JPH0555567A - Manufacture of tft matrix - Google Patents
Manufacture of tft matrixInfo
- Publication number
- JPH0555567A JPH0555567A JP21402391A JP21402391A JPH0555567A JP H0555567 A JPH0555567 A JP H0555567A JP 21402391 A JP21402391 A JP 21402391A JP 21402391 A JP21402391 A JP 21402391A JP H0555567 A JPH0555567 A JP H0555567A
- Authority
- JP
- Japan
- Prior art keywords
- film
- drain
- source
- gate
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,ラップトップパソコン
や壁掛けTVとして用いられるTFTマトリクス型カラ
ー液晶パネルのTFTマトリクスの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a TFT matrix of a TFT matrix type color liquid crystal panel used as a laptop personal computer or a wall TV.
【0002】TFTマトリクスは,その表示品質はCR
T代替としての性能を確保できそうなことが認知されつ
つあるが,断線や短絡,TFT特性分布などその製造工
程中の歩留りが産業上重要な問題となる。The display quality of the TFT matrix is CR.
Although it is being recognized that the performance as a T-substitute can be secured, the yield during the manufacturing process such as disconnection, short circuit, and TFT characteristic distribution becomes an important industrial problem.
【0003】工程中の静電気は短絡,TFT特性分布な
どに大きな影響を及ぼし,特にTFT部が素子形態をな
した後の工程選択が重要である。Static electricity during the process has a great influence on a short circuit, a TFT characteristic distribution and the like, and it is particularly important to select a process after the TFT section has formed a device form.
【0004】[0004]
【従来の技術】図4,図5は従来例の説明図であり,左
側に平面透視図,右側は平面透視図のA─A’ラインで
カットした断面図を工程順に模式的に示してある。2. Description of the Related Art FIGS. 4 and 5 are explanatory views of a conventional example, in which a left side is a plan perspective view and a right side is a cross sectional view cut along a line AA 'of the plan perspective view in the order of steps. ..
【0005】図において,15は透明絶縁基板,16はゲー
トバス,17はゲート電極,18はゲート絶縁膜,19は半導
体活性層,20はチャネル保護膜,21はポジ型レジスト
膜,22は半導体接合層,23はソース・ドレイン金属膜,
24はソース電極, 25はドレイン電極, 26はドレインバス
材料, 27はドレインバス,28は浸食である。In the figure, 15 is a transparent insulating substrate, 16 is a gate bus, 17 is a gate electrode, 18 is a gate insulating film, 19 is a semiconductor active layer, 20 is a channel protective film, 21 is a positive resist film, and 22 is a semiconductor. Bonding layer, 23 is source / drain metal film,
24 is the source electrode, 25 is the drain electrode, 26 is the drain bath material, 27 is the drain bath, and 28 is erosion.
【0006】従来,TFTのゲート電極17とソース・ド
レイン電極24,25 の合わせ精度を大面積の透明絶縁基板
15においても確保するために用いていた基板裏面からの
露光法による自己整合型TFTでは,図4に示すように
半導体接合層22とソース・ドレイン金属膜23をリフトオ
フし易い厚さの成膜にとどめ,リフトオフし,ソース電
極24, ドレイン電極25の形状にエッチング加工してか
ら,改めて,ドレインバス27の形成を行う方法,或い
は,図5に示すように,半導体接合層22,ソース・ドレ
イン金属膜23に引続き,ドレインバス材料26まで成膜し
た後に,リフトオフする方法があった。Conventionally, the alignment accuracy of the gate electrode 17 of the TFT and the source / drain electrodes 24, 25 is large by using a transparent insulating substrate
In the self-alignment type TFT by the exposure method from the back surface of the substrate, which was used to secure 15 as well, the semiconductor junction layer 22 and the source / drain metal film 23 are formed to a thickness that facilitates lift-off as shown in FIG. Retaining, lift-off, etching processing into the shape of the source electrode 24 and the drain electrode 25, and then forming the drain bus 27 again, or, as shown in FIG. 5, the semiconductor junction layer 22, the source / drain metal. Following the film 23, the drain bus material 26 was formed, and then lift-off was performed.
【0007】[0007]
【発明が解決しようとする課題】従って,図4に示す従
来の第1の方法では,基板上に数十万〜数百万個配置さ
れているTFTの各ソース・ドレイン電極24,25 が分離
された後にドレインバス材料26としてのアルミニウム(A
l)の全面成膜をスパッタ法, 或いは, 電子ビーム蒸着法
により行うので, スパッタ, 電子ビーム蒸着等の静電気
を伴う成膜法を用いた場合に起こるTFT特性のしきい
値シフトや耐圧劣化等の問題が生じる。Therefore, according to the first conventional method shown in FIG. 4, the source / drain electrodes 24 and 25 of the TFTs arranged on the substrate are separated from each other by hundreds of thousands to millions. Aluminum as drain bath material 26 (A
l) The film formation on the entire surface is performed by the sputtering method or the electron beam evaporation method. Therefore, the threshold value shift of TFT characteristics and the breakdown voltage deterioration that occur when the film formation method with static electricity such as sputtering and electron beam evaporation are used. Problems arise.
