JPH0457053B2 - - Google Patents

Info

Publication number
JPH0457053B2
JPH0457053B2 JP12610182A JP12610182A JPH0457053B2 JP H0457053 B2 JPH0457053 B2 JP H0457053B2 JP 12610182 A JP12610182 A JP 12610182A JP 12610182 A JP12610182 A JP 12610182A JP H0457053 B2 JPH0457053 B2 JP H0457053B2
Authority
JP
Japan
Prior art keywords
disconnector
voltage
gas
power supply
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12610182A
Other languages
Japanese (ja)
Other versions
JPS5916230A (en
Inventor
Susumu Nishiwaki
Katsumi Suzuki
Satoru Yagiu
Hidekazu Hagimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12610182A priority Critical patent/JPS5916230A/en
Publication of JPS5916230A publication Critical patent/JPS5916230A/en
Publication of JPH0457053B2 publication Critical patent/JPH0457053B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] この発明は、接地電位の金属容器内にSF6ガス
とともに断路部が収納されたSF6ガス断路器の充
電電流しや断時の再点弧サージによる地絡現象に
対する充電電流しや断試験回路に関する。 [発明の技術的背景] 変電所において、断路器は変電所内機器の電力
系統からの切り離しや、回路の切り換えの目的で
開閉操作される。断路器の開閉は隣接したしや断
器が開路の状態で行われ、断路器はそのしや断器
に至る変電所内の短い線路の微少な充電電流を開
閉する。 第1図は変電所の構成の一例を示すもので、
BUS1,BUS2は母線、A,B,C,D,E,
F,G,H,I,J,K,L,M,N,Oは断路
器、a,b,c,d,e,f,はしや断器、TR
1,TR2は変圧器、PL1,PL2,PL3は送電
線である。 このような構成のものにおいて、例えば断路器
Aは、しや断器aまでの短い線路mを開閉し、断
路器Dは断路器Eおよびしや断器bが開路のとき
線路区間nを開閉する。また、断路器C,E,
K,N,しや断器fが開の状態で、断路器Iは母
線1を開閉する。 このように接続されたものにおいて、断路器A
〜DとしてSF6ガス断路器が用いられる変電所
は、第1図に示す断路器A〜D、しや断器a〜
f、母線BUS1,BUS2などを全て、SF6ガス
を封入した金属容器に収納した全ガス絶縁変電所
と、母線だけを架空線とした複合形ガス絶縁変電
所とに大別される。 断路器による充電電流しや断の際に、多数回の
再点弧が発生し、第2図に示すような負荷側線路
対地電圧波形が得られることが知られている。す
なわち、開極時点とほぼ同時に微小の充電電流が
しや断され、その時負荷側の線路にはしや断瞬時
の電源電圧v1が残留している。電源電圧v1は交流
であつて変化するから、断路器の極間にはこの線
路の残留電圧と電源電圧の差が印加される。この
とき断路器はまだ開極途中であつて、極間絶縁回
復が十分でなく、極間電圧e1で再点弧する。する
と、線路の静電容量は数百〜数千ピコフアラツド
程度であるから、流れる過渡電流が減衰するとす
ぐしや断が成立し、負荷側線路の電圧はそのとき
の電源電圧v2と一致した大きさで残留する。電源
電圧v2はさらに変化するから、極間電圧e2でふた
たび再点弧を発生する。以下同様にして極間電圧
e3,e4,e5,e6,e7,e8,……で再点弧を繰返す。
断路器の極間距離は次第に大きくなるので、多く
の場合e8>e7>……>e2>e1である断路器の極間
絶縁が回復して電源電圧波高値の2倍以上になれ
ば、再点弧せずしや断は完了する。 そして、これら再点弧のときにサージ電圧が発
生する。例えば第2図a点での再点弧の現象が生
じ、これを時間的に拡大し、概念的に示すと第3
図のようになる。このときのサージ電圧は、開閉
する負荷側の線路が短いため周波数が高く、多く
