak values of opposite polarities of the power supply voltages. This is shown in FIG. 2 at point a- or point b. SF6 gas disconnector 1
Ground faults due to restriking surges are more likely to occur as the surge voltage increases, and ground fault voltages vary and are stochastic. Therefore, if the power supply side and the load side of the disconnector 1 are not always re-ignited at the peak value of the power supply voltage due to one interruption, or if the number of times is small, the interruption may occur many times. Must be tested.

〔発明の目的〕[Purpose of the invention]

この発明は1回のしゃ断で、断路器の電源側と負荷側が
各々電源電圧の波高値で再点弧する回数を多くして、し
ゃ断の回数を少くでき、再点弧サージによる地絡現象に
着目したSF、ガス断路器の充電電流し中断試験回路を
得ることを目的とする。
This invention increases the number of times that the power supply side and the load side of the disconnector are re-ignited each at the peak value of the power supply voltage, reducing the number of times that the disconnector is shut off, thereby preventing the ground fault phenomenon caused by the re-ignition surge. The purpose of this study is to obtain a charging current and interruption test circuit for SF and gas disconnectors.

〔発明の概要〕[Summary of the invention]

この発明は、供試SFaガス断路器の開極速度を実系統
に適用するときよシも遅く構成することによシ、前述の
目的を達成するものである。
The present invention achieves the above object by configuring the opening speed of the SFa gas disconnector under test to be slower than when applied to an actual system.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の実施例について図面を参照して説明する
。この発明は供試SF6ガス断路器1として、実系統に
適用されるSF6ガス断路器の操作用の圧縮空気の圧力
を下げ、また油圧の圧力を下げ、また電動操作のモータ
ーの電圧を下げる等により、開極速度を実系統に適用す
るどき・よりも遅くした構成のSF6ガス断路器1を用
いるところに特徴を有する。
Embodiments of the present invention will be described below with reference to the drawings. This invention is a test SF6 gas disconnector 1 that lowers the pressure of compressed air for operating the SF6 gas disconnector applied to an actual system, lowers the hydraulic pressure, and lowers the voltage of the electric operated motor. Therefore, the present invention is characterized by using an SF6 gas disconnector 1 having a configuration in which the opening speed is slower than when applied to an actual system.

このように構成されたものにおいて、充電電流しゃ断試
験を行って得られる断路器の負荷側端子及び電源側端子
の電圧波形は第5図のようになる。第5図から明らかな
ように、最大のサージ電圧が発生する電源側と負荷側が
各々電源電圧の逆極性の波高値で再点弧する回数が多く
なる。少ないしゃ断回数で、多数回の最大の再点弧サー
ジ電圧に対する断路器の地絡現象に対して試験ができる
In the device configured in this way, the voltage waveforms at the load side terminal and power source side terminal of the disconnector obtained by performing a charging current cutoff test are as shown in FIG. As is clear from FIG. 5, the number of times that the power supply side and the load side, where the maximum surge voltage occurs, are each re-ignited at peak values of opposite polarity of the power supply voltage increases. With a small number of interruptions, it is possible to test the ground fault phenomenon of the disconnector against the maximum restriking surge voltage many times.

前述の供試SF6ガス断路器1の開極速度は具体的には
第6図からきめられる。第6図は第4図に示すSF6ガ
ス断路器の充電電流し中断試験回路において、負荷側コ
ンデンサ2に電源電圧の波高値の電圧を充電した状態で
供試断路器1を開の状態からゆっくシと可動電極を動か
して閉じたときの極間の再点弧電圧すなわち放電電圧波
形を示している。第6図に示すa点で電源電圧の波高値
で放電した後、極間距離りが短くなるにつれて放電電圧
は低くなる。このとき、第6図に示すように、極間距離
りを2PUの電圧に対する断路器極間の放電開始距離と
すると、0.8L程度までは、極間は2PHの電圧で放
電していることがわかる。このように交流電源電圧の周
期がTであるとき、断路器の可動電極の1.0L−0,
8L 開極速度を一一、1−−よシ遅くすればよいことになる
The opening speed of the above-mentioned sample SF6 gas disconnector 1 is specifically determined from FIG. FIG. 6 shows the charging current and interruption test circuit of the SF6 gas disconnector shown in FIG. It shows the restriking voltage, that is, the discharge voltage waveform, between the electrodes when the comb and the movable electrode are moved and closed. After discharging at the peak value of the power supply voltage at point a shown in FIG. 6, the discharge voltage becomes lower as the distance between the electrodes becomes shorter. At this time, as shown in Figure 6, if the distance between the poles is the discharge start distance between the disconnector poles with respect to the voltage of 2PU, then the distance between the poles is discharged at a voltage of 2PH up to about 0.8L. I understand. In this way, when the period of the AC power supply voltage is T, the movable electrode of the disconnector is 1.0L-0,
8L It would be sufficient to slow down the opening speed by 1-1.

