JPS62221160A - Manufacture of thin film transistor - Google Patents
Manufacture of thin film transistorInfo
- Publication number
- JPS62221160A JPS62221160A JP6532486A JP6532486A JPS62221160A JP S62221160 A JPS62221160 A JP S62221160A JP 6532486 A JP6532486 A JP 6532486A JP 6532486 A JP6532486 A JP 6532486A JP S62221160 A JPS62221160 A JP S62221160A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- current
- diborane
- cvd
- semiconductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 12
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 11
- 229910000077 silane Inorganic materials 0.000 claims abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000010408 film Substances 0.000 abstract description 4
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000000758 substrate Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
逆スタガード形薄膜トランジスタのON・OFF比を向
上するため、アモルファス・シリコン層をプラズマ化学
気相成長法により形成する際に、シランに対するジボラ
ンの添加量を次第に増加させて形成することにより、該
アモルファス・シリコン層の導電形を電子導電形より真
性導電形に徐々に変えて形成する方法。[Detailed Description of the Invention] [Summary] In order to improve the ON/OFF ratio of an inverted staggered thin film transistor, the amount of diborane added to silane is gradually increased when forming an amorphous silicon layer by plasma chemical vapor deposition. A method of forming an amorphous silicon layer in which the conductivity type of the amorphous silicon layer is gradually changed from an electronic conductivity type to an intrinsic conductivity type.
本発明はOFF電流を低減させた薄膜トランジスタの製
造方法に関する。The present invention relates to a method for manufacturing a thin film transistor with reduced OFF current.
薄膜トランジスタ(略称TPT)はプラズマ化学気相成
長法(略称P−CVD法)や真空蒸着法などの薄膜形成
技術を用いてガラスなどの絶縁基板上にアモルファス・
シリコン(以下略してa−Si)からなる半導体層、窒
化珪素や二酸化珪素などの絶縁層や金属層などを形成す
ると共に、これと写真蝕刻技術(ホトリソグラフィ)を
組合わせて微細パターンを選択エツチングすることによ
り作られている。Thin film transistors (abbreviated as TPT) are amorphous transistors formed on insulating substrates such as glass using thin film forming techniques such as plasma chemical vapor deposition (abbreviated as P-CVD) and vacuum evaporation.
A semiconductor layer made of silicon (hereinafter abbreviated as a-Si), an insulating layer made of silicon nitride or silicon dioxide, a metal layer, etc. are formed, and a fine pattern is selectively etched by combining this with photolithography. It is made by doing.
かかる技術を使用すると広い面積に亙ってトランジスタ
・アレイを形成できることからTPTはアクティブマト
リックス形の液晶表示パネルやエレクトロルミネッセン
ス(略称EL)表示パネルにおけるスイッチング素子と
して使用されている。TPTs are used as switching elements in active matrix liquid crystal display panels and electroluminescent (abbreviated as EL) display panels because such technology allows transistor arrays to be formed over a wide area.
かかる用途においては各トランジスタは何れも無欠陥で
あると共にON・OFF比が優れていることが必要であ
る。In such applications, each transistor must be defect-free and have an excellent ON/OFF ratio.
アクティブマトリックス形の液晶表示パネルやEL表示
パネルに使用するTPTには逆スタガード形が多い。Many of the TPTs used in active matrix type liquid crystal display panels and EL display panels are of the inverted staggered type.
第2図は逆スタガード形TPTの断面構造を示す・もの
で、この製造方法を簡単に説明すると次のようになる。FIG. 2 shows the cross-sectional structure of an inverted staggered TPT, and the manufacturing method will be briefly explained as follows.
ガラス基板1の上に真空蒸着法によりクローム(Cr)
を約1000人の厚さに形成し、写真蝕刻技術を用いて
ゲート電極2をパターンニングする。Chrome (Cr) is deposited on the glass substrate 1 by vacuum evaporation method.
A gate electrode 2 is formed to have a thickness of about 1000 mm, and a gate electrode 2 is patterned using photolithography.
次に、P−CVD法を用い、窒化珪素層(SiN層)を
約3000人の厚さに形成してゲート絶縁層3を形成す
る。Next, a gate insulating layer 3 is formed by forming a silicon nitride layer (SiN layer) to a thickness of approximately 3000 nm using the P-CVD method.