の場合その基本振動は数百KHzに達する。 再点弧時に断路器の極間には高周波数電流が流
れる。もし断路器がこの高周波電流を第3図bの
x点に示すように最初の電流零点でしや断する
と、負荷側線路の電圧は同図aのy点の電圧で残
留することになる。しかし、実系統ではこのよう
なことは発生しない。再点弧時の過渡電流が十分
減衰した時点でしや断が成立し、負荷側線路の電
圧が電源電圧と一致した後でしや断される。断路
器によつて充電電流をしや断する際に多数回の再
点弧が発生するが、線路側の残留電圧は最大で電
源側電圧波高値である。最大の再点弧サージを考
える場合、電源側が電源電圧の波高値、負荷側線
路が逆極性の電源電圧波高値で再点弧したときを
検討すれば十分である。 SF6ガス断路器は、再点弧時に、その際発生す
るサージ電圧によつて極間と接地電位の金属容器
との間で地絡する場合が有ることが知られてき
た。このときの地絡電圧は、断路器が開または閉
の状態、さらに、断路器の極間に再点弧アークを
模擬した針金を設置した状態における静耐電圧よ
りもかなり低く、また地絡現象には、断路器の極
間のアーク放電が大きく影響している。 SF6ガス断路器の接地電位の金属容器内には
SF6ガスとともに収納されている断路部は通常第
4図に示すようになつている。1は可動電極、2
は可動側シールド、3は固定電極、4は固定側シ
ールドである。充電電流しや断時の再点弧は、可
動電極1が開極途上のときに発生する。したがつ
て、再点弧は、可動電極1の先端と固定側シール
ド4との間で発生し、かなり不平等な極間電位分
布の状態で発生する。従つて、再点弧サージによ
る地絡現象に対しては、極性による影響がある。 第5図は、従来用いられているSF6ガス断路器
の充電電流しや断試験回路の1例である。5は供
試SF6ガス断路器(以下供試断路器と称する)、
6は供試断路器5の固定側が接続されるブツシン
グ、7は供試断路器5の可動側が接続されるブツ
シング、8は供試断路器5の接地電位の金属容
器、9,10はそれぞれ負荷側および電源側コン
デンサ、11は一端がブツシング6を介して固定
側電極に接続され、かつ他端が前記電源側コンデ
ンサ10の一端と変圧器12の二次巻線に接続さ
れたリアクトル、13は変圧器12の一次巻線に
接続された交流電源、14は交流電源13に並列
に接続された補償リアクトルである。この回路に
おいて、再点弧時のサージ電圧は負荷側コンデン
サ9、リアクトル11、電源側コンデンサ10の
直列回路でほぼ決定される。 第5図は、固定電極がリアクトル11に接続さ
れている。ところが、サージ電圧によつて極間と
接地電位の金属容器8との間で地絡する場合があ
ることが知られてきた。この地絡現象に対して
は、極性による影響があることが知られつつあ
る。 最近の高電圧化に伴い、この地絡現象を無視す
ることができなくなりつつある。そこで、もし、
極性による影響に着目し、第5図に示すように接
続され、かつ設置された供試断路器5に対してこ
の地絡現象を考慮するにしたとしても、(a)供試断
路器5の設置方法を変えるか、(b)接続線の布設ル
ートを変更して、可動電極をリアクトル11に接
続しなければならなかつた。 しかしながら、(a)の場合、供試断路器5の解
体、移動、再組立が必要となり、(b)の場合には接
続線の支持と電気的絶縁距離を確保するために、
新たな支持物とそのための広大な空間が必要とな
る。 従つて、従来の公知の配置では高電圧化に伴い
地絡現象の影響がでて不具合を生じ、また、も
し、極性による影響に着目して可動電極とリアク
トルとの接続のために接続換えの問題があつた。 [発明も目的] この発明は、最近の高電圧化に伴い、サージ電
圧によつて極間と接地電位の金属容器との間での
地絡現象を無視できなくなつてきたことに鑑み、
地絡現象に対する極性に着目し、可動側電極をリ
アクトルに接続するように設置して試験を行い、
供試断路器のブツシングを接続換えせず、従つて
試験の手段を少くできるSF6ガス断路器の充電電
流しや断試験回路を提供することを目的とする。 [発明の概要] この発明は供試SF6ガス断路器の可動側と電気
的に接続される口出端子を電源側に接続されてい
るリアクトルに接続し、かつ前記断路器の固定側
に接続される口出端子を負荷側に接続されている
負荷側コンデンサに接続することにより前述の目
的を達成するものである。 [発明の実施例] 以下、この発明について第6図の一実施例を参
照して説明する。供試SF6ガス断路器25の接地
電位の金属容器28内にSF6ガスとともに断路部
すなわち、可動電極21、可動側シールド22お
よび固定電極(図では明示されていないが、23
をさしている)、固定側シールド24を収納し、
前記金属容器28に樹立された固定電極、可動電