【0008】一方,Alの成膜法に抵抗加熱蒸着法を用い
ると,静電気の影響は避けられるが,生産性が悪く,ま
た,膜質の再現性が悪いといった問題がある。そのた
め,静電気の発生をともなうけれども,しかし,生産性
の良い従来の第2の成膜法をTFTのソース・ドレイン
電極の分離成形の前に用いようとすると,図5に示すよ
うに,ドレインバス材料を含む厚い膜22,23,26をリフト
オフするため,工程が不安定となり,また,リフトオフ
時に用いるレジスト剥離液によって,リフトオフエッジ
部のドレインバス材料26のAlが浸食28されるという問題
点がある。On the other hand, when the resistance heating vapor deposition method is used as the Al film forming method, the influence of static electricity can be avoided, but there are problems in that the productivity is poor and the reproducibility of the film quality is poor. Therefore, if the conventional second film forming method, which is accompanied by the generation of static electricity but has good productivity, is used before the separate molding of the source / drain electrodes of the TFT, as shown in FIG. Since the thick films 22, 23, and 26 containing the material are lifted off, the process becomes unstable, and Al of the drain bus material 26 at the lift-off edge is eroded 28 by the resist stripping solution used during the lift-off. is there.
【0009】本発明は,上記の点を鑑み,静電気をとも
なうが, しかし, 生産性の良い従来の成膜法を用いなが
ら,TFT特性のしきい値シフトや耐圧劣化等の問題が
なく,プロセスマージンも大きいTFTマトリクスの製
造工程を提供することを目的とする。In view of the above points, the present invention is accompanied by static electricity. However, while using the conventional film forming method with good productivity, there is no problem such as threshold shift of TFT characteristics and deterioration of breakdown voltage, and the process It is an object to provide a manufacturing process of a TFT matrix having a large margin.
【0010】[0010]
【課題を解決するための手段】図1,図2,図3は本発
明の原理説明図であり,左側に平面透視図,右側は平面
透視図のA─A’ラインでカットした断面図を工程順に
模式的に示してある。1, 2 and 3 are explanatory views of the principle of the present invention, in which a left side is a plane perspective view and a right side is a sectional view taken along line AA 'of the plane perspective view. It is schematically shown in the order of steps.
【0011】図において,1は透明絶縁基板,2はゲー
トバス,3はゲート電極,4はゲート絶縁膜,5は半導
体活性層,6はチャネル保護膜,7はポジ型レジスト
膜,8は半導体接合層,9はソース・ドレイン金属膜,
10はドレインバス材料, 11はレジスト膜, 12はドレイン
バス, 13はソース電極, 14はドレイン電極である。In the figure, 1 is a transparent insulating substrate, 2 is a gate bus, 3 is a gate electrode, 4 is a gate insulating film, 5 is a semiconductor active layer, 6 is a channel protective film, 7 is a positive resist film, and 8 is a semiconductor. Bonding layer, 9 is a source / drain metal film,
10 is a drain bus material, 11 is a resist film, 12 is a drain bus, 13 is a source electrode, and 14 is a drain electrode.
【0012】上記の問題点を解決するためには, マトリ
クス構成とするためのソース・ドレイン電極及びドレイ
ンバス材料を半導体接合層が基板表面に全面,或いは,
ほぼ全面にわたって残した状態で成膜し,後にパターニ
ング,エッチングする工程を採用することで,静電気を
逃がすのに十分な導電率を有する半導体接合層が静電気
を除去する効果を持つ。In order to solve the above-mentioned problems, the source / drain electrodes and the drain bus material for forming the matrix structure are formed on the entire surface of the substrate by the semiconductor junction layer, or
By adopting a step of forming a film while leaving almost all over the surface, and then performing patterning and etching, the semiconductor bonding layer having sufficient conductivity to release static electricity has an effect of removing static electricity.