このように、可動電極の開極速度を0.2L以下とする
ことによって、1回のし中断で1回以上の電源電圧の波
高値の2倍の極間電圧での再点弧を得ることができる。
In this way, by setting the opening speed of the movable electrode to 0.2L or less, it is possible to obtain one or more re-ignitions with an inter-electrode voltage twice the peak value of the power supply voltage with one interruption of firing. I can do it.

9− 〔発明の効果〕 この発明によれば、少ないしゃ断回数で、多数回の最大
の再点弧サー−)電圧に対する断路器の地絡現象の試験
が可能な、従って、試験の手数を少なくすることが可能
なSF、ガス断路器の充電電流しゃ断試験回路を提供で
きる。
9- [Effects of the Invention] According to the present invention, it is possible to test the ground fault phenomenon of the disconnector against the maximum restrike voltage many times with a small number of interruptions, and therefore, the number of testing steps can be reduced. It is possible to provide a charging current cutoff test circuit for SF and gas disconnectors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は変電所の一例を示す単線結線図、第2図は同側
において断路器による短かい線路の微少充電電流しゃ断
時の負荷側線路対地電圧波形図、第3図は第2図のa点
での再点弧現象を説明するための時間的拡大図、第4図
は従来のSF6ガス断路器の充電電流しゃ断試験回路の
一例を示す図、第5図はこの発明によるSF、ガス断路
器の充電電流しゃ断試験回路にょシ充電電流しゃ断試験
を行った場合の断路器の負荷側端子と電源側端子の電圧
波形を示す図、第6図はこの発明によるSFaガス断路
器の充電電流しゃ断試験回路において、負荷側コンデン
サに電源電圧の波高値の電圧を充電した状態で供試断路
10− 器を開の状態からゆっくシと可動電極を動かして閉じだ
ときの極間の再点弧電圧波形を示す図である。 1・・・供試SF6ガス断路器、2・・・負荷側コンデ
ンサ、3・・・変圧器、4・・・交流電源、5・・・リ
アクトル、6・・・電源側コンデンサ、7,8・・・ブ
ッシング、9・・・補償リアクトル。 出願人代理人  弁理士 鈴 江 武 彦11− 第1図
Figure 1 is a single-line diagram showing an example of a substation, Figure 2 is a load-side line-to-ground voltage waveform diagram when a disconnector cuts off a small charging current on a short line on the same side, and Figure 3 is a diagram of the load-side line-to-ground voltage waveform of Figure 2. 4 is a diagram showing an example of a charging current cutoff test circuit for a conventional SF6 gas disconnector, and FIG. 5 is a diagram showing an example of a charging current cutoff test circuit for a conventional SF6 gas disconnector. Figure 6 shows the voltage waveforms of the load side terminal and power supply side terminal of the disconnector when a charging current cutoff test is conducted in the charging current cutoff test circuit of the disconnector. In the disconnection test circuit, with the load side capacitor charged with the voltage of the peak value of the power supply voltage, the movable electrode is slowly moved from the open state of the test disconnector 10 to close it, and the repointing between the poles is determined. It is a figure showing an arc voltage waveform. 1... Test SF6 gas disconnector, 2... Load side capacitor, 3... Transformer, 4... AC power supply, 5... Reactor, 6... Power supply side capacitor, 7, 8 ...Bushing, 9...Compensation reactor. Applicant's agent Patent attorney Takehiko Suzue 11- Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)変圧器の一次側端子に交流電源を接続し、変圧器
の二次側端子に並列に電源側コンデンサを接続し、この
電源側コンデンサの両端子間にリアクトルと負荷側コン
デンサを直列に接続し、接地電位の金属容器内にSF、
ガスとともに断路部が収納され、前記金属容器に装着さ
れ、かつ前記断路部と電気的に接続された第1、第2の
ブッシングを有する供試SF、ガス断路器を前記負荷側
コンデンサと前記リアクトルとの間に接続し、前記供試
SFgガス断路器の開極速度を実系統に適用する場合よ
りも遅くしたことを特徴とするSF、ガス断路器の充電
電流しゃ断試験回路。
(1) Connect an AC power source to the primary terminal of the transformer, connect a power supply capacitor in parallel to the secondary terminal of the transformer, and connect a reactor and load capacitor in series between both terminals of this power supply capacitor. SF in a metal container at ground potential,
A test SF containing a gas disconnector and first and second bushings that are attached to the metal container and electrically connected to the disconnector; A charging current interruption test circuit for an SF, gas disconnector, characterized in that the opening speed of the test SFg gas disconnector is slower than that when applied to an actual system.
(2)変圧器の二次側の交流電圧波高値の2倍で、前記
断路部極間が放電開始する前記断路部の極間距離なL1
前記変圧器の二次側の交流電圧の周期をTとしたとき開
極速度を0°2L以下とした特許請求範囲第1項記載の
SF6ガス断路器の充電電流しゃ断試験回路。
(2) L1 is the distance between the poles of the disconnection part at which the poles of the disconnection part start discharging at twice the peak value of the AC voltage on the secondary side of the transformer.
A charging current cutoff test circuit for an SF6 gas disconnector according to claim 1, wherein the opening speed is 0°2L or less when the period of the AC voltage on the secondary side of the transformer is T.
JP14244782A 1982-08-17 1982-08-17 Charging current breakage testing circuit for sf6 gas interrupter Pending JPS5933715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14244782A JPS5933715A (en) 1982-08-17 1982-08-17 Charging current breakage testing circuit for sf6 gas interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14244782A JPS5933715A (en) 1982-08-17 1982-08-17 Charging current breakage testing circuit for sf6 gas interrupter