次に、この上に同様にP−CVD法を用いてa −Si
層を約1000人の厚さに形成して半導体層4を形成し
た後、この上に同様にp−cvo法により二酸化珪素(
St(h)層を約1000人の厚さに形成し、チャネル
保護層5とする。Next, a-Si was deposited on top of this using the same P-CVD method.
After forming a semiconductor layer 4 with a thickness of approximately 1000 nm, silicon dioxide (
A St(h) layer is formed to a thickness of about 1000 nm, and is used as the channel protection layer 5.
次に、ゲート電極2の直上部にレジストパターンを形成
した後、化学エツチングしてチャネル保護層5の部分の
みを残してSi02層を除去した後、そのままの状態で
p−cvo法によりn+aii層を約500人の厚さに
形成してコンタクト層6を形成する。Next, after forming a resist pattern directly above the gate electrode 2, chemical etching is performed to remove the Si02 layer leaving only the channel protective layer 5, and then the N+AII layer is formed using the p-cvo method in that state. The contact layer 6 is formed to a thickness of approximately 500 mm.
次に、この上に真空蒸着法によりアルミニウム(Anり
を約1000人を厚さに形成した後、チャネル保護層5
の上のレジストを溶解除去する。Next, after forming aluminum (An) to a thickness of about 1,000 by vacuum evaporation on this, a channel protective layer 5 is formed.
Dissolve and remove the resist on top.
次にTPT形成領域のみにレジストを被覆し、これをマ
スクとしてA1層、n+a−8i層、a−SL層、Si
N層と順次エツチングして素子分離を行うことにより、
ドレイン電極7とソース電極8を上部に備えた逆スタガ
ード形TFTが形成されている。Next, only the TPT formation region is coated with resist, and using this as a mask, the A1 layer, n+a-8i layer, a-SL layer, and Si
By sequentially etching the N layer and performing element isolation,
An inverted staggered TFT having a drain electrode 7 and a source electrode 8 on top is formed.
か\るスタガード形TPTにおいて、ON状態では電流
はゲート電極2の上に形成されている半導体層4を通っ
てソース電極8とドレイン電極7との間を流れるが、シ
ラン(SiH,)を反応ガスとじてプラズマ分解して形
成されているa −Si層はそのま\では導電形がn形
の半導体であり、そのためにOFF状態でも電極間の抵
抗は充分には高(なく、それによりON・OFF比とし
て6〜7桁程度しかとることができず、この改良が要望
されていた。In such a staggered TPT, in the ON state, current flows between the source electrode 8 and the drain electrode 7 through the semiconductor layer 4 formed on the gate electrode 2, but it does not react with silane (SiH). The a-Si layer, which is formed by plasma decomposition as a gas, is a semiconductor whose conductivity type is n-type as it is, so even in the OFF state, the resistance between the electrodes is not sufficiently high (but not in the ON state).・The OFF ratio can only be about 6 to 7 digits, and there has been a demand for improvement.
以上記したように従来のTPTはOFF電流が充分に少
なくないためにスイッチングに際してON −OFF比
が高くないことが問題である。As described above, the problem with conventional TPTs is that the OFF current is not small enough, so the ON-OFF ratio is not high during switching.
上記の問題は逆スタガード形TPTの製造プロセスにお
いて、a−3i層をP−CVD法により形成する際に、
シランに対するジボランの添加量を徐々に増加させ、該
a −5iNの導電形を当初の電子導電形より徐々に真
性導電形に変化させて形成するTPTの製造方法をとる
ことにより解決することができる。The above problem occurs when forming the a-3i layer by P-CVD in the manufacturing process of inverted staggered TPT.
This can be solved by gradually increasing the amount of diborane added to silane to gradually change the conductivity type of the a-5iN from the initial electronic conductivity type to the intrinsic conductivity type. .
本発明はON電流をそのままとしてOFF電流を減少さ
せる方法として半導体層4においてチャネル保護層5に
近い側を高抵抗化することにより実現するものである。The present invention is realized by increasing the resistance of the semiconductor layer 4 on the side closer to the channel protection layer 5 as a method of reducing the OFF current while leaving the ON current unchanged.