【0013】また,第一層目となる半導体接合層の成膜
時は極弱いパワーで成膜可能なため,静電気の影響がな
いことを利用できる。即ち,本発明の目的は,透明絶縁
基板上に不透明金属からなるゲート電極,ゲート絶縁
膜,半導体活性層,接合層半導体を含むソース・ドレイ
ン電極の順に膜形成され,ゲート電極上部にチャネル保
護膜を有する下ゲートスタガー型TFTをスイッチング
素子とするTFTマトリクス半導体装置の製造方法にお
いて,図1(a)に示すように,透明絶縁基板1上に,
ゲートバス2に接続したゲート電極3を不透明金属によ
り形成する工程と,図1(b)に示すように,該透明絶
縁基板1上全面に,該ゲート電極3を覆って,ゲート絶
縁膜4,半導体活性層5,チャネル保護膜6を順次積層
する工程と,図1(c)に示すように,該チャネル保護
膜6上全面にポジ型レジスト膜7を塗布し, 該ゲート電
極3をマスクとして, 該透明絶縁基板1の裏面より該ポ
ジ型レジスト膜7の全面露光を行い, 現像後, 形成され
たポジ型レジスト膜7パターンをマスクとして該チャネ
ル保護膜6のエッチングを行う工程と,図2(d)に示
すように,該透明絶縁基板1上全面に,該半導体接合層
8,ソース・ドレイン金属膜9,ドレインバス材料10を
順次積層する工程と,図2(e)に示すように,レジス
ト膜11をマスクとして, 該ドレインバス材料10をエッチ
ングする工程と,図2(f)に示すように,該ポジ型レ
ジスト膜7,及びレジスト膜11を除去して, 該チャネル
保護膜6上に成膜した該半導体接合層8,ソース・ドレ
イン金属膜9をリフトオフし,該ソース・ドレイン金属
膜9をパターニングして, ソース電極12, 並びに, ドレ
イン電極13を形成する工程とを含むことにより,また,
本発明の第2の方法では,図1(a)から図1(c)ま
での工程は,第1の発明と全く同様であるが,続いて,
図3(g)に示すように,該透明絶縁基板1上全面に,
該半導体接合層8,ソース・ドレイン金属膜9を順次,
積層する工程と,図3(h)に示すように,該ポジ型レ
ジスト膜7を除去して, 該チャネル保護膜6上に成膜し
た該半導体接合層8,ソース・ドレイン金属膜9をリフ
トオフし,該透明絶縁記1上全面にドレインバス材料10
を被覆する工程と,図3(i)に示すように,レジスト
膜11をマスクとして, 該ドレインバス材料10をエッチン
グし, 引続きエッチングマスクのレジスト膜を図示して
いないが,同様に,該ソース・ドレイン金属膜9をパタ
ーニングして, ソース電極13, 並びに, ドレイン電極14
を形成する工程とを含むことにより,更に,半導体活性
層5が 2,000Å以下の厚さのa-Si, また, 半導体接合層
8が2,000Å以下の厚さの燐ドープa-Siからなることに
より, ドレインバス材料10がAl, または, Alを主成分と
する金属膜であることにより達成される。Further, since the semiconductor junction layer which is the first layer can be formed with extremely weak power, there is no influence of static electricity. That is, an object of the present invention is to form a gate electrode made of an opaque metal, a gate insulating film, a semiconductor active layer, and a source / drain electrode containing a junction layer semiconductor on a transparent insulating substrate in this order, and a channel protective film on the gate electrode. In a method of manufacturing a TFT matrix semiconductor device having a lower gate stagger type TFT having a switching element as a switching element, as shown in FIG.
The step of forming the gate electrode 3 connected to the gate bus 2 with an opaque metal, and as shown in FIG. 1B, the gate insulating film 4 is formed on the entire surface of the transparent insulating substrate 1 so as to cover the gate electrode 3. A step of sequentially laminating the semiconductor active layer 5 and the channel protection film 6, and as shown in FIG. 1C, a positive resist film 7 is applied on the entire surface of the channel protection film 6, and the gate electrode 3 is used as a mask. Then, the whole surface of the positive type resist film 7 is exposed from the rear surface of the transparent insulating substrate 1, and after development, the channel protective film 6 is etched by using the formed positive type resist film 7 pattern as a mask. As shown in FIG. 2D, a step of sequentially laminating the semiconductor junction layer 8, the source / drain metal film 9, and the drain bus material 10 on the entire surface of the transparent insulating substrate 1, and as shown in FIG. , Using the resist film 11 as a mask, 2 (f), the positive resist film 7 and the resist film 11 are removed, and the semiconductor bonding layer 8 formed on the channel protection film 6 is removed. The step of lifting off the source / drain metal film 9 and patterning the source / drain metal film 9 to form the source electrode 12 and the drain electrode 13;
In the second method of the present invention, the steps from FIG. 1 (a) to FIG. 1 (c) are exactly the same as those of the first invention, but subsequently,
As shown in FIG. 3 (g), on the entire surface of the transparent insulating substrate 1,
The semiconductor junction layer 8 and the source / drain metal film 9 are sequentially formed,
As shown in FIG. 3H, the positive resist film 7 is removed and the semiconductor junction layer 8 and the source / drain metal film 9 formed on the channel protection film 6 are lifted off. The drain bus material 10 on the entire surface of the transparent insulation sheet 1.
As shown in FIG. 3I, the drain bus material 10 is etched by using the resist film 11 as a mask, and the resist film of the etching mask is not shown. -Drain metal film 9 is patterned to form source electrode 13 and drain electrode 14
In addition, the semiconductor active layer 5 is made of a-Si having a thickness of 2,000 Å or less, and the semiconductor junction layer 8 is made of phosphorus-doped a-Si having a thickness of 2,000 Å or less. Thus, the drain bus material 10 is made of Al or a metal film containing Al as a main component.