極21と電気的に接続された口出端子例えばブツ
シング26,27を、それぞれ負荷側コンデンサ
9、リアクトル11に電気的に接続されている。
つまり、断路器25の可動側が電源側にあるリア
クトル11に接続されている点が、前述の従来例
とは異り、これ以外は第5図と同一構成であるの
で、ここではその説明を省略する。 以下、このように構成された充電電流しや断試
験回路の作用について説明する。供試SF6ガス断
路器25による充電電流しや断時の、供試SF6
ス断路器25の負荷側及び電源側の電圧極性関係
は第2図に示されるようになる。最大のサージ電
圧が発生する断路器の電源側と負荷側がそれぞれ
逆極性の電源電圧波高値で再点弧した場合につい
て着目すると、極性関係は同図に示すa点とb点
の場合に区別される。a点は負荷側が負極性、電
源側が正極性で再点弧したことを示し、b点は負
荷側が正極性、電源側が負極性で再点弧したこと
を示している。第1表は断路器口出端子の接続状
態と、極間再点弧するときの可動電極の固定電極
に対する極性及び再点弧サージ電圧の金属容器に
対する極性との関係を、a点、b点について記し
たものである。
[Technical Field of the Invention] This invention relates to a charging method for a ground fault phenomenon caused by a restriking surge when the charging current of an SF 6 gas disconnector is stored in a metal container at ground potential together with SF 6 gas. Concerning current shear break test circuit. [Technical Background of the Invention] In a substation, a disconnector is opened and closed for the purpose of disconnecting equipment within the substation from the power system and switching circuits. The opening and closing of a disconnector is performed while the adjacent cable breaker is open, and the disconnector switches on and off a minute charging current in a short line within the substation leading to the cable breaker. Figure 1 shows an example of the configuration of a substation.
BUS1, BUS2 are bus lines, A, B, C, D, E,
F, G, H, I, J, K, L, M, N, O are disconnectors, a, b, c, d, e, f, chopsticks and disconnectors, TR
1, TR2 is a transformer, and PL1, PL2, and PL3 are power transmission lines. In such a configuration, for example, the disconnector A opens and closes the short line m to the breaker a, and the disconnector D opens and closes the line section n when the disconnector E and the breaker b are open. do. In addition, disconnectors C, E,
The disconnector I opens and closes the bus bar 1 when the K, N, and wire disconnectors f are open. In those connected in this way, disconnector A
Substations where SF 6 gas disconnectors are used as ~D are disconnectors A~D and shiya disconnectors a~ as shown in Figure 1.