すなわちゲート電極2とアース間に電圧を印加すると半
導体層4の中にチャネルが形成されてドレイン電極7と
ソース電極8間がON状態となり、一方ゲート電極に電
圧の印加が無い場合はOFF状態となるが、シラン(S
iH4)のプラズマ分解によって得られるa −5i半
導体層はもともと僅かながらn形の導電性を示している
ためにOFF電流が充分に低くすることはできない。That is, when a voltage is applied between the gate electrode 2 and the ground, a channel is formed in the semiconductor layer 4, and the connection between the drain electrode 7 and the source electrode 8 is turned on, whereas when no voltage is applied to the gate electrode, it is turned off. However, Silane (S
Since the a-5i semiconductor layer obtained by plasma decomposition of iH4) originally exhibits n-type conductivity, albeit slightly, the OFF current cannot be made sufficiently low.
そこで、本発明は半導体層4をP−CVD法により形成
する際にSin、の中に三価の元素を僅かづつ導入し、
層形成が終わる段階で真性導電形となるようにするもの
である。Therefore, the present invention introduces a trivalent element into Sin little by little when forming the semiconductor layer 4 by the P-CVD method.
It is designed to become an intrinsic conductive type at the stage where layer formation is completed.
すなわち、SiH4を反応ガスとしてP−CVD装置に
供給してP−CVDを行い、予定膜厚の約172まで成
長させた段階からジボラン(B、1I6)の添加を°開
始し、この量を次第に増加させて成長するa −5i層
の抵抗率を高め、最終段階で真性導電体とするものであ
る。That is, P-CVD was performed by supplying SiH4 as a reaction gas to the P-CVD apparatus, and when the film was grown to the planned film thickness of about 172 mm, the addition of diborane (B, 1I6) was started, and this amount was gradually increased. This increases the resistivity of the growing a-5i layer and makes it an intrinsic conductor in the final stage.
このようにすると、TPTのOFF時の電流値はチャネ
ル保護層5と接する半導体層4の抵抗によって決まるこ
とからOFF ii流の減少が実現する。In this way, since the current value when the TPT is OFF is determined by the resistance of the semiconductor layer 4 in contact with the channel protection layer 5, the OFF ii current can be reduced.
逆スタガード形TPTの製造に当たり、今まで半導体層
の形成はP−CVD装置にゲート絶縁層3の形成が終わ
った被処理基板をセットし、水素(1ガスをキャリアと
しSiHmを濃度10%とし、流量を200(SCCM
5tandard Cubic Centimete
rの略)に調節して行っていた。In manufacturing an inverted staggered TPT, until now the semiconductor layer has been formed by setting the substrate to be processed on which the gate insulating layer 3 has been formed into a P-CVD apparatus, using hydrogen (1 gas as a carrier, and SiHm at a concentration of 10%). Increase the flow rate to 200 (SCCM)
5standard Cubic Centimete
(abbreviation for r)).
そこで、本発明は予定する膜厚1000人の172の厚
さである約500人の膜厚にまでa −5tが成長した
段階で濃度0.01%のBtHhの導入を開始し、最終
段階で流量を0.OISCCMにした。Therefore, in the present invention, the introduction of BtHh at a concentration of 0.01% is started at the stage when a-5t has grown to a film thickness of about 500 people, which is the planned thickness of 172 of 1000 people, and at the final stage. Set the flow rate to 0. I changed it to OISCCM.
このようにすると、最終段階ではSiH4に対するB
、I+ 、の添加量は0.5ppo+となりa −3i
は真性導電形となる。In this way, in the final stage, B
, I+ , the addition amount is 0.5ppo+, which is a −3i
is an intrinsic conductive type.
第1図は処理時間に対するSiH4とB、H,との添加
量の関係を示す実施例であって、横軸にはプラズマCV
Dの処理時間を、また縦軸にはSiH4の流量とB2H
4の流量を記しである。FIG. 1 shows an example showing the relationship between the amounts of SiH4, B, and H added to the processing time, and the horizontal axis shows the plasma CV
The processing time of D is shown, and the vertical axis shows the flow rate of SiH4 and B2H.
The flow rate of No. 4 is shown below.
このようにして形成した厚さが1000人のa −Si
層を備え、ゲート長が10μm、ゲート幅が200μの
TPTについてゲート電極にIOV、 ドレイン電極
に10vの電圧を印加してON電流とOFF電流を測定
したところ、ON電流は10−’Aと従来と変わらない
が、OFF電流は10−” Aと従来の10−” Aよ
り2Hi向上することができた。The a-Si formed in this way has a thickness of 1000
When we measured the ON current and OFF current by applying a voltage of IOV to the gate electrode and 10 V to the drain electrode for a TPT with a gate length of 10 μm and a gate width of 200 μm, we found that the ON current was 10-'A, which is lower than the conventional TPT. However, the OFF current was 10-''A, an improvement of 2Hi compared to the conventional 10-''A.