【0014】[0014]
【作用】本発明では,極弱いパワーで成膜可能で,しか
も,静電気を逃すに十分な導電率を有する半導体接合層
を静電気除去膜として利用することにより,ソース・ド
レイン及び,ドレインバス材料の成膜に静電気を伴うが
生産性の良い方法を用いながら,TFT特性のしきい値
シフトや耐圧劣化等の問題がなくプロセスマージンも大
きいTFTマトリクスの製造工程を提供できる。In the present invention, the semiconductor junction layer, which can be formed with extremely weak power and has a sufficient conductivity to release static electricity, is used as the static electricity removing film, so that the source / drain and drain bus materials can be formed. It is possible to provide a manufacturing process of a TFT matrix having a large process margin without problems such as threshold shift of TFT characteristics and deterioration of withstand voltage while using a method with good productivity, which involves static electricity in film formation.
【0015】[0015]
【実施例】図1, 図2は本発明の原理説明図兼第一の実
施例の工程順模式断面図,図3は本発明の原理説明図兼
第二の実施例の工程順模式断面図である。1 and 2 are explanatory views of the principle of the present invention and schematic sectional views in order of steps of the first embodiment, and FIG. 3 is an explanatory view of principle of the present invention and schematic sectional views in order of process of the second embodiment. Is.
【0016】本発明の第1の実施例について,図1,図
2により工程順に説明する。図1(a)に示すように,
透明ガラス基板1上に, チタン(Ti)膜を800 Åの厚さに
スパッタし, パターニングして, ゲートバス2に接続し
たゲート電極3を形成する。A first embodiment of the present invention will be described in the order of steps with reference to FIGS. As shown in FIG. 1 (a),
A titanium (Ti) film is sputtered on the transparent glass substrate 1 to a thickness of 800 Å and patterned to form the gate electrode 3 connected to the gate bus 2.
【0017】図1(b)に示すように,透明ガラス基板
1上全面に,ロードロック型プラズマCVD装置を用
い,まず加熱チャンバでチャンバ内にセットした透明ガ
ラス基板1をランプヒーターにより基板温度300 ℃に加
熱し,次に第一成膜室に透明ガラス基板1を移し,各プ
ロセスガスの容器から,シラン(SiH4) 50 sccm, アンモ
ニア(NH3) 100 sccm, 窒素(N2) 500 sccm, 水素(H2) 3
00 sccm の四元系プロセスガスをガス導入口よりガスシ
ャワーを通してチャンバ内に導入し, 周波数13.56MHz,
出力400W,チャンバ6内圧力 100Paの条件で,透明ガ
ラス基板1上にゲート絶縁膜4として窒化シリコン(Si
N:H)膜を,3,000 Åの厚さに形成する。As shown in FIG. 1 (b), a transparent glass substrate 1 is set on the entire surface of the transparent glass substrate 1 by using a load-lock type plasma CVD apparatus. Then, the transparent glass substrate 1 is transferred to the first film forming chamber, and silane (SiH 4 ) 50 sccm, ammonia (NH 3 ) 100 sccm, nitrogen (N 2 ) 500 sccm are transferred from each process gas container. , Hydrogen (H 2 ) 3
00 sccm of quaternary process gas was introduced from the gas inlet through the gas shower into the chamber, and the frequency was 13.56 MHz.
Under the conditions of an output of 400 W and an internal pressure of chamber 6 of 100 Pa, silicon nitride (Si
N: H) film is formed to a thickness of 3,000 Å.
【0018】次に,第2成膜室に透明ガラス基板1を移
し,半導体活性層5としてアモルファスシリコン(a-Si)
層を基板温度 250℃で,各プロセスガスの容器から,Si
H4200 sccm, H2 800sccm の二元系プロセスガスをガス
導入口よりガスシャワーを通してチャンバ内に導入し,
周波数13.56MHz, 出力 80 W,チャンバ内圧力 100Paの
条件で,透明ガラス基板1上に 150 Åの厚さに形成す
る。Next, the transparent glass substrate 1 is transferred to the second film forming chamber, and amorphous silicon (a-Si) is used as the semiconductor active layer 5.
The layer is formed from the container of each process gas at
A binary process gas of H 4 200 sccm and H 2 800 sccm was introduced into the chamber through the gas shower from the gas inlet.
A thickness of 150 Å is formed on the transparent glass substrate 1 under the conditions of a frequency of 13.56 MHz, an output of 80 W and a chamber pressure of 100 Pa.
【0019】更に, 第3成膜室に透明ガラス基板1を移
し,チャネル保護膜6として, 基板温度 200℃で, 各プ
ロセスガスの容器から,SiH4 50sccm, 笑気(N20)2,000
sccmの二元系プロセスガスをガス導入口よりガスシャワ
ーを通してチャンバ内に導入し, 周波数13.56MHz, 出力
400W,チャンバ内圧力 100Paの条件で,透明ガラス基
板1上にSiO2膜を1,300 Åの厚さに積層する。Further, the transparent glass substrate 1 is transferred to the third film forming chamber, and as the channel protective film 6, at a substrate temperature of 200 ° C., SiH 4 50 sccm, laughter (N 2 0) 2,000 from each process gas container.