There are two main types of substations: fully gas-insulated substations, in which all busbars BUS1, BUS2, etc. are housed in a metal container filled with SF 6 gas, and composite gas-insulated substations, in which only the busbars are overhead wires. It is known that when the charging current is cut off by a disconnector, many restrikes occur, resulting in a load-side line-to-ground voltage waveform as shown in FIG. That is, the minute charging current is interrupted almost simultaneously with the point of contact opening, and at that time, the power supply voltage v 1 at the instant of the interruption remains on the line on the load side. Since the power supply voltage v 1 is alternating current and changes, the difference between the residual voltage of this line and the power supply voltage is applied between the poles of the disconnector. At this time, the disconnector is still in the process of opening, and the inter-electrode insulation recovery is not sufficient, and it is re-ignited at the inter-electrode voltage e1 . Then, since the capacitance of the line is on the order of several hundred to several thousand picofurads, as soon as the flowing transient current attenuates, a disconnection occurs, and the voltage on the load side line increases to a level equal to the power supply voltage v2 at that time. It remains. Since the power supply voltage v 2 changes further, restriking occurs again at the interelectrode voltage e 2 . Below, in the same way, the voltage between electrodes is
Re-ignition is repeated with e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , ...
As the distance between the poles of the disconnector gradually increases, the insulation between the poles of the disconnector, which in many cases is e 8 > e 7 >... > e 2 > e 1 , recovers and increases to more than twice the peak value of the power supply voltage. If this happens, the restart or disconnection is complete. A surge voltage is generated during these restrikes. For example, the phenomenon of re-ignition occurs at point a in Figure 2, and if this is expanded in time and conceptually shown, the third
It will look like the figure. The surge voltage at this time has a high frequency because the line on the load side that is opened and closed is short, and in many cases, its fundamental vibration reaches several hundred KHz. During restriking, a high frequency current flows between the poles of the disconnector. If the disconnector cuts this high frequency current at the first current zero point as shown at point x in Figure 3b, the voltage on the load side line will remain at the voltage at point y in Figure 3a. However, this does not occur in real systems. When the transient current at the time of restriking has sufficiently attenuated, a break occurs, and after the voltage on the load side line matches the power supply voltage, the break occurs. Many restrikes occur when the charging current is cut off by a disconnector, but the maximum residual voltage on the line is the peak value of the voltage on the power supply side. When considering the maximum restriking surge, it is sufficient to consider when the power supply side is restriked at the peak value of the power supply voltage and the load side line is restriked at the peak value of the power supply voltage of opposite polarity. It has been known that when an SF 6 gas disconnect switch is re-ignited, the surge voltage generated at that time may cause a ground fault between the poles and the metal container at ground potential. The ground fault voltage at this time is considerably lower than the static withstand voltage when the disconnect switch is open or closed, and when a wire simulating a restriking arc is installed between the poles of the disconnect switch. The arc discharge between the poles of the disconnect switch has a large influence on this. Inside the metal container at ground potential of the SF 6 gas disconnector is
The disconnect section containing the SF 6 gas is normally arranged as shown in FIG. 1 is a movable electrode, 2
3 is a movable shield, 3 is a fixed electrode, and 4 is a fixed shield. Re-ignition when the charging current is cut off occurs when the movable electrode 1 is in the middle of opening. Therefore, restriking occurs between the tip of the movable electrode 1 and the fixed shield 4, and occurs in a state where the potential distribution between the electrodes is quite unequal. Therefore, the ground fault phenomenon caused by the restriking surge is affected by the polarity. FIG. 5 is an example of a charging current disconnection test circuit for a conventionally used SF 6 gas disconnector. 5 is a test SF 6 gas disconnector (hereinafter referred to as the test disconnector),
6 is a bushing to which the fixed side of the test disconnector 5 is connected, 7 is a bushing to which the movable side of the test disconnector 5 is connected, 8 is a metal container of the test disconnector 5 at ground potential, and 9 and 10 are loads, respectively. side and power supply side capacitors, 11 is a reactor whose one end is connected to the fixed side electrode via the bushing 6, and the other end is connected to one end of the power supply side capacitor 10 and the secondary winding of the transformer 12; 13 is a reactor; An AC power supply is connected to the primary winding of the transformer 12, and 14 is a compensation reactor connected in parallel to the AC power supply 13. In this circuit, the surge voltage at the time of restriking is almost determined by the series circuit of the load side capacitor 9, the reactor 11, and the power supply side capacitor 10. In FIG. 5, the fixed electrode is connected to the reactor 11. However, it has been known that a surge voltage may cause a ground fault between the electrodes and the metal container 8 at ground potential. It is becoming known that polarity has an effect on this ground fault phenomenon. With the recent increase in voltage, it is becoming impossible to ignore this ground fault phenomenon. So, if
Even if we focus on the influence of polarity and consider this ground fault phenomenon for the test disconnector 5 connected and installed as shown in Fig. 5, (a) the test disconnector 5 It was necessary to connect the movable electrode to the reactor 11 by changing the installation method or (b) changing the laying route of the connection line. However, in case (a), it is necessary to dismantle, move, and reassemble the test disconnector 5, and in case (b), in order to support the connection wire and ensure electrical insulation distance,
New supports and a large amount of space will be required. Therefore, with the conventional well-known arrangement, problems occur due to the influence of ground faults as the voltage increases, and if the influence of polarity is taken into consideration, it is necessary to change the connection to connect the movable electrode and the reactor. There was a problem. [Purpose of the Invention] This invention was created in view of the fact that, with the recent increase in voltage, it has become impossible to ignore the ground fault phenomenon between the poles and the metal container at ground potential due to surge voltage.
Focusing on polarity with respect to ground fault phenomena, tests were conducted with the movable electrode connected to the reactor.
It is an object of the present invention to provide a charging current and disconnection test circuit for an SF 6 gas disconnector, which does not require reconnecting the bushings of the disconnector under test and can therefore reduce the number of test methods. [Summary of the invention] This invention connects an outlet terminal that is electrically connected to the movable side of a test SF 6 gas disconnector to a reactor connected to the power supply side, and also connects it to the fixed side of the disconnector. The above object is achieved by connecting the output terminal to the load side capacitor connected to the load side. [Embodiment of the Invention] The present invention will be described below with reference to an embodiment shown in FIG. The SF 6 gas as well as the disconnection section, that is, the movable electrode 21, the movable shield 22, and the fixed electrode (although not clearly shown in the figure, 23
), store the fixed side shield 24,
Output terminals such as bushings 26 and 27, which are electrically connected to the fixed electrode and movable electrode 21 established in the metal container 28, are electrically connected to the load side capacitor 9 and the reactor 11, respectively.
In other words, the movable side of the disconnector 25 is connected to the reactor 11 on the power supply side, which is different from the above-mentioned conventional example; other than this, the configuration is the same as that in Fig. 5, so the explanation thereof will be omitted here. do. Hereinafter, the operation of the charging current leakage test circuit configured as described above will be explained. When the charging current is interrupted by the SF 6 gas disconnector 25 under test, the voltage polarity relationship on the load side and the power supply side of the SF 6 gas disconnector 25 under test is as shown in FIG. Focusing on the case where the power supply side and load side of the disconnector, where the maximum surge voltage occurs, are re-ignited at the power supply voltage peak values of opposite polarity, the polarity relationship can be distinguished between points a and b shown in the figure. Ru. Point a indicates that the load side was re-ignited with negative polarity and the power source side was positive polarity, and point b indicates that the load side was re-ignited with positive polarity and the power source side was negative polarity. Table 1 shows the relationship between the connection state of the disconnector outlet terminal, the polarity of the movable electrode with respect to the fixed electrode when restriking between poles, and the polarity of the restriking surge voltage with respect to the metal container at points a and b. This is what I wrote about.

【表】 一方、第7図は断路器の極間で再点弧するとき
の火花の発生の様子を示している。なお、第4図
と同一部分には同一符号を付し説明は省略する。 第7図において、5はSF6ガス、8は接地電位
の金属容器であり、可動電極1と固定側シールド
4との間に電圧が印加されると、可動電極1の先
端からリーダ29が枝状に発生する。枝状のリー
ダ29の1部分30が、固定側シールド4に到達
すると極間で再点弧が成立する。再点弧が成立す
るとサージ電圧が発生する。このサージ電圧は枝
状のリーダ29の一部分31と接地電位の金属容
器8との間に印加される。リーダの一部分31の
先端部に電界が集中するので、リーダ31は進展
して、32に示すように接地電位の金属容器8ま
で到達して地絡してしまう。 上記のように、極間で再点弧してサージによつ
て地絡する過程はリーダの進展について次の2つ
の過程に分けることができる。 1 極間での放電の際のリーダの進展。 2 1)の結果発生するサージによる地絡の際の
リーダの進展。 上記の1)のリーダの進展は可動電極1が固定
側シールド4に対して正極性のときに負極性のと
きと比べて発生し易く、上記2)のリーダの進展
はサージ電圧が金属容器に対して正極性のときに
負極性のときと比べて発生しやすい。これは、
SF6ガスの不平等電界の絶縁破壊電圧が正極性の
方が負極性のときと比べて低いという事実と対応
する。従つて、再点弧サージによつて地絡が発生
し易いのは次の2つの極性条件のときである。 1 極間再点弧のときの可動電極の固定電極に対
する極性が正のとき。 2 再点弧サージ電圧の金属容器に対する極性が
正のとき。 ところで、第1表において、上記の2つの極正
条件が満たされるのは、断路器口出端子の接続条
件が第6図に示す実施例による接続のときであ
る。事実供試SF6ガス断路器25の充電電流しや
断試験結果によると、可動電極21が固定側シー
ルド24に対して正極性で再点弧し、しかもサー
ジ電圧が対地に対して正極性で再点弧し、しかも
サージ電圧が対地に対して正極性に発生した時に
地絡電圧が最も低くなつた。これは、第5図に示
すように、可動電極21が電源側にあるリアクト
ル11に接続されているからである。 なお、供試SF6ガス断路器の充電電流しや断器
の再点弧サージによる地絡現象に着目して試験を
行う場合、地絡電圧が最も低くなる条件に着目し
て試験すれば十分である。 [発明の効果] この発明によれば、この地絡電圧が最も低くな
る条件で試験ができるから、従来のように断路器
ブツシング接続換えして試験する必要はなく、従
つて試験の手数を少なくすることができるSF6
ス断路器の充電電流しや断試験回路を提供でき
る。
[Table] On the other hand, Fig. 7 shows how sparks are generated when the disconnector is re-ignited between the poles. Note that the same parts as in FIG. 4 are designated by the same reference numerals, and their explanation will be omitted. In FIG. 7, 5 is SF 6 gas, 8 is a metal container at ground potential, and when a voltage is applied between the movable electrode 1 and the fixed shield 4, the leader 29 branches from the tip of the movable electrode 1. It occurs like this. When one portion 30 of the branch-like leader 29 reaches the stationary shield 4, restriking occurs between the poles. When restriking occurs, a surge voltage is generated. This surge voltage is applied between a portion 31 of the branch-like reader 29 and the metal container 8 at ground potential. Since the electric field is concentrated at the tip of the leader portion 31, the leader 31 advances and reaches the metal container 8 at the ground potential as shown at 32, causing a ground fault. As mentioned above, the process of restriking between the poles and causing a ground fault due to a surge can be divided into the following two processes in terms of leader development. 1 Evolution of the leader during discharge between poles. 2 Evolution of the leader during a ground fault due to surges occurring as a result of 1). The leader development in 1) above occurs more easily when the movable electrode 1 has a positive polarity with respect to the fixed shield 4 than when it has a negative polarity, and the leader development in 2) above occurs when the surge voltage is applied to the metal container. On the other hand, it occurs more easily when the polarity is positive than when it is negative polarity. this is,