Publications (1)

Publication Number Publication Date
JPS5933715A true JPS5933715A (en) 1984-02-23

Family

ID=15315518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14244782A Pending JPS5933715A (en) 1982-08-17 1982-08-17 Charging current breakage testing circuit for sf6 gas interrupter

Country Status (1)

Country Link
JP (1) JPS5933715A (en)

Similar Documents

Publication Publication Date Title
US6703839B2 (en) Synthetic making/breaking-capacity test circuit for high-voltage alternating-current circuit-breakers
Smeets et al. Capacitive current switching duties of high-voltage circuit breakers: Background and practice of new IEC requirements
KR890000692B1 (en) Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
Szewczyk et al. Impact of disconnector design on very fast transient overvoltages in gas-insulated UHV switchgear
Nishiwaki et al. Ground Fault by Restriking Surge of SF6 Gas-Insulated Disconnecting Switching and its Synthetic Tests
JPS59169306A (en) Gas insulated switching device
JPS5933715A (en) Charging current breakage testing circuit for sf6 gas interrupter
US4454476A (en) Method of and apparatus for synthetic testing of a multi-break circuit breaker
Salceanu et al. Numerical Simulations and Experimental Tests for the Analysis of Capacitive Load Switching in Power Circuits
JPH0560062B2 (en)
Tokuyama et al. Simulations on interruption of circuit breaker in HVDC system with two parallel transmission lines
JPS5916231A (en) Charging current breakage testing circuit for sf6 gas disconnecting switch
Pramana et al. Simulation Study of Circuit Breaker Failure on Extra High Voltage Reactor
JPS61101926A (en) Refiring surge test for gas-insulated switch gear
JPS59220663A (en) Reignition surge testing method of gas insulated disconnecting switch
JPS5916230A (en) Charging current breakage testing circuit for sf6 gas disconnecting switch
JP2666946B2 (en) Capacitor switching performance test equipment
Kynast et al. Switching of capacitive currents by disconnectors in gas insulated substations
JPS59221680A (en) Testing method of reignition surge of gas insulation disconnecting switch
JPS5933716A (en) Charging current breakage testing circuit for sf6 gas interrupter
Bhasavanich et al. Digital Simulations and Field Measurement of Transients Associated with Large Capactior Bank Switching on Distribution Systems
Smeets et al. Testing of 800 and 1200 kV class circuit breakers
Chunying et al. An Accident Analysis of Circuit Breaker in HVDC Converter Station Filter Branch
SU532828A1 (en) Circuit Breaker Capability Tester
JPS5928816A (en) Gas insulated substation