The binary process gas of sccm was introduced into the chamber through the gas shower from the gas inlet, and the frequency was 13.56MHz, output.
Under the conditions of 400 W and chamber pressure of 100 Pa, a SiO 2 film is laminated on the transparent glass substrate 1 to a thickness of 1,300 Å.
【0020】図1(c)に示すように,チャネル保護膜
6上全面にポジ型レジスト膜7を塗布し, ゲート電極3
をマスクとして, 透明ガラス基板1の裏面よりポジ型レ
ジスト膜7の全面露光を行い, 現像後, 形成されたポジ
型レジスト膜7パターンをマスクとしてチャネル保護膜
6のパターンエッチングを行う。As shown in FIG. 1C, a positive resist film 7 is applied on the entire surface of the channel protection film 6, and the gate electrode 3 is formed.
The entire surface of the positive resist film 7 is exposed from the rear surface of the transparent glass substrate 1 using the mask as a mask, and after development, pattern etching of the channel protective film 6 is performed using the formed positive resist film 7 pattern as a mask.
【0021】図2(d)に示すように,透明ガラス基板
1上全面に,半導体接合層8として燐ドープa-Si層をロ
ードロックプラズマCVD装置を用い,加熱室で基板温
度120 ℃にチャンバ内にセットした透明ガラス基板1を
ランプヒータにより加熱し,次に成膜室に移し, 各プロ
セスガスの容器から,SiH4 200sccm, H2 800sccm,PH3 3
sccmの三元系プロセスガスをガス導入口よりガスシャワ
ーを通してチャンバ内に導入し, 周波数13.56MHz,出力2
00W,チャンバ内圧力700mTorrの条件で,透明ガラス基
板1上に500 Åの厚さに形成し, ソース・ドレイン金属
膜9としてTi膜を500 Åの厚さに, ドレインバス材料10
としてAl膜を6,000 Åの厚さにDCスパッタにより順次
積層する。As shown in FIG. 2 (d), a phosphorus-doped a-Si layer is used as a semiconductor bonding layer 8 on the entire surface of the transparent glass substrate 1 using a load lock plasma CVD apparatus, and the substrate temperature is set to 120 ° C. in a heating chamber. The transparent glass substrate 1 set inside is heated by a lamp heater and then moved to the film forming chamber. From each process gas container, SiH 4 200sccm, H 2 800sccm, PH 3 3
The sccm ternary process gas was introduced into the chamber through the gas shower from the gas inlet, and the frequency was 13.56 MHz and the output was 2
Under the conditions of 00 W and chamber pressure of 700 mTorr, a 500 Å thickness was formed on the transparent glass substrate 1, a Ti film was formed as a source / drain metal film 9 to a 500 Å thickness, and a drain bus material 10 was formed.
As a result, an Al film is sequentially laminated by DC sputtering to a thickness of 6,000 Å.
【0022】なお,プラズマCVDの成膜中加熱は,成
膜室に常時設定しているシーズヒーターで行う。図2
(e)に示すように,レジスト膜11をマスクとして, ド
レインバス材料10をパターンエッチングしてドレインバ
ス12を形成する。Heating during film formation in plasma CVD is performed by a sheath heater which is always set in the film formation chamber. Figure 2
As shown in (e), the drain bus material 10 is pattern-etched using the resist film 11 as a mask to form the drain bus 12.
【0023】図2(f)に示すように,該ポジ型レジス
ト膜7,及びレジスト膜11を除去して, チャネル保護膜
6上に成膜した半導体接合層8,ソース・ドレイン金属
膜9をリフトオフし,該ソース・ドレイン金属膜9をパ
ターニングして, ソース電極13, 並びに, ドレイン電極
14を形成する。As shown in FIG. 2F, the positive resist film 7 and the resist film 11 are removed, and the semiconductor junction layer 8 and the source / drain metal film 9 formed on the channel protection film 6 are removed. The source / drain metal film 9 is lifted off to pattern the source / drain metal film 9.
Forming 14
【0024】次に,本発明の第2の実施例について, 図
3により説明する。最初の図1(a)から図1(c)ま
での工程は,本発明の第1の実施例と全く同様であるた
め,省略する。Next, a second embodiment of the present invention will be described with reference to FIG. The first steps from FIG. 1 (a) to FIG. 1 (c) are the same as those in the first embodiment of the present invention, and will be omitted.
【0025】図1(c)の工程に続いて,図3(g)に
示すように,透明絶縁基板1上全面に,半導体接合層8
として, 燐ドープa-Si層を500 Åの厚さに,ソース・ド
レイン金属膜9としてTi膜を500 Åの厚さに第1の実施
例と同様な方法で順次, 積層する。After the step of FIG. 1C, as shown in FIG. 3G, the semiconductor bonding layer 8 is formed on the entire surface of the transparent insulating substrate 1.
As a result, a phosphorus-doped a-Si layer having a thickness of 500 Å and a Ti film as a source / drain metal film 9 having a thickness of 500 Å are sequentially laminated in the same manner as in the first embodiment.
【0026】図3(h)に示すように,ポジ型レジスト
膜7を除去して,チャネル保護膜6上に成膜した半導体
接合層8,ソース・ドレイン金属膜9をリフトオフし,
透明ガラス基板1上全面にドレインバス材料10としてAl
膜を6,000 Åの厚さにスパッタ法, 或いは, 電子ビーム
蒸着法により被覆する。As shown in FIG. 3H, the positive resist film 7 is removed, and the semiconductor junction layer 8 and the source / drain metal film 9 formed on the channel protection film 6 are lifted off.
Al as the drain bus material 10 on the entire surface of the transparent glass substrate 1
The film is coated to a thickness of 6,000Å by sputtering or electron beam evaporation.
【0027】図3(i)に示すように,レジスト膜11を
マスクとして, ドレインバス材料10をエッチングし, ソ
ース・ドレイン金属膜9をパターニングして, ソース電
極13並びに, ドレイン電極14を形成する。As shown in FIG. 3I, using the resist film 11 as a mask, the drain bus material 10 is etched and the source / drain metal film 9 is patterned to form a source electrode 13 and a drain electrode 14. ..
【0028】[0028]
【発明の効果】以上説明したように, 本発明によれば,
ソース・ドレイン及びドレインバス材料の成膜に静電気
を伴うが生産性の良い方法を用い,TFT特性のしきい
値シフトや耐圧劣化等の問題がなく,プロセスマージン
も大きいTFTマトリクスの製造方法を提供でき,TF
Tマトリクスの品質向上に寄与するところが大きい。As described above, according to the present invention,
Providing a method for manufacturing a TFT matrix that has a large process margin without problems such as threshold shift of TFT characteristics and deterioration of breakdown voltage by using a method with good productivity that accompanies static electricity in film formation of source / drain and drain bus materials Yes, TF
It greatly contributes to the quality improvement of the T matrix.
【図1】 本発明の原理説明図(その1)FIG. 1 is an explanatory diagram of the principle of the present invention (No. 1)
【図2】 本発明の原理説明図(その2)FIG. 2 is an explanatory diagram of the principle of the present invention (No. 2)
【図3】 本発明の原理説明図(その3)FIG. 3 is an explanatory diagram of the principle of the present invention (No. 3)
【図4】 従来例の説明図(その1)FIG. 4 is an explanatory diagram of a conventional example (No. 1)
【図5】 従来例の説明図(その2)FIG. 5 is an explanatory diagram of a conventional example (No. 2)
1 透明絶縁基板 2 ゲートバス 3 ゲート電極 4 ゲート絶縁膜 5 半導体活性層 6 チャネル保護膜 7 ポジ型レジスト膜 8 半導体接合層 9 ソース・ドレイン金属膜 10 ドレインバス材料 11 レジスト膜 12 ドレインバス 13 ソース電極 14 ドレイン電極 1 transparent insulating substrate 2 gate bus 3 gate electrode 4 gate insulating film 5 semiconductor active layer 6 channel protective film 7 positive resist film 8 semiconductor junction layer 9 source / drain metal film 10 drain bus material 11 resist film 12 drain bus 13 source electrode 14 Drain electrode
フロントページの続き (72)発明者 村田 祐司 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 渡部 純一 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 佐藤 精威 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内Front page continuation (72) Inventor Yuji Murata 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa, Fujitsu Limited (72) Inventor Junichi Watanabe 1015, Kamedotachu, Nakahara-ku, Kawasaki, Kanagawa Prefecture (72) Invention Seito Sato 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited
Claims (4)
ート電極,ゲート絶縁膜,半導体活性層,接合層半導体
を含むソース・ドレイン電極の順に膜形成され,ゲート
電極上部にチャネル保護膜を有する下ゲートスタガー型
薄膜トランジスタ(TFT)をスイッチング素子とする
TFTマトリクス半導体装置の製造方法において, 透明絶縁基板(1) 上に, ゲートバス(2) に接続したゲー
ト電極(3) を不透明金属により形成する工程と, 該透明絶縁基板(1) 上全面に,該ゲート電極(3) を覆っ
て,ゲート絶縁膜(4),半導体活性層(5),チャネル保護膜
(6)を順次積層する工程と, 該チャネル保護膜(6) 上全面にポジ型レジスト膜(7) を
塗布し, 該ゲート電極(3) をマスクとして, 該透明絶縁
基板(1) の裏面より該ポジ型レジスト膜(7) の全面露光
を行い, 現像後, 形成されたポジ型レジスト膜(7) パタ
ーンをマスクとして該チャネル保護膜(6) のエッチング
を行う工程と, 該透明絶縁基板(1) 上全面に,該半導体接合層(8), ソ
ース・ドレイン金属膜(9),ドレインバス材料(10)を順
次, 積層する工程と, レジスト膜(11)をマスクとして, 該ドレインバス材料(1
0)をエッチングする工程と, 該レジスト膜(11)と同時に,該ポジ型レジスト膜(7) を
除去して, 該チャネル保護膜(6) 上に成膜した該半導体
接合層(8),ソース・ドレイン金属膜(9) をリフトオフ
し,該ソース・ドレイン金属膜(9) をパターニングし
て, ソース電極(13), 並びに, ドレイン電極(14)を形成
する工程とを含むことを特徴とするTFTマトリクスの
製造方法。1. A gate electrode made of an opaque metal, a gate insulating film, a semiconductor active layer, a source / drain electrode containing a junction layer semiconductor are sequentially formed on a transparent insulating substrate, and a channel protective film is formed on the gate electrode. In a method of manufacturing a TFT matrix semiconductor device using a gate stagger type thin film transistor (TFT) as a switching element, a step of forming a gate electrode (3) connected to a gate bus (2) with an opaque metal on a transparent insulating substrate (1) And a gate insulating film (4), a semiconductor active layer (5), a channel protective film covering the entire surface of the transparent insulating substrate (1) covering the gate electrode (3).
A step of sequentially stacking (6), a positive resist film (7) is applied on the entire surface of the channel protective film (6), and the back surface of the transparent insulating substrate (1) is formed by using the gate electrode (3) as a mask. Exposing the entire surface of the positive resist film (7), and developing and then etching the channel protective film (6) using the formed positive resist film (7) pattern as a mask; and the transparent insulating substrate. (1) A step of sequentially laminating the semiconductor junction layer (8), the source / drain metal film (9), and the drain bus material (10) on the entire upper surface, and using the resist film (11) as a mask, the drain bus Material (1
(0) and the resist film (11), the positive resist film (7) is removed at the same time, and the semiconductor bonding layer (8) formed on the channel protective film (6), A step of lifting off the source / drain metal film (9) and patterning the source / drain metal film (9) to form a source electrode (13) and a drain electrode (14). Method for manufacturing TFT matrix.
ート電極,ゲート絶縁膜,半導体活性層,接合層半導体
を含むソース・ドレイン電極の順に膜形成され,ゲート
電極上部にチャネル保護膜を有する下ゲートスタガー型
薄膜トランジスタ(TFT)をスイッチング素子とする
TFTマトリクス半導体装置の製造方法において, 透明絶縁基板(1) 上に, ゲートバス(2) に接続したゲー
ト電極(3) を不透明金属により形成する工程と, 該透明絶縁基板(1) 上全面に,該ゲート電極(3) を覆っ
て,ゲート絶縁膜(4),半導体活性層(5),チャネル保護膜
(6)を順次, 積層する工程と, 該チャネル保護膜(6) 上全面にポジ型レジスト膜(7) を
塗布し, 該ゲート電極(3) をマスクとして, 該透明絶縁
基板(1) の裏面より該ポジ型レジスト膜(7) の全面露光
を行い, 現像後, 形成されたポジ型レジスト膜(7) パタ
ーンをマスクとして該チャネル保護膜(6) のエッチング
を行う工程と, 該透明絶縁基板(1) 上全面に,該半導体接合層(8), ソ
ース・ドレイン金属膜(9) を順次, 積層する工程と, 該ポジ型レジスト膜(7) を除去して, 該チャネル保護膜
(6) 上に成膜した該半導体接合層(8), ソース・ドレイ
ン金属膜(9) をリフトオフし,該透明絶縁基板(1) 上全
面にドレインバス材料(10)を被覆する工程と, レジスト膜(11)をマスクとして, 該ドレインバス材料(1
0)をエッチングし, 該ソース・ドレイン金属膜(9) をパ
ターニングして, ソース電極(13), 並びに, ドレイン電
極(14)を形成する工程とを含むことを特徴とするTFT
マトリクスの製造方法。2. A gate electrode made of an opaque metal, a gate insulating film, a semiconductor active layer, and a source / drain electrode containing a junction layer semiconductor are sequentially formed on a transparent insulating substrate, and a channel protective film is formed on the gate electrode. In a method of manufacturing a TFT matrix semiconductor device using a gate stagger type thin film transistor (TFT) as a switching element, a step of forming a gate electrode (3) connected to a gate bus (2) with an opaque metal on a transparent insulating substrate (1) And a gate insulating film (4), a semiconductor active layer (5), a channel protective film covering the entire surface of the transparent insulating substrate (1) covering the gate electrode (3).
(6) are sequentially laminated, a positive resist film (7) is applied on the entire surface of the channel protective film (6), and the gate electrode (3) is used as a mask to form a transparent insulating substrate (1). The entire surface of the positive type resist film (7) is exposed from the back surface, and after development, the channel protection film (6) is etched using the formed positive type resist film (7) pattern as a mask, and the transparent insulating film. The step of sequentially stacking the semiconductor junction layer (8) and the source / drain metal film (9) on the entire surface of the substrate (1) and removing the positive type resist film (7) to form the channel protective film.
(6) A step of lifting off the semiconductor junction layer (8) and the source / drain metal film (9) formed on the transparent insulating substrate (1) to cover the entire surface of the transparent insulating substrate (1) with a drain bus material (10), Using the resist film (11) as a mask, the drain bus material (1
0) is etched and the source / drain metal film (9) is patterned to form a source electrode (13) and a drain electrode (14).
Matrix manufacturing method.
さのアモルファスシリコン, また, 前記半導体接合層
(8) が200nm以下の厚さの燐ドープアモルファスシリコ
ンからなることを特徴とする請求項1或いは2記載のT
FTマトリクスの製造方法。3. The semiconductor active layer (5) is amorphous silicon having a thickness of 200 nm or less, and the semiconductor bonding layer.
3. The T according to claim 1, wherein (8) is made of phosphorus-doped amorphous silicon having a thickness of 200 nm or less.
Method of manufacturing FT matrix.
ム, または, アルミニウムを主成分とする金属膜である
ことを特徴とする請求項1或いは2記載のTFTマトリ
クスの製造方法。4. The method of manufacturing a TFT matrix according to claim 1, wherein the drain bus material (10) is aluminum or a metal film containing aluminum as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21402391A JPH0555567A (en) | 1991-08-27 | 1991-08-27 | Manufacture of tft matrix |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21402391A JPH0555567A (en) | 1991-08-27 | 1991-08-27 | Manufacture of tft matrix |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0555567A true JPH0555567A (en) | 1993-03-05 |
Family
ID=16648997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21402391A Withdrawn JPH0555567A (en) | 1991-08-27 | 1991-08-27 | Manufacture of tft matrix |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0555567A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6552757B1 (en) | 1999-10-19 | 2003-04-22 | Sharp Kabushiki Kaisha | Liquid crystal display element and method for manufacturing the same |
US7131735B2 (en) | 1998-06-04 | 2006-11-07 | Seiko Epson Corporation | Light source device, optical device, and liquid-crystal display device |
US8657467B2 (en) | 2004-09-24 | 2014-02-25 | Epistar Corporation | Illumination apparatus |
-
1991
- 1991-08-27 JP JP21402391A patent/JPH0555567A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7131735B2 (en) | 1998-06-04 | 2006-11-07 | Seiko Epson Corporation | Light source device, optical device, and liquid-crystal display device |
US6552757B1 (en) | 1999-10-19 | 2003-04-22 | Sharp Kabushiki Kaisha | Liquid crystal display element and method for manufacturing the same |
US8657467B2 (en) | 2004-09-24 | 2014-02-25 | Epistar Corporation | Illumination apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100898694B1 (en) | Tft lcd array substrate and manufacturing method thereof | |
US4746628A (en) | Method for making a thin film transistor | |
JP2530990B2 (en) | Method of manufacturing thin film transistor matrix | |
US10663820B2 (en) | Display substrate, its manufacturing method, and display device | |
US20100208156A1 (en) | Tft-lcd array substrate and method of manufacturing the same | |
US7790582B2 (en) | Method for fabricating polysilicon liquid crystal display device | |
US7388227B2 (en) | Method for fabricating liquid crystal display device using two masks | |
JPH09197435A (en) | Liquid crystal display device and its production | |
US6335781B2 (en) | Method for manufacturing an LCD in which a photoresist layer is at least 1.2 times thicker than the passivation layer | |
JPH0555567A (en) | Manufacture of tft matrix | |
JP3055782B2 (en) | How to manufacture thin film transistors | |
US20130162925A1 (en) | Thin-film Transistor Substrate and Manufacturing Method Thereof and Liquid Crystal Display Device | |
JPS6083373A (en) | Thin film transistor array and manufacture thereof | |
JPH1195239A (en) | Production of liquid crystal display device | |
US20040197964A1 (en) | Method for fabricating thin film transistor for liquid crystal display device | |
JP2002151695A (en) | Manufacturing method of thin-film transistor | |
JP2819700B2 (en) | Semiconductor device manufacturing method | |
JPH0562996A (en) | Manufacture of thin film transistor | |
JPH05196962A (en) | Production of liquid crystal display device | |
JPH0638185B2 (en) | Method of forming thin film transistor matrix | |
JPH0541390A (en) | Manufacture of thin film transistor | |
JPS61145530A (en) | Manufacture of thin-film transistor array | |
KR940006700B1 (en) | Manufacturing method of thin film transistor | |
JPH05144841A (en) | Method of manufacturing thin film transistor | |
JPS62221160A (en) | Manufacture of thin film transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981112 |