This corresponds to the fact that the breakdown voltage of the unequal electric field of SF 6 gas is lower in positive polarity than in negative polarity. Therefore, a ground fault is likely to occur due to a restriking surge under the following two polarity conditions. 1 When the polarity of the movable electrode with respect to the fixed electrode is positive during interpole restriking. 2 When the polarity of the restriking surge voltage with respect to the metal container is positive. Incidentally, in Table 1, the above two polarity conditions are satisfied when the connection condition of the disconnector outlet terminal is the connection according to the embodiment shown in FIG. In fact, according to the charging current shedding test results of the SF 6 gas disconnector 25 under test, the movable electrode 21 was re-ignited with positive polarity with respect to the fixed shield 24, and the surge voltage was with positive polarity with respect to the ground. The ground fault voltage was the lowest when it was re-ignited and the surge voltage was positive with respect to the ground. This is because, as shown in FIG. 5, the movable electrode 21 is connected to the reactor 11 on the power source side. In addition, when conducting a test focusing on the ground fault phenomenon caused by the charging current of the SF 6 gas disconnector or the restriking surge of the disconnector, it is sufficient to conduct the test focusing on the conditions where the ground fault voltage is the lowest. It is. [Effects of the Invention] According to the present invention, the test can be performed under the conditions where the ground fault voltage is the lowest, so there is no need to change the connection of the disconnector bushing and perform the test as in the past, and therefore the number of steps required for the test can be reduced. We can provide charging current and disconnection test circuits for SF 6 gas disconnectors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は変電所構成の1例を示す単線結線図、
第2図は断路器による充電電流しや断時の負荷側
対地電圧波形図、第3図は第2図のa点での再点
弧現象の時間的拡大図、第4図は供試SF6ガス断
路器の電極構成図、第5図は従来の断路器の充電
電流しや断試験回路の一例を示す概略図、第6図
はこの発明によるSF6ガス断路器の充電電流しや
断試験回路の一実施例の概略図、第7図は断路器
の相間で再点弧するときの火花の説明図である。 21……可動電極、22……可動側シールド、
23……固定電極、24……固定側シールド、2
5……供試SF6断路器、26,27……ブツシン
グ、28……金属容器、29……リーダ、9,1
0……負荷側および電源側コンデンサ、11……
リアクトル、12……変圧器、13……交流電
源、14……補償リアクトル。
Figure 1 is a single-line diagram showing an example of a substation configuration.
Figure 2 is a load-side ground voltage waveform diagram when the charging current is interrupted by a disconnector, Figure 3 is a temporal enlargement of the restriking phenomenon at point a in Figure 2, and Figure 4 is the sample SF. Figure 5 is a schematic diagram showing an example of a conventional charging current disconnection test circuit of the SF6 gas disconnector, and Figure 6 is a diagram showing the charging current disconnection test circuit of the SF6 gas disconnector according to the present invention. FIG. 7, a schematic diagram of an embodiment of the test circuit, is an explanatory diagram of sparks when re-igniting between phases of a disconnector. 21...Movable electrode, 22...Movable side shield,
23...Fixed electrode, 24...Fixed side shield, 2
5... Test SF 6 disconnector, 26, 27... Bushing, 28... Metal container, 29... Leader, 9,1
0...Load side and power supply side capacitors, 11...
Reactor, 12...Transformer, 13...AC power supply, 14...Compensation reactor.

Claims (1)

【特許請求の範囲】[Claims] 1 変圧器の一次側端子に交流電源を接続し、変
圧器の二次側端子に並列に電源側コンデンサを接
続し、この電源側コンデンサの両端子間にリアク
トルと負荷側コンデンサを直列に接続し、接地電
位の金属容器内にSF6ガスとともに固定側シール
ドの内側に固定電極を有し、この固定電極と接離
可能な可動電極およびこの開極時この可動電極を
収納しかつ前記固定側シールドと接離可能な可動
側シールドを有した供試SF6ガス断路器であつ
て、この断路器の可動側と電気的に接続された口
出端子を前記リアクトル側に接続し、前記断路器
の固定側と電気的に接続された口出端子を前記負
荷側コンデンサに接続したSF6ガス断路器の充電
電流しや断試験回路。
1 Connect an AC power source to the primary terminal of the transformer, connect a power supply capacitor in parallel to the secondary terminal of the transformer, and connect a reactor and a load capacitor in series between both terminals of this power supply capacitor. , has a fixed electrode inside the fixed side shield together with SF 6 gas in a metal container at ground potential, a movable electrode that can make contact with and separate from this fixed electrode, and a movable electrode that accommodates this movable electrode when opened, and the fixed side shield. A test SF 6 gas disconnector has a movable side shield that can be connected to and separated from the disconnector, and an outlet terminal electrically connected to the movable side of the disconnector is connected to the reactor side, and the Charging current and disconnection test circuit for an SF 6 gas disconnector in which the output terminal electrically connected to the fixed side is connected to the load side capacitor.
JP12610182A 1982-07-20 1982-07-20 Charging current breakage testing circuit for sf6 gas disconnecting switch Granted JPS5916230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12610182A JPS5916230A (en) 1982-07-20 1982-07-20 Charging current breakage testing circuit for sf6 gas disconnecting switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12610182A JPS5916230A (en) 1982-07-20 1982-07-20 Charging current breakage testing circuit for sf6 gas disconnecting switch

Publications (2)

Publication Number Publication Date
JPS5916230A JPS5916230A (en) 1984-01-27
JPH0457053B2 true JPH0457053B2 (en) 1992-09-10

Family

ID=14926635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12610182A Granted JPS5916230A (en) 1982-07-20 1982-07-20 Charging current breakage testing circuit for sf6 gas disconnecting switch

Country Status (1)

Country Link
JP (1) JPS5916230A (en)

Also Published As

Publication number Publication date
JPS5916230A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
Smeets et al. Switching in electrical transmission and distribution systems
EP0122728B1 (en) Gas-insulated switching apparatus
Chernoskutov et al. Analysis of SF6 Circuit Breakers Failures Related to Missing Current Zero-Part I
Toda et al. Development of 800 kV gas-insulated switchgear
JPH0457053B2 (en)
Salceanu et al. Numerical Simulations and Experimental Tests for the Analysis of Capacitive Load Switching in Power Circuits
Pramana et al. Simulation Study of Circuit Breaker Failure on Extra High Voltage Reactor
Marin et al. Study of Overvoltages at the Extinguishing Coil Disconnection from Medium Voltage Networks in Stabilized Earthing Regime
JPH0560062B2 (en)
JPH0425505B2 (en)
JPH0361295B2 (en)
Backman et al. Passive DC neutral breaker for bipolar HVDC schemes
Bojic A high-speed earthing switch in gas-insulated metal enclosed switchgear
Kynast et al. Switching of capacitive currents by disconnectors in gas insulated substations
Adhikari et al. Multiple prestriking phenomenon in high voltage transmission substations: Modeling and simulation
Smeets et al. Development of synthetic test methods for high-voltage circuit breakers 145–1200 kV
Pundkar et al. An Investigation of Circuit Breaker Switching Transients for Shunt Reactor
JPS5933717A (en) Charging current breakage testing circuit for sf6 gas interrupter
van der Sluis et al. A three phase synthetic test-circuit for metal-enclosed circuit-breakers
JPS5933715A (en) Charging current breakage testing circuit for sf6 gas interrupter
JPH0425506B2 (en)
Smeets et al. Realization of transient recovery voltages for ultra high voltage circuit breakers in testing
Smeets et al. Testing of 800 and 1200 kV class circuit breakers
JPS5918530A (en) Charging current breakage testing device for disconnecting switch
JPS5928816A (en) Gas insulated substation