このように本発明の実施によりON・OFF比を8桁に
まで向上することができた。As described above, by implementing the present invention, the ON/OFF ratio could be improved to eight digits.
以上記したように本発明の実施によりOFF電流を低減
することができ、TPTの品質向上が可能となる。As described above, by implementing the present invention, the OFF current can be reduced and the quality of TPT can be improved.
第1図はa −St半導体層の形成条件を示す説明図、 第2図は逆スタガード形TPTの断面構造図、である。 図において、 FIG. 1 is an explanatory diagram showing the formation conditions of the a-St semiconductor layer, FIG. 2 is a cross-sectional structural diagram of an inverted staggered TPT. In the figure,
Claims (1)
て、アモルファス・シリコン層をプラズマ化学気相成長
法により形成する際に、シランに対するジボランの添加
量を徐々に増加させ、該アモルファス・シリコン層の導
電形を当初の電子導電形より徐々に真性導電形に変化さ
せて形成することを特徴とする薄膜トランジスタの製造
方法。In the manufacturing process of inverted staggered thin film transistors, when forming an amorphous silicon layer by plasma chemical vapor deposition, the amount of diborane added to silane is gradually increased to change the conductivity type of the amorphous silicon layer to the original electron A method for manufacturing a thin film transistor, characterized in that the conductivity type is gradually changed to an intrinsic conductivity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6532486A JPH0732256B2 (en) | 1986-03-24 | 1986-03-24 | Method of manufacturing thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6532486A JPH0732256B2 (en) | 1986-03-24 | 1986-03-24 | Method of manufacturing thin film transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62221160A true JPS62221160A (en) | 1987-09-29 |
JPH0732256B2 JPH0732256B2 (en) | 1995-04-10 |
Family
ID=13283615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6532486A Expired - Lifetime JPH0732256B2 (en) | 1986-03-24 | 1986-03-24 | Method of manufacturing thin film transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0732256B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02275672A (en) * | 1989-03-30 | 1990-11-09 | Nippon Steel Corp | Thin film transistor |
-
1986
- 1986-03-24 JP JP6532486A patent/JPH0732256B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02275672A (en) * | 1989-03-30 | 1990-11-09 | Nippon Steel Corp | Thin film transistor |
Also Published As
Publication number | Publication date |
---|---|
JPH0732256B2 (en) | 1995-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6235559B1 (en) | Thin film transistor with carbonaceous gate dielectric | |
JP4018625B2 (en) | Multi-stage CVD method for thin film transistors | |
JPH1093102A (en) | Method of manufacture thin-film transistor | |
JPH08228011A (en) | Semiconductor device and manufacture thereof | |
CN101770121A (en) | Thin film transistor liquid crystal display (TFT-LCD) array substrate and manufacturing method thereof | |
CN108987279A (en) | Method for manufacturing thin film transistor | |
JPH03187215A (en) | Manufacture of silicon thin film | |
JPH05304171A (en) | Thin-film transistor | |
US5808316A (en) | Microcrystal silicon thin film transistor | |
KR20000072230A (en) | fabrication method of amorphous silicon thin-film transistor for liquid-crystal display | |
JP3901460B2 (en) | Thin film transistor manufacturing method | |
JP3452679B2 (en) | Method of manufacturing thin film transistor, thin film transistor and liquid crystal display | |
JP2010141224A (en) | Semiconductor device and its manufacturing method | |
JPS62221160A (en) | Manufacture of thin film transistor | |
JPH04323875A (en) | Semiconductor device and manufacture thereof | |
KR100200346B1 (en) | Thin film transistor having contact layer and making method thereof | |
JPH04122072A (en) | Manufacture of thin-film transistor | |
JP3388076B2 (en) | Method for manufacturing staggered thin film transistor | |
KR0139741B1 (en) | Fabrication method of tft | |
JP3325664B2 (en) | Thin film transistor and method of manufacturing the same | |
KR930009547B1 (en) | Interface forming method of sinx/amorphous silicon | |
JPH06202146A (en) | Formation of pattern | |
JPH03263323A (en) | Forming method of plasma cvd silicon nitride film | |
JPH01128572A (en) | Thin film transistor and manufacture thereof | |
JPH02196470A (en) | Thin film transistor and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |