JPH0551834B2 - - Google Patents

Info

Publication number
JPH0551834B2
JPH0551834B2 JP30973188A JP30973188A JPH0551834B2 JP H0551834 B2 JPH0551834 B2 JP H0551834B2 JP 30973188 A JP30973188 A JP 30973188A JP 30973188 A JP30973188 A JP 30973188A JP H0551834 B2 JPH0551834 B2 JP H0551834B2
Authority
JP
Japan
Prior art keywords
ice
making
water
chamber
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30973188A
Other languages
Japanese (ja)
Other versions
JPH02154962A (en
Inventor
Yasuo Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP30973188A priority Critical patent/JPH02154962A/en
Publication of JPH02154962A publication Critical patent/JPH02154962A/en
Publication of JPH0551834B2 publication Critical patent/JPH0551834B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば球体状や多面体状をなす氷
塊群を全自動で大量に製造し得る自動製氷機にお
いて、製氷室中で製造した氷塊群を、当該製氷室
から円滑に除氷するための除氷制御方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention provides an automatic ice making machine that can fully automatically produce large quantities of ice cubes in the form of, for example, spheres or polyhedrons. The present invention relates to a deicing control method for smoothly removing ice from the ice making room.

従来技術 各種の産業分野で、サイコロ状の角氷や所要厚
みの板氷その他フレーク状の氷片等を大量に連続
製造する自動製氷機が、その用途に応じて好適に
使い分けられている。例えば、前記の角氷を製造
する製氷機として、 製氷室に下向きに多数画成した立方体状の製
氷小室を、その方から水皿により開閉自在に閉
成し、当該水皿から製氷水を各製氷小室に噴射
供給して、該製氷小室中に角氷を徐々に形成す
るようにした所謂クローズドセル方式や、 下方に開放する多数の立方体状の製氷小室に
製氷水を直接供給し、角氷を該製氷小室中に形
成するようにした所謂オープンセル方式が知ら
れている。また、板氷や細粒状のクラツシユア
イスを連続製造する製氷機、その他フレーク状
の氷片を連続製造するオーガ式製氷機等も実施
されている。
BACKGROUND ART In various industrial fields, automatic ice making machines that continuously produce large quantities of dice-shaped ice cubes, ice sheets of a required thickness, and ice flakes are suitably used depending on the application. For example, as an ice maker for producing the ice cubes described above, a large number of cube-shaped ice-making compartments are defined downward in the ice-making compartment, which can be opened and closed with a water tray, and ice-making water is poured into each compartment from the water tray. There is a so-called closed cell method in which water is injected into an ice making chamber to gradually form ice cubes in the ice making chamber, and ice making water is directly supplied to a number of cube-shaped ice making chambers that open downward to form ice cubes. A so-called open cell system is known in which ice is formed in the ice making compartment. In addition, ice makers that continuously produce sheet ice or fine-grained crushed ice, and auger-type ice makers that continuously produce ice flakes are also in use.

発明が解決しようとする課題 従来の各種製氷機により製造される氷は、前述
した如く、立方体状と角氷や板氷、その他フレー
ク状の氷片やクラツシユアイスが殆どである。こ
れらの氷で所要の定形を備え、そのまま飲料に浮
かせたり、各種食材の冷却ベツドに供したり出来
るのは、僅かに前記の角氷があるに過ぎない(板
氷も定形は備えているが、通常そのままの寸法で
は使用し得ない)。
Problems to be Solved by the Invention As mentioned above, most of the ice produced by conventional ice making machines is cube-shaped ice cubes, ice cubes, ice cubes, other ice flakes, and crushed ice. Only the above-mentioned ice cubes have the required shape and can be floated on drinks or used as a cooling bed for various foodstuffs (board ice also has a shape, but (Usually cannot be used with the same dimensions.)

しかるに最近の喫茶店やレストランその他の飲
食施設では、同種営業に対し種々の面で優位に立
つて顧客を吸引するべく、他社との差別化を図る
懸命な努力が払われている。その一環として、例
えば従来より広く普及している角氷に替えてボー
ル状(球体状)の氷塊を使用し、これにより顧客
の目先に新しい変化を提供しようとする傾向がみ
受けられる。
However, in recent years, coffee shops, restaurants, and other eating and drinking establishments have been making strenuous efforts to differentiate themselves from other companies in order to gain an advantage over similar businesses in various ways and attract customers. As part of this, for example, there is a trend to use ball-shaped (spherical) ice cubes instead of the more widely popular ice cubes, thereby offering new changes to customers.

しかしこの球状氷は、広く飲食に供されること
から、空気混入による白濁がなく、清澄な透明氷
塊でなければ商品価値は低下する。また大量に製
造可能であるとを必要とするが、従来この種の要
請を満たす球状氷の自動製氷機は存在しなかつ
た。そこで本願の発明者は、透明で清澄な球状氷
を大量に製造し得る製氷機の開発に従事し、前記
の要請を充分に満足する機構を得たので、その基
本概念につき昭和63年1月29日付けで、発明「自
動製氷機」として特許出願を行なつた。
However, since this spherical ice is widely used for eating and drinking, its commercial value will decrease unless it is a clear, transparent block of ice that does not become cloudy due to aeration. It is also necessary to be able to produce large quantities of ice, but there has been no automatic ice-making machine for producing spherical ice that satisfies this type of requirement. Therefore, the inventor of the present application engaged in the development of an ice making machine capable of producing a large amount of transparent and clear spherical ice, and having obtained a mechanism that fully satisfies the above requirements, the inventor developed the basic concept in January 1988. On the 29th, he filed a patent application for his invention, an "automatic ice maker."

先の出願に係る製氷機は、下方に開放する第
1製氷小室を多数画成し、背面に蒸発器を備えた
第1製氷室と、上方に開放する第2製氷小室を
多数画成した第2製氷室とを基本的に備え、製氷
運転に際し両製氷小室が対応的に閉成して、その
内部に球体等の異形氷を形成する空間を画成する
ものである。この基本構造に係る製氷機では、従
来公知の自動製氷機と異なり、更に第2製氷室を
備えているために、第1および第2の製氷小室中
に生成した氷塊群を、如何にして円滑に除去する
か、が新たな解決課題となつている。
The ice-making machine according to the previous application has a first ice-making compartment that defines a number of first ice-making compartments that open downward, a first ice-making compartment equipped with an evaporator on the back, and a second ice-making compartment that defines a number of second ice-making compartments that open upward. The ice making chamber basically includes two ice making chambers, and during ice making operation, both ice making chambers are closed correspondingly to define a space therein for forming irregularly shaped ice such as spheres. Unlike conventionally known automatic ice makers, the ice maker with this basic structure is further equipped with a second ice maker. The new problem to be solved is how to remove it.

発明の目的 この発明は、前述した課題に鑑み、これを好適
に解決するべく提案されたものであつて、除氷運
転に際して、両製氷小室に生成した球状や多面体
状の氷塊を円滑に除去し得る新規な自動製氷機の
除氷制御方法を提供することを目的とする。
Purpose of the Invention The present invention has been proposed in view of the above-mentioned problems and to suitably solve them. The purpose of this invention is to provide a new deicing control method for an automatic ice maker.

課題を解決するための手段 前述した課題を克服し、所期の目的を好適に達
成するため本発明は、下方に開放する第1製氷小
室を多数備え、背面に蒸発器を設けた第1製氷室
と、上方に開放する第2製氷小室を多数備え、前
記第1製氷室を下方から閉成可能に配設した第2
製氷室と、除氷運転に際して第2製氷室を加熱す
る加熱手段とからなる自動製氷機において、前記
第1および第2製氷小室に画成される空間での氷
塊の形成を検知し、前記蒸発器への冷媒供給を継
続したままで第2製氷小室を前記加熱手段により
加熱して、第1製氷小室に氷塊が付着している状
態のまま第1製氷室から前記第2製氷室を離脱さ
せると共に、加熱手段を停止させ、次いで冷凍系
における冷媒循環系統の弁を切換え、前記蒸発器
にホツトガスを循環供給して第1製氷室を加熱す
ることにより、第1製氷小室から氷塊を融解離脱
させることを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention provides a first ice-making chamber that is provided with a large number of first ice-making chambers that open downward, and that has an evaporator on the back side. A second ice-making chamber is provided with a large number of second ice-making chambers that open upwardly, and is arranged so that the first ice-making chamber can be closed from below.
In an automatic ice making machine comprising an ice making compartment and a heating means for heating a second ice making compartment during deicing operation, the formation of ice blocks in the space defined by the first and second ice making compartments is detected, and the formation of ice blocks is detected. The second ice-making compartment is heated by the heating means while the refrigerant supply to the container is continued, and the second ice-making compartment is separated from the first ice-making compartment while the ice blocks are still attached to the first ice-making compartment. At the same time, the heating means is stopped, and then the valve of the refrigerant circulation system in the refrigeration system is switched, and hot gas is circulated and supplied to the evaporator to heat the first ice-making chamber, thereby melting and detaching the ice block from the first ice-making chamber. It is characterized by

実施例 次に、本発明に係る自動製氷機の除氷制御方法
につき、好適な実施例を挙げて、添付図面を参照
しながら以下説明する。なお、本発明が実施され
る自動製氷機によれば、第13図aに示す球状氷
1以外に、第13図bに示す如きダイヤカツト状
の多面体氷2の製造も可能である。
Embodiments Next, a method for controlling de-icing for an automatic ice maker according to the present invention will be described below with reference to preferred embodiments and the accompanying drawings. According to the automatic ice making machine according to the present invention, in addition to the spherical ice 1 shown in FIG. 13a, it is also possible to produce diamond-cut polyhedral ice 2 as shown in FIG. 13b.

(第1および第2製氷室について) 第1図に、本発明に係る除氷制御方法を実施し
得る製氷機構を、製氷状態で概略的に示し、所要
直径をなす多数の球状氷を製造する製氷室10
は、水平に配設した第1製氷室11と、この第1
製氷室11を下方から開閉自在に閉成可能な第2
製氷室12とから基本的に構成される。すなわ
ち、製氷機筐体(図示せず)の内部上方に、熱伝
導率の良好な金属を材質とする矩形状の第1製氷
室11が水平に配設固定され、所要の整列パター
ンで第1製氷小室13が、この第1製氷室11に
下向きで多数凹設されている。各第1製氷小室1
3は半球状の凹部として形成され、一例として直
径3cm、深さ1.5cmに設定されている。第1製氷
室11の上面には、第10図に示す冷媒系(後
述)から導出した蒸発器14が蛇行状に密着固定
され、当該冷凍系の運転により蒸発器14にける
気化冷媒の熱交換か促進されて、第1製氷室11
が氷点下にまで冷却される。
(Regarding the first and second ice-making compartments) Fig. 1 schematically shows an ice-making mechanism capable of implementing the de-icing control method according to the present invention in an ice-making state, and is capable of producing a large number of spherical ice cubes having a required diameter. Ice making room 10
The first ice-making compartment 11 is arranged horizontally, and the first ice-making compartment 11 is arranged horizontally.
A second ice making chamber 11 that can be freely opened and closed from below.
It basically consists of an ice making compartment 12. That is, a rectangular first ice-making chamber 11 made of a metal with good thermal conductivity is arranged and fixed horizontally in the upper part of the inside of an ice-making machine housing (not shown), and the first ice-making chamber 11 is arranged and fixed horizontally in a predetermined alignment pattern. A large number of small ice-making chambers 13 are recessed downward in the first ice-making chamber 11. Each 1st ice making compartment 1
3 is formed as a hemispherical recess, and is set to have a diameter of 3 cm and a depth of 1.5 cm, for example. An evaporator 14 derived from a refrigerant system (described later) shown in FIG. or promoted, the first ice making room 11
is cooled to below freezing.

第1製氷室11の直下には、銅の如き熱良導性
の金属を材質とする第2製氷室12が後述の如く
傾動自在に配設され、その製氷運転に際して、該
第1製氷室11を下方から閉成すると共に、除氷
運転に際して、該第1製氷室11を開放し得るよ
うになつている。すなわち、第2製氷室12に
は、前記第1製氷室11に凹設した第1製氷小室
13と対応して、同じく半球状凹部からなる第2
製氷小室15が上向きに所要の整列パターンで多
数凹設されている。この第2製氷小室15の直径
も、一例として3cmであり、凹部の深さは1.5cm
に設定されている。従つて、第1製氷室11に対
し第2製氷室12を下方から閉成すると、両製氷
小室13,15が相互に対応して各小室内に直径
3cmの球状空間が画成される。
Immediately below the first ice making chamber 11, a second ice making chamber 12 made of a metal with good heat conductivity such as copper is provided so as to be tiltable as described below. The first ice making chamber 11 can be closed from below, and the first ice making chamber 11 can be opened during deicing operation. That is, the second ice-making compartment 12 has a second ice-making compartment 13, which is also made of a hemispherical recess, corresponding to the first ice-making compartment 13 recessed in the first ice-making compartment 11.
A large number of ice-making chambers 15 are recessed upward in a required alignment pattern. The diameter of this second ice making chamber 15 is also 3 cm, as an example, and the depth of the recess is 1.5 cm.
is set to . Therefore, when the second ice-making compartment 12 is closed from below with respect to the first ice-making compartment 11, the ice-making compartments 13 and 15 correspond to each other, and a spherical space with a diameter of 3 cm is defined within each compartment.

第2製氷室12は、前述の如く銅等の熱良導金
属を材質とするブロツク体として構成され、各第
2製氷小室15に製氷水を噴射供給するための水
皿38が、当該第2製氷室12の外底部にボルト
60を介して一体的に固定されている。この第2
製氷室12における第2製氷小室15の形成面と
反対側の面(水皿38と対向する面)には、第9
図に示す如く、相互に隣接する各第2製氷小室1
5との間に溝71が形成されている。すなわち、
各第2製氷小室15は底面において溝71で囲繞
されており、後述する除氷運転に際し、給水弁
WVを介して供給される水道水が溝71と水皿表
面との間に画成される溝通路72に充満し、第2
製氷小室15の加熱促進を図るよう構成される。
As described above, the second ice making chamber 12 is constructed as a block body made of a heat conductive metal such as copper, and the water tray 38 for injecting and supplying ice making water to each of the second ice making chambers 15 is connected to the second ice making chamber 12. It is integrally fixed to the outer bottom of the ice making chamber 12 via bolts 60. This second
On the surface of the ice-making compartment 12 opposite to the surface on which the second ice-making compartment 15 is formed (the surface facing the water tray 38), a ninth ice-making compartment 12 is provided.
As shown in the figure, each of the second ice making compartments 1 adjacent to each other
A groove 71 is formed between the groove 5 and the groove 5. That is,
Each of the second ice making chambers 15 is surrounded by a groove 71 on the bottom surface, and the water supply valve is
Tap water supplied via the WV fills the groove passage 72 defined between the groove 71 and the water tray surface, and the second
The ice making chamber 15 is configured to accelerate heating.

なお、第2製氷室12における溝71の所定位
置には、該溝71の深さ寸法と同一の支柱73が
突設され、この支柱73に穿設した穴73aに前
記ボルト60が挿通される。そして、第2製氷室
12は、支柱73の先端部と後述する通孔12a
の穿設部位とを水皿38の表面に当接させた状態
で、水皿38にボルト固定される。
A support 73 having the same depth as the groove 71 is protruded from a predetermined position of the groove 71 in the second ice making chamber 12, and the bolt 60 is inserted into a hole 73a formed in the support 73. . The second ice making chamber 12 is connected to the tip of the support 73 and through hole 12a, which will be described later.
The bolt is fixed to the water tray 38 with the perforated portion thereof in contact with the surface of the water tray 38.

前記水皿38は、その後端部が直角に立上がつ
て後部64が形成され、この後部64の開放端に
おいて製氷機筺体(図示せず)の固定部位に、枢
軸16により傾動旋回可能に枢支され、後述のア
クチユエータモータAMによつて第2製氷室12
と共に回動付勢される。すなわち、第6図に示す
如く時計方向に回動すれば、水皿38に一体固定
した第2製氷室12は第1製氷小室13を開放
し、また反時計方向に回動すれば、第1図に示す
如く、第2製氷室12は第1製氷小室13を閉成
する。水皿38の裏面には、各第2製氷小室15
と連通する噴水孔25が対応的に穿設され、これ
ら噴水孔25に製氷水を供給する分配管24が同
じく水皿38の裏面に蛇行配置されている。また
水皿38の下方には、前記分配管24に製氷水を
供給するための製氷水タンク19が一体的に設け
られている。
The rear end of the water tray 38 rises at a right angle to form a rear part 64, and the open end of the rear part 64 is pivoted to a fixed portion of an ice maker housing (not shown) by a pivot 16 so as to be tiltable and pivotable. The second ice making chamber 12 is
It is also urged to rotate. That is, if it is rotated clockwise as shown in FIG. 6, the second ice-making chamber 12, which is integrally fixed to the water tray 38, opens the first ice-making chamber 13, and if it is rotated counterclockwise, the second ice-making chamber 12, which is integrally fixed to the water tray 38, opens the first ice-making chamber 13. As shown in the figure, the second ice making compartment 12 closes the first ice making compartment 13. On the back side of the water tray 38, each second ice making compartment 15 is provided.
Fountain holes 25 communicating with the water tray 38 are correspondingly bored, and a distribution pipe 24 for supplying ice-making water to these fountain holes 25 is also arranged in a meandering manner on the back surface of the water tray 38. Further, below the water tray 38, an ice-making water tank 19 for supplying ice-making water to the distribution pipe 24 is integrally provided.

図に示す如く、第2製氷室12における各第2
製氷小室15の底部に通孔12aが穿設され、前
記水皿38と第2製氷室12とを固定した際に、
各噴水孔25が前記通孔12aと対応一致するよ
う寸法設定されている。そしてこの通孔12a
は、後述する製氷運転に際し、両製氷小室13,
15に画成された氷形成用空間に製氷水を供給す
ると共に、該空間中で氷結するに到らなかつた製
氷水(以下「未氷結水」という)を好適に排出す
るべく機能する。なお、水皿38の各噴水孔25
に隣接して戻り孔26が穿設され、前記通行12
aから排出された未氷結水は、この戻り孔26を
介して製氷水タンク19に帰還される。
As shown in the figure, each second ice maker in the second ice making compartment 12
A through hole 12a is bored in the bottom of the small ice making chamber 15, and when the water tray 38 and the second ice making chamber 12 are fixed,
Each fountain hole 25 is dimensioned to correspond to the through hole 12a. And this through hole 12a
During the ice making operation described later, both ice making compartments 13,
It functions to supply ice-making water to the ice-forming space defined by 15 and to appropriately discharge ice-making water that has not yet frozen in the space (hereinafter referred to as "unfrozen water"). In addition, each fountain hole 25 of the water tray 38
A return hole 26 is bored adjacent to the passage 12.
The unfrozen water discharged from a is returned to the ice-making water tank 19 through the return hole 26.

(水皿傾動機構と水循環系とについて) 水皿38を傾動させるアクチユエータモータ
AMは減速機を備え、その回転軸にカムレバー1
7およびレバー片37が半径方向に延出するよう
固定され、前記カムレバー17の先端17aと水
皿38の前方端部との間に、コイルスプリング1
8が弾力的に係着されている。前記カムレバー1
7の基部に形成したカム面17bは、水皿38の
側部61の上面にカム係合可能に寸法設定されて
いる。また、前記第1製氷室11を支持する固定
部位に切換スイツチS2が配設され、除氷運動に伴
うモータAMの回転により前記レバー片37が回
動すると、前記切換スイツチS2を第11図に示す
接点a−b側から接点a−c側に切換え、モータ
AMを停止させ、前記水皿38を傾動状態で停止
させる。また、冷凍系の弁を切り換えて、前記蒸
発器14にホツトガスを流通させる機能も果す。
(About the water pan tilting mechanism and water circulation system) Actuator motor that tilts the water pan 38
AM is equipped with a reducer, and a cam lever is attached to the rotating shaft.
7 and a lever piece 37 are fixed so as to extend in the radial direction, and a coil spring 1 is installed between the tip 17a of the cam lever 17 and the front end of the water tray 38.
8 is elastically attached. The cam lever 1
The cam surface 17b formed at the base of the water tray 38 is dimensioned so as to be able to engage with the upper surface of the side portion 61 of the water tray 38. Further, a changeover switch S2 is disposed at a fixed portion that supports the first ice making chamber 11, and when the lever piece 37 is rotated by the rotation of the motor AM accompanying the deicing movement, the changeover switch S2 is switched to the first ice making chamber 11. Switch from contacts a-b to contacts a-c as shown in the figure, and motor
The AM is stopped and the water tray 38 is stopped in a tilted state. It also functions to switch the refrigeration system valve and circulate hot gas to the evaporator 14.

前記製氷タンク19の底部側面から導出した給
水管21は、給水ポンプ22を介してタンク側方
に設けた圧力室23に連通し、更に圧力室23か
ら前記分配管24に連通している。従つて、製氷
水タンク19からポンプ22を介して圧送される
製氷水は、分配管24に穿設した前記各噴水孔2
5および第2製氷室12に穿設した前記通孔12
aを介して、各第2製氷小室15中に噴射供給さ
れるものである。なお、後述する製氷運転に際し
両製氷小室13,15で氷結するに到らなかつた
未氷結水は、通孔12aおよび前記水皿38に穿
設した前記戻り孔26から製氷水タンク19に戻
し得るようになつている。
A water supply pipe 21 led out from the bottom side of the ice making tank 19 communicates with a pressure chamber 23 provided on the side of the tank via a water supply pump 22, and further communicates from the pressure chamber 23 with the distribution pipe 24. Therefore, the ice-making water pumped from the ice-making water tank 19 via the pump 22 is fed to each of the water fountains 2 formed in the distribution pipe 24.
5 and the through hole 12 bored in the second ice making chamber 12
The ice is injected into each of the second ice-making chambers 15 through a. In addition, during the ice-making operation described later, unfrozen water that has not frozen in both ice-making chambers 13 and 15 can be returned to the ice-making water tank 19 through the return hole 26 formed in the through hole 12a and the water tray 38. It's becoming like that.

更に、水皿38の前方には、前述の側部61よ
り所定寸法だけ低く設定した堰止め部62が配設
され、この堰止め部62の両端部は両側部61,
61に密着されている。また、水皿38には第2
製氷室12の前方側端部と堰止め部62との間に
所要径の排水孔63が穿設されている。これによ
り水皿38の内部表面には、両側部61,61、
堰止め部62および前記後部64で囲繞された水
溜部65が形成される。そして該水溜部65に貯
溜された水は、前記第2製氷室12の周囲に画成
した前記溝通路72中に充満し、各第2製氷小室
15を加熱する。更に該水溜部65に貯溜された
水の一部は、前記排水孔63から製氷水タンク1
9に流下し、他の水は堰止め部62の上端からオ
ーバーフローして、水皿38の前方側よりタンク
19に流入するようにしてある。尚、製氷水タン
ク19への給水は、外部水道系に接続している給
水管27の給水弁WVを開放することにより行な
われる。
Further, in front of the water tray 38, a damming part 62 is provided which is set lower than the side part 61 by a predetermined dimension, and both ends of this damming part 62 are connected to the side parts 61,
It is closely attached to 61. In addition, the water tray 38 has a second
A drainage hole 63 of a required diameter is bored between the front end of the ice making chamber 12 and the dam 62. As a result, the inner surface of the water tray 38 has both side parts 61, 61,
A water reservoir portion 65 surrounded by the dam portion 62 and the rear portion 64 is formed. The water stored in the water reservoir 65 fills the groove passage 72 defined around the second ice-making chamber 12 and heats each of the second ice-making compartments 15. Furthermore, a part of the water stored in the water reservoir 65 is drained from the drainage hole 63 to the ice making water tank 1.
9, other water overflows from the upper end of the dam 62 and flows into the tank 19 from the front side of the water tray 38. Note that water is supplied to the ice-making water tank 19 by opening the water supply valve WV of the water supply pipe 27 connected to the external water supply system.

(感温機構について) 第1製氷室11の上面における所定位置に、製
氷完了検知手段として機能する製氷検知サーモ
Th1の感温部(プローブ)が配設されている。こ
の製氷検知サーモTh1は、製氷運転中は第11図
に示す接点c−aを閉成すると共に接点c−bを
開放し、製氷運転が終了すると、前記接点c−a
を開放すると共に接点c−bを閉成し得るよう設
定されている。また同じ第1製氷室上面の別位置
に、除氷完了検知手段として機能する除氷検知サ
ーモTh2の感温部が配設され、この除氷検知サー
モTh2は、第1製氷小室13が冷却状態にある場
合にのみ接点を開放し、該製氷小室13から氷が
放出されて温度上昇を来すと、該接点を閉成する
よう設定されている。
(About the temperature sensing mechanism) An ice-making detection thermometer is installed at a predetermined position on the upper surface of the first ice-making compartment 11, and functions as an ice-making completion detection means.
A Th 1 temperature sensing part (probe) is installed. This ice-making detection thermo Th1 closes the contact c-a shown in FIG. 11 and opens the contact c-b during the ice-making operation, and when the ice-making operation ends, the contact c-a
It is set so that it can open the contact point c-b and close the contact point c-b. In addition, a temperature sensing part of a deicing detection thermometer Th 2 which functions as a deicing completion detection means is arranged at a different position on the top surface of the first ice making chamber. The contacts are set to open only when the ice making compartment 13 is in a cooling state, and to close when ice is released from the ice making compartment 13 and the temperature rises.

更に、第2製氷室12における所要の側部にサ
ーモTh3の感温部が配設され、該サーモTh3の電
気信号を発する本体は、水皿38の前記後部64
に取付けられている。この温度検知サーモTh3
は、該第2製氷室12の温度を監視するべく機能
する。なお、温度検知サーモTh3は、第2製氷室
12の温度が所定値以上になると接点a−cが閉
成して接点a−bが開放し、所定値以下になると
接点a−cが開放して接点a−bが閉成するよう
設定されている。
Furthermore, a temperature-sensing part of a thermostat Th 3 is disposed at a required side part of the second ice-making compartment 12 , and the main body of the thermostat Th 3 that emits an electric signal is located at the rear part 64 of the water tray 38 .
installed on. This temperature sensing thermo Th 3
functions to monitor the temperature of the second ice making compartment 12. In addition, in the temperature detection thermometer Th3 , when the temperature of the second ice making compartment 12 exceeds a predetermined value, contacts a-c close and contacts a-b open, and when the temperature falls below a predetermined value, contacts a-c open. The setting is such that contacts a and b are closed.

(氷案内板について) 製氷水タンク19の下方には、製氷残水等を受
けて機外へ排出するための排水皿69が配設さ
れ、該排水皿69の上方に、軸68に固定した氷
案内板67が臨んでいる。この氷案内板67は、
その製氷運転中において、筐体の固定部から延出
垂下する位置決め部材70に当接して位置決めさ
れ、第1図に示す如く、タンク19の開放先端部
に近接した位置で停止している。この状態におい
て、タンク19中の製氷水がオーバーフローする
と、第5図に示すように、この水は前記氷案内板
67の裏面に沿つて流下した後、前記排水皿69
から機外へ排出される。また除氷運転の際には、
第6図に示す如く、氷案内板67が固定されてい
る前記軸68を、図示しない駆動手段により反時
計方向に駆動すれば、この氷案内板67は傾動状
態にある(後述)第2製氷室12の上面に倒れ込
み、各第2製氷小室15を塞ぐに到る。そして第
7図に示す如く、第1製氷室11から落下する球
状氷を、この氷案内板67において滑落させて貯
氷庫(図示せず)へ円滑に案内する。
(Regarding the ice guide plate) A drain tray 69 is provided below the ice-making water tank 19 to catch residual ice-making water and discharge it to the outside of the machine. An ice guide board 67 is facing. This ice guide plate 67 is
During the ice-making operation, it is positioned by coming into contact with a positioning member 70 that extends and hangs down from the fixed part of the housing, and is stopped at a position close to the open end of the tank 19, as shown in FIG. In this state, when the ice-making water in the tank 19 overflows, this water flows down along the back surface of the ice guide plate 67 and then flows into the drain tray 69, as shown in FIG.
is ejected from the aircraft. Also, during deicing operation,
As shown in FIG. 6, when the shaft 68 to which the ice guide plate 67 is fixed is driven counterclockwise by a driving means (not shown), the ice guide plate 67 is in a tilted state (described later). It collapses onto the upper surface of the chamber 12 and blocks each of the second ice-making chambers 15. As shown in FIG. 7, the spherical ice falling from the first ice making compartment 11 is slid down on this ice guide plate 67 and smoothly guided to an ice storage (not shown).

なお、水皿38(第2製氷室)が原位置に復帰
する際には、氷案内板67は水平状態に復帰する
水皿38により押圧されて時計方向に旋回し、第
1図に示す如く、前記機位置決め部材70に当接
して停止する。この氷案内板67は、軸68を支
点にして重心の移動で傾動させられる。
Note that when the water tray 38 (second ice making chamber) returns to its original position, the ice guide plate 67 is pressed by the water tray 38 returning to the horizontal state and rotates clockwise, as shown in FIG. , comes into contact with the machine positioning member 70 and stops. This ice guide plate 67 is tilted by moving the center of gravity using the shaft 68 as a fulcrum.

(冷凍系について) 第10図は、製氷機における冷凍系の概略構成
を示すものであつて、圧縮機CMで圧縮された気
化冷媒は、吐出管34を経て凝縮器28で凝縮液
化し、ドライヤ29で脱湿された後キヤピラリー
チユーブ30で減圧され、蒸発器14に流入して
ここで一挙に膨張して蒸発し、第1製氷室11と
熱交換を行なつて、各第1製氷室13を氷点下に
まで冷却させる。この蒸発器14で蒸発した気化
冷媒と未蒸発の液化冷媒とは、気液混相状態でア
キユムレータ31に流入し、ここで気液分離がな
される。そして気相冷媒は、吸入管3を経て圧縮
機CMに帰還し、液相冷媒は当該アキユムレータ
31内に貯留される。
(About the refrigeration system) Fig. 10 shows a schematic configuration of the refrigeration system in the ice maker. The vaporized refrigerant compressed by the compressor CM passes through the discharge pipe 34, is condensed and liquefied in the condenser 28, and is then transferred to the dryer. After being dehumidified in step 29, the pressure is reduced in the capillary reach tube 30, and it flows into the evaporator 14 where it expands and evaporates all at once, and exchanges heat with the first ice making chamber 11. 13 is cooled to below freezing. The vaporized refrigerant evaporated in the evaporator 14 and the unevaporated liquefied refrigerant flow into the accumulator 31 in a gas-liquid mixed phase state, where they are separated into gas and liquid. The gas phase refrigerant then returns to the compressor CM via the suction pipe 3, and the liquid phase refrigerant is stored in the accumulator 31.

更に、圧縮機CMの吐出管34からホツトガス
管33が分岐され、このホツトガス管33はホツ
トガス弁HVを経て、蒸発器14の入口側に連通
されている。このホツトガス弁HVは、除氷運転
の際にのみ開放し、製氷運転時は閉成する制御が
なされる。すなわち、除氷運転時にホツトガス弁
HVが開放して、圧縮機CMから吐出される高温
冷媒を、前記ホツトガス管33を介して蒸発器1
4にバイパスさせ、各第1製氷小室13を加温す
ることにより、小室内部に生成される球状氷の周
面を溶融させて、各氷塊を自重により落下させ
る。また蒸発器14から流出した高温冷媒は、ア
キユムメータ31に流入し、このアキユムレータ
31中に滞留している液相冷媒を加熱して蒸発さ
せ、気相冷媒として吸入管32から圧縮機CMに
再び帰還させる。なお、図中の符号FMは、凝縮
器28用のフアンモータを示す。
Furthermore, a hot gas pipe 33 is branched from the discharge pipe 34 of the compressor CM, and this hot gas pipe 33 is communicated with the inlet side of the evaporator 14 via a hot gas valve HV. This hot gas valve HV is controlled to open only during deicing operation and close during ice making operation. In other words, during deicing operation, the hot gas valve
When the HV is opened, the high temperature refrigerant discharged from the compressor CM is sent to the evaporator 1 via the hot gas pipe 33.
4 and heat each first ice-making chamber 13, the circumferential surface of the spherical ice produced inside the chamber is melted, and each ice block is caused to fall by its own weight. Further, the high temperature refrigerant flowing out from the evaporator 14 flows into the accumulation meter 31, heats and evaporates the liquid phase refrigerant staying in this accumulation meter 31, and returns it to the compressor CM from the suction pipe 32 as a gas phase refrigerant. let Note that the symbol FM in the figure indicates a fan motor for the condenser 28.

(電気制御回路について) 第11図に、実施例に係る自動製氷機の電気制
御回路図の一例を示す。図において、電源供給ラ
インRと接続点Dとの間に、ヒユーズFと貯氷検
出スイツチS1とが直列に設けられ、この接続点D
と電源供給ラインTとの間に、圧縮機CMが接続
されている。また除氷運転に際して、前記第2製
氷室12の傾動により付勢される切換スイツチS2
の端子aが接続点Dに接続され、この切換スイツ
チS2の切換接点bとラインTとの間に、フアンモ
ータFMが接続されている。更に切換スイツチS2
の切換接点bは、製氷検知サーモTh1の接点cに
接続されている。
(Regarding the electrical control circuit) FIG. 11 shows an example of an electrical control circuit diagram of the automatic ice maker according to the embodiment. In the figure, a fuse F and an ice storage detection switch S1 are provided in series between the power supply line R and the connection point D.
A compressor CM is connected between the power supply line T and the power supply line T. In addition, during deicing operation, a changeover switch S 2 is activated by the tilting of the second ice making chamber 12.
Terminal a is connected to connection point D, and fan motor FM is connected between changeover contact b of this changeover switch S2 and line T. Furthermore, selector switch S 2
The switching contact b is connected to the contact c of the ice-making detection thermometer Th1 .

製氷検知サーモTh1の接点aとラインTとの間
には、ポンプ22の駆動用モータPMが接続さ
れ、該サーモTh1の接点bは前記温度検知サーモ
Th3の接点aに接続されると共に、該サーモTh3
の切換接点bとラインTとの間にリレーXが接続
されている。また、温度検知サーモTh3の他方の
切換接点cは、モータAMの傾動駆動用端子mに
接続されている。更に、該モータAMの端子kは
ラインTに接続されると共に、その復帰駆動用端
子nは、除氷検知サーモTh2の接点を介して切換
スイツチS2の切換接点cに接続されている。また
切換スイツチS2の接点cとラインTとの間には、
ホツトガス弁HVが接続されている。
A drive motor PM of the pump 22 is connected between the contact a of the ice-making detection thermometer Th 1 and the line T, and the contact b of the ice-making detection thermometer Th 1 is connected to the temperature detection thermometer Th 1.
It is connected to the contact a of Th 3 , and the thermo Th 3
A relay X is connected between the switching contact b and the line T. Further, the other switching contact c of the temperature detection thermometer Th3 is connected to the tilting drive terminal m of the motor AM. Furthermore, the terminal k of the motor AM is connected to the line T, and its return drive terminal n is connected to the changeover contact c of the changeover switch S2 via the contact of the de-icing detection thermometer Th2 . Also, between the contact c of the changeover switch S2 and the line T,
Hot gas valve HV is connected.

前記接続点DとラインTとの間には、前記リレ
ーXの常開接点X−aを介して給水弁WVが接続
されている。また、該給水弁WVは、リレーXの
常閉接点X−bを介して切換スイツチS2の切換接
点cに接続されている。
A water supply valve WV is connected between the connection point D and the line T via the normally open contact X-a of the relay X. Further, the water supply valve WV is connected to the changeover contact c of the changeover switch S2 via the normally closed contact X-b of the relay X.

実施例の作用 次に、前述した自動製氷機を作動させることに
より実施される除氷制御方法につき説明する。製
氷運転に際し、第1図に示す如く第2製氷室12
は、第1製氷室11を下方から閉成して、各第1
製氷小室13と各第2製氷小室15とを対応さ
せ、内部に氷形成用空間を画成している。この状
態で、自動製氷機の電源を投入する。このとき、
貯氷庫に氷塊は貯留されていないので、貯氷検知
スイツチS2は閉成され、切換スイツチS2は接点a
−b側に接続されている。また第1製氷室11の
温度は室温程度に保持されているため、製氷検知
サーモTh1は接点c−a側に接続されている。従
つて、電源投入と同時に圧縮機CM、フアンモー
タFM、ポンプモータPMへの通電が開始され、
製氷運転に入る。これにより第1製氷室11に設
けた蒸発器14に冷媒が循環供給され、当該第1
製氷室11の冷却がなされる。また製氷水タンク
19からの製氷水は分配管24にポンプ圧送さ
れ、該分配管24の各噴水孔25および第2製氷
室12の通孔12aを介して、両製氷小室13,
15に画成される球状空間中に噴射される。
Effects of the Embodiment Next, a deicing control method implemented by operating the above-mentioned automatic ice maker will be described. During ice-making operation, the second ice-making chamber 12 is opened as shown in Fig. 1.
In this case, the first ice making chamber 11 is closed from below, and each first ice making chamber 11 is closed from below.
The ice-making chamber 13 and each of the second ice-making chambers 15 are associated with each other to define an ice-forming space therein. In this state, turn on the power to the automatic ice maker. At this time,
Since no ice is stored in the ice storage, the ice storage detection switch S2 is closed, and the changeover switch S2 is closed at contact a.
- connected to the b side. Furthermore, since the temperature of the first ice-making chamber 11 is maintained at about room temperature, the ice-making detection thermometer Th1 is connected to the contact point ca side. Therefore, power is applied to the compressor CM, fan motor FM, and pump motor PM at the same time as the power is turned on.
Start ice making operation. As a result, the refrigerant is circulated and supplied to the evaporator 14 provided in the first ice-making compartment 11.
The ice making compartment 11 is cooled. The ice-making water from the ice-making water tank 19 is pumped to the distribution pipe 24, and is passed through the water fountains 25 of the distribution pipe 24 and the through hole 12a of the second ice-making compartment 12 to both the small ice-making compartments 13,
It is injected into a spherical space defined by 15.

噴射された製氷水は、第1製氷小室13の内面
に接触して冷却され、下方の第2製氷小室15を
潤した後、前記通孔12aを介して前記球状空間
から排出される。この未氷結水は、水皿38に穿
設した前記戻り孔26を介して、製氷水タンク1
9に戻されて再度の循環に供される。そして製氷
水の循環が反復される内に、タンク19中に貯留
される製氷水全体の温度が次第に低下すると共
に、第2製氷小室15の温度も同様に次第に低下
する。
The injected ice-making water contacts the inner surface of the first ice-making chamber 13 and is cooled, moistens the second ice-making chamber 15 located below, and then is discharged from the spherical space through the through hole 12a. This unfrozen water is transferred to the ice-making water tank 1 through the return hole 26 formed in the water tray 38.
9 and subjected to circulation again. As the circulation of the ice-making water is repeated, the temperature of the entire ice-making water stored in the tank 19 gradually decreases, and the temperature of the second ice-making chamber 15 also gradually decreases.

そして、先ず第1製氷小室13の内壁面で製氷
水の謂部が凍結して氷層が形成され始め(第2図
参照)、未氷結水は通孔12aおよび戻り孔26
からタンク19に帰還する運転を重ねる間に、前
記氷層の成長が更に進行して、第3図および第4
図に示す如く、最終的に両製氷小室13,15形
成される球状空間中に球状氷1が生成される。な
お、第2図に示す製氷状態となつたタイミングを
もつて製氷運転を終了させると、第13図cに示
す如き中空の球状氷1が得られる。このようにし
て得た中空氷は、その内部空間にチエリー等の食
材や、ジユース等の飲料および花びら等の観賞材
を入れることによつて、新たな氷の需要を喚起さ
せることができる。更に、この中空氷の穴あき部
(噴水孔25と戻り孔26とに対応する部分)を
下唇にあてて吹くことにより、笛(氷笛)として
も使用できて、独特の趣きが得られる。
First, the so-called ice-making water freezes on the inner wall surface of the first ice-making chamber 13 and an ice layer begins to form (see FIG. 2), and the unfrozen water flows through the through hole 12a and the return hole 26.
During the repeated operation of returning from the ice to the tank 19, the growth of the ice layer further progresses, as shown in Figures 3 and 4.
As shown in the figure, spherical ice 1 is produced in the spherical space where both ice-making chambers 13 and 15 are finally formed. If the ice making operation is ended at the timing when the ice making state shown in FIG. 2 is reached, hollow spherical ice 1 as shown in FIG. 13c is obtained. The hollow ice obtained in this way can stimulate new demand for ice by filling the inner space with food such as cherry blossoms, beverages such as youth, and ornamental materials such as flower petals. Furthermore, by placing the perforated part of the hollow ice (the part corresponding to the fountain hole 25 and the return hole 26) against the lower lip and blowing, it can be used as a whistle (ice flute), giving a unique taste. .

第4図に示す如く、球状氷の製造が完了し、第
1製氷室11の温度が所要の温度域まで低下する
と、これを検知した製氷検知サーモTh1が接点c
−a側から接点c−b側に切換わり、ポンプモー
タPMへの通電が停止され、製氷水の循環供給を
停止する(第12図のタイミングチヤート参照)。
なお、圧縮機CMおよびフアンモータFへの通電
は継続されるので、蒸発器14への冷媒の供給を
続行する。また第2製氷室12は、球状氷1の生
成により所要温度以下に低下しているので、前記
温度検知サーモTh3は接点a−b側に接続されて
おり、従つてリレーXが通電励磁されて常開接点
X−aを閉成し、給水弁WVを開放する。これに
より、第5図に示す如く、外部水道系に接続する
給水管27から水皿38の表面に画成してある前
記水溜部65に給水を開始する。
As shown in FIG. 4, when the production of spherical ice is completed and the temperature of the first ice-making chamber 11 falls to the required temperature range, the ice-making detection thermo Th 1 detecting this drops to the contact point c.
The contact is switched from the -a side to the contact c-b side, the power supply to the pump motor PM is stopped, and the circulating supply of ice-making water is stopped (see the timing chart in FIG. 12).
Note that since the compressor CM and the fan motor F continue to be energized, the supply of refrigerant to the evaporator 14 continues. Furthermore, since the temperature in the second ice making chamber 12 has dropped below the required temperature due to the formation of the spherical ice 1, the temperature detection thermometer Th3 is connected to the contact point a-b side, and therefore the relay X is energized and energized. to close the normally open contact X-a and open the water supply valve WV. As a result, as shown in FIG. 5, water starts to be supplied from the water supply pipe 27 connected to the external water supply system to the water reservoir 65 defined on the surface of the water tray 38.

給水弁WVを介して供給される水道水は、排水
孔63からタンク19に流下する量に比べ多量で
あるので、水溜部65での水位は次第に上昇し、
遂には水皿38の堰止め部62からオーバーフロ
ーするに到る。オーバーフローする際の水溜部6
5の水面レベルは、第2製氷室12の上端近傍に
到来するよう設定しておくことにより、常温の水
道水は第2製氷室12を主として加熱することが
できる。なお、リレーXの常閉接点X−bは開放
するので、前記ホツトガス弁HVは閉成してい
る。
Since the tap water supplied via the water supply valve WV is larger than the amount flowing down from the drain hole 63 to the tank 19, the water level in the water reservoir 65 gradually rises.
Eventually, the water overflows from the damming part 62 of the water tray 38. Water reservoir part 6 when overflowing
By setting the water surface level 5 near the upper end of the second ice-making compartment 12, tap water at room temperature can primarily heat the second ice-making compartment 12. Note that since the normally closed contact X-b of the relay X is open, the hot gas valve HV is closed.

ここで、第1製氷室11は引続き冷却されてい
るので、該第1製氷室11は製氷完了温度近くに
維持されており、製氷検知サーモTh1は接点c−
b側に接続されている。また、第1製氷室11お
よび氷形成用空間に生成された氷塊を介して第2
製氷室12も冷却されるが、氷塊による冷却能力
よりも前記水溜部65に貯溜される水の熱容量の
方が大きいので、該第2製氷室12の温度は徐々
に上昇する。
Here, since the first ice-making compartment 11 is being continuously cooled, the first ice-making compartment 11 is maintained near the ice-making completion temperature, and the ice-making detection thermometer Th 1 is connected to the contact c-
Connected to the b side. In addition, the ice cubes generated in the first ice making chamber 11 and the ice forming space are
The ice making compartment 12 is also cooled, but since the heat capacity of the water stored in the water reservoir 65 is greater than the cooling capacity of the ice blocks, the temperature of the second ice making compartment 12 gradually rises.

前記堰止め部62からのオーバーフロー水は、
水皿38の先端からタンク19内に流下する。こ
の水皿先端部から流入する水と、前記排水孔63
から流下する水とによりタンク19内の水位は次
第に上昇し、短時間でタンク先端部から溢流して
前記待機位置にある氷案内板67に沿いつつ排水
皿69から機外へ排出される。
The overflow water from the dam 62 is
The water flows down from the tip of the water dish 38 into the tank 19. The water flowing from the tip of this water tray and the drain hole 63
The water level in the tank 19 gradually rises due to the water flowing down from the tank 19, and in a short time it overflows from the tip of the tank and is discharged from the drain tray 69 to the outside of the machine along the ice guide plate 67 in the standby position.

第2製氷室12、水溜部65および溝通路72
に貯溜される水道水で加熱されて温度上昇し、第
2製氷小室15の壁面と球氷との氷結力が低下す
る。また、第1製氷室11との近接面に形成され
た氷の固着力も弱まる。このように第2製氷室1
2の温度が上昇すると、これを前記サーモTh3
検出して、その接点a−bを接点a−c側に切換
える。これによりリレーXが滅勢されて常開接点
X−aを開放すると共に、常閉接点X−bを閉成
し、第12図のタイミングチヤート図に示す如
く、給水弁WVを閉成する。また、アクチユエー
タモータAMの傾動駆動用端子mを介して通電が
なされ、当該モータAMを駆動することにより、
そのカムレバー17が第1図において反時計方向
への回動を開始する。
Second ice making compartment 12, water reservoir 65 and groove passage 72
The ice cubes are heated by the tap water stored in the ice cubes and the temperature rises, and the freezing force between the wall surface of the second ice making chamber 15 and the ice cubes decreases. Furthermore, the adhesion force of the ice formed on the surface adjacent to the first ice making chamber 11 is also weakened. In this way, the second ice making compartment 1
When the temperature of No. 2 rises, the thermometer Th 3 detects this and switches the contact a-b to the contact a-c side. This deenergizes the relay X, opening the normally open contact X-a and closing the normally closed contact X-b, thereby closing the water supply valve WV as shown in the timing chart of FIG. Also, by energizing through the tilting drive terminal m of the actuator motor AM and driving the motor AM,
The cam lever 17 begins to rotate counterclockwise in FIG.

これにより、第6図に示す如く、カムレバー1
7の基部に形成したカム面17bが水皿38の側
部61の上面を強制的に下方に押圧する。既に述
べた如く、第2製氷室12は水道水により加熱さ
れて、第1製氷室11と球状氷1との固着力は低
下しているので、当該水皿38および第2製氷室
12は、第1製氷室11から強制剥離されて斜め
下方に傾動し始める。この水皿38およびタンク
19傾動により、当該タンク19内の製氷水と水
溜部内の水とは外部に廃棄される。
As a result, as shown in FIG. 6, the cam lever 1
A cam surface 17b formed at the base of the water tray 7 forcibly presses the upper surface of the side portion 61 of the water tray 38 downward. As already mentioned, the second ice making compartment 12 is heated by tap water and the adhesion force between the first ice making compartment 11 and the spherical ice 1 is reduced, so the water tray 38 and the second ice making compartment 12 are It is forcibly separated from the first ice making chamber 11 and begins to tilt diagonally downward. By tilting the water tray 38 and the tank 19, the ice-making water in the tank 19 and the water in the water reservoir are disposed of to the outside.

水皿38の傾動途中において、軸68に一体的
に配設された反転レバー(図示せず)を水皿組の
一部で押すことにより前記の氷案内板67が反転
し、水皿38に寄りかかつた状態で傾動する。水
皿38が最大限に傾動したタイミングをもつて、
前記レバー片37が切換スイツチS2を押圧付勢
し、その接点a−bを接点a−c側に切換える。
これによりモータAMはその回転を停止して水皿
38の傾動を停止させる。氷案内板67、先に述
べた如く、第2製氷室12の上面を覆つて氷塊滑
落用の円滑面を提供している。
During the tilting of the water tray 38, by pushing a reversing lever (not shown) integrated with the shaft 68 with a part of the water tray assembly, the ice guide plate 67 is reversed, and the ice guide plate 67 is turned over. Tilt while leaning. At the timing when the water tray 38 is tilted to the maximum,
The lever piece 37 presses and urges the changeover switch S2 to switch its contacts a-b to contacts a-c.
As a result, the motor AM stops its rotation and the tilting of the water tray 38 is stopped. As mentioned above, the ice guide plate 67 covers the upper surface of the second ice making chamber 12 and provides a smooth surface for ice cubes to slide down.

更に、前記スイツチS2の切換えにより、凝縮器
用フアンモータFMが停止すると共に、ホツトガ
ス弁HVが開放して蒸発器14にホツトガスが供
給され、第1製氷室11の加温がなされて、第1
製氷小室13の内面と球状氷1との氷結面の融解
を開始する。また、給水弁WVが開弁して傾動停
止している水皿38および第2製氷室12の洗浄
を行なう。
Furthermore, by switching the switch S2 , the condenser fan motor FM is stopped, the hot gas valve HV is opened, hot gas is supplied to the evaporator 14, the first ice making compartment 11 is heated, and the first ice making chamber 11 is heated.
The frozen surface between the inner surface of the ice-making chamber 13 and the spherical ice 1 begins to melt. In addition, the water supply valve WV is opened to clean the water tray 38 and the second ice making compartment 12, which are not tilted.

前記第1製氷室11は、前述の如く、水皿38
が傾動開放するまで冷却が続行されているので、
球状氷1と第1製氷小室13の内面との氷結力
(固着力)は強く、第2製氷室12の開放時に球
状氷1は、第6図に示すように、第1製氷小室1
3に固着している。しかるに、蒸発器14には先
程よりホツトガスが循環しているから、第1製氷
室11は温度上昇中である。そして、第1製氷小
室13が或る程度加温されると、第7図に示す如
く、小室壁面と球状氷1との氷結が解除されて自
重落下し、傾動待機している前記氷案内板67の
表面に落着し貯氷庫(図示せず)に滑落回収され
る。なお、除氷検知サーモTh2は、その開放状態
を保持しているので、アクチユエータモータAM
の復帰指令は未だ出されない。
As mentioned above, the first ice making chamber 11 has a water tray 38.
Cooling continues until the tip is opened, so
The freezing force (adhesion force) between the spherical ice 1 and the inner surface of the first ice-making chamber 13 is strong, and when the second ice-making chamber 12 is opened, the spherical ice 1 sticks to the first ice-making chamber 1 as shown in FIG.
It's stuck at 3. However, since hot gas has been circulating in the evaporator 14 since a while ago, the temperature in the first ice making chamber 11 is rising. When the first ice making chamber 13 is heated to a certain degree, as shown in FIG. 7, the spherical ice 1 is unfrozen from the chamber wall and falls under its own weight, causing the ice guide plate, which is waiting to be tilted, to It lands on the surface of ice cube 67 and is collected by sliding into an ice storage (not shown). Note that since the de-icing detection thermo Th 2 maintains its open state, the actuator motor AM
A reinstatement order has not yet been issued.

このように、球状氷1が全て第1製氷小室13
から離脱すると、第8図に示す如く、第1製氷室
11は蒸発器14に循環しているホツトガスによ
り一挙に温度上昇する。この温度上昇を除氷検知
サーモTh2が検知すると、該サーモTh2は閉成し
てアクチユエータモータAMにおける復帰駆動用
端子nへの通電がなされ、該モータAMが逆回転
してカムレバー17を駆動する。従つて該レバー
17と水皿38との間に弾力的に係着したコイル
スプリング18により、水皿38および製氷水タ
ンク19を反時計方向に回動付勢し、水平状態に
復帰させることによつて、第1製氷室11を再び
下方から閉成る。なお、水皿38上に供給されて
前記水溜部65に貯留する水道水は前記排水孔6
3介して製氷水タンク19に流入し、水位の低下
したタンク19に新たな製氷水として供給され
る。
In this way, all the spherical ice 1 is stored in the first ice making chamber 13.
When the first ice-making chamber 11 is separated from the ice-making chamber 11, the temperature of the first ice-making chamber 11 rises all at once due to the hot gas circulating in the evaporator 14, as shown in FIG. When the de-icing detection thermo Th 2 detects this temperature rise, the thermo Th 2 closes and the return drive terminal n of the actuator motor AM is energized, and the motor AM reversely rotates and the cam lever 17 to drive. Therefore, the coil spring 18 elastically engaged between the lever 17 and the water tray 38 urges the water tray 38 and the ice-making water tank 19 to rotate counterclockwise to return them to the horizontal state. Therefore, the first ice making chamber 11 is closed again from below. Note that the tap water supplied onto the water tray 38 and stored in the water reservoir 65 flows through the drain hole 6.
The ice-making water flows into the ice-making water tank 19 through the ice-making water tank 19, and is supplied as new ice-making water to the tank 19 whose water level has decreased.

次いで、前記モータAMの逆回転によりカムレ
バー17も逆回転し、前記切換えスイツチS2を押
圧付勢して、その接点a−cをa−b側に切換え
る。これにより給水弁WVおよびホツトガス弁
HVが閉成して、製氷水およびホツトガスの供給
が停止される。そして、初期状態に復帰して製氷
運転が再開され、前述した動作を繰り返す。製氷
運転と除氷運転とが反復されて、貯氷庫に所定量
の球状氷が貯留されると、貯氷検知スイツチS1
開放して製氷機の運転が停止される。
Next, due to the reverse rotation of the motor AM, the cam lever 17 is also rotated in the reverse direction, pressing and energizing the changeover switch S2 to switch its contacts ac to the ab side. This allows the water supply valve WV and hot gas valve to
The HV is closed and the supply of ice making water and hot gas is stopped. Then, the ice making operation is resumed by returning to the initial state, and the above-described operations are repeated. When the ice making operation and the ice removal operation are repeated and a predetermined amount of spherical ice is stored in the ice storage, the ice storage detection switch S1 is opened and the operation of the ice maker is stopped.

図示例では、加熱手段として水皿表面に形成し
た水溜部に貯溜した外部水道水を使用する場合に
つき説明したが、これに限定されるものではな
い。例えば、第2製氷室にヒータを埋設し、除氷
運転に際して該ヒータの通電加熱を行なうように
してもよい。また、水道水としヒータとを併用し
たり、前記水溜部に冷凍系の高温部を浸漬して水
道水を加温することにより、第2製氷室の加熱促
進を図つてもよい。
In the illustrated example, a case has been described in which external tap water stored in a water reservoir formed on the surface of the water tray is used as the heating means, but the present invention is not limited to this. For example, a heater may be embedded in the second ice-making compartment, and the heater may be heated with electricity during the deicing operation. Further, heating of the second ice making compartment may be accelerated by using tap water in combination with a heater or by immersing a high temperature part of a refrigeration system in the water reservoir to warm the tap water.

発明の効果 以上説明した如く、本発明に係る除氷制御方法
によれば、下方に開放する第1製氷小室を備えた
第1製氷室と、上方に開放する第2製氷小室が画
成された第2製氷室とを基本的に備え、両製氷小
室の閉成により内部画成される氷形成用空間で氷
塊を生成する製氷機に関連して、除氷運転に際し
第2製氷室を加熱し、氷塊を前記第1製氷小室に
確実に残留させた状態のまま、第2製氷室を第1
製氷室から強制的に離脱させる。
Effects of the Invention As explained above, according to the deicing control method according to the present invention, a first ice-making chamber including a first ice-making chamber that opens downward and a second ice-making chamber that opens upward are defined. In connection with an ice maker that basically includes a second ice maker and generates ice blocks in an ice forming space defined internally by closing both ice maker compartments, the second ice maker is heated during deicing operation. , while the ice cubes remain in the first ice-making compartment, the second ice-making compartment is replaced with the first ice-making compartment.
Forcibly remove it from the ice maker.

すなわち、除氷運転に際し第1および第2製氷
室を同時に加熱するものではなく、加熱手段によ
り第2製氷室を加熱しているので、脱氷のため第
1製氷室から第2製氷室を強制離脱させても、氷
塊群は第1製氷小室に未だ氷結状態で残留してい
る。従つて、第2製氷室が傾動作動しても、該第
2製氷室に上方を指向して開口している第2製氷
小室に、落下氷塊が引掛かつて残留したり、貯氷
庫への氷塊の円滑な落下が妨げられることなく、
円滑に除去し得る。
In other words, the first and second ice-making compartments are not heated simultaneously during deicing operation, but the second ice-making compartment is heated by the heating means, so the second ice-making compartment is forced from the first ice-making compartment for deicing. Even if they are removed, the ice cubes still remain in the first ice making chamber in a frozen state. Therefore, even if the second ice-making compartment is tilted, falling ice cubes may get caught and remain in the second ice-making compartment that opens upward to the second ice-making compartment, and ice cubes may not be deposited into the ice storage. A smooth fall is not hindered,
Can be removed smoothly.

なお球状氷の製造につき説明したが、本発明は
これに限定されるものではなく、他の形状を有す
る多面体氷の製造にも実施できることは勿論であ
る。
Although the explanation has been given regarding the production of spherical ice, the present invention is not limited thereto, and it goes without saying that it can also be implemented to produce polyhedral ice having other shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明に係る除氷制御方法を
好適に実施し得る自動製氷機の製氷機構の概略構
成を夫々示す縦断面図であつて、第1図は第1製
氷室に対し第2製氷室を閉成して、製氷運転を開
始した初期の状態を示し、第2図は製氷が進行し
て両製氷小室中に中空の球状氷が形成された状態
を示し、第3図は製氷完了に近づき始めた段階に
おいて、両製氷小室中に略中実な球状氷が形成さ
れ、タンク中の製氷水の水位が低下している状態
を示し、第4図は略製氷が完了して両製氷小室中
に中実な球状氷が形成された状態を示し、第5図
は製氷が完了して給水弁が開放し、水溜部での水
位上昇により堰止め部からオーバーフローした水
が、氷案内板の裏面に沿つて流下して排水皿から
機外へ排出される状態を示し、第6図はアクチユ
エータモータが付勢されて第2製氷室を時計方向
に傾動開放し、氷案内板を第2製氷室の上面に倒
れ込ませて各第2製氷小室を塞いだ状態を示し、
第7図は第1製氷室から球状氷が落下して、その
直下に傾斜位置する氷案内板を滑落する状態を示
し、第8図は除氷が完了して、第2製氷室が反時
計方向に回動復帰し始めると共に、氷案内板も原
位置に戻される状態を夫々示し、第9図は第1図
に示す第2製氷室を縦断した状態で裏面側から観
察した概略斜視図、第10図は自動製氷機におけ
る一般的な冷凍系の回路図、第11図は実施例に
係る製氷機を運転制御する製氷制御回路の一例を
示す回路図、第12図は実施例に係る製氷装置
を、第11図に示す製氷制御回路により運転制御
した際のタイミングチヤート図、第13図aは球
状氷を示す説明図、第13図bは多面状氷を示す
説明図、第13図cは中空の球状氷を示す説明図
である。 11……第1製氷室、12……第2製氷室、1
3……第1製氷小室、14……蒸発器、15……
第2製氷小室。
1 to 8 are vertical cross-sectional views showing the schematic configuration of the ice making mechanism of an automatic ice maker that can suitably implement the deicing control method according to the present invention, and FIG. On the other hand, Fig. 2 shows the initial state when the second ice-making compartment is closed and ice-making operation has started, and Fig. 2 shows the state where hollow spherical ice is formed in both ice-making compartments as ice making progresses. The figure shows a state where almost solid spherical ice is formed in both ice-making chambers and the water level of the ice-making water in the tank is decreasing as the ice-making process approaches completion.Figure 4 shows that ice-making is almost complete. Figure 5 shows the state in which solid spherical ice is formed in both ice-making chambers. Figure 5 shows that ice-making is completed, the water supply valve is opened, and the water overflows from the dam due to the water level rising in the water reservoir. , the ice flows down along the back surface of the ice guide plate and is discharged from the drain tray to the outside of the machine. In Fig. 6, the actuator motor is energized to tilt and open the second ice-making compartment clockwise. A state in which the ice guide plate is collapsed onto the upper surface of the second ice-making compartment to block each of the second ice-making compartments,
Figure 7 shows the state in which spherical ice falls from the first ice-making compartment and slides down the ice guide plate located slanted directly below it, and Figure 8 shows the state in which ice is removed and the second ice-making compartment is moved counterclockwise. FIG. 9 is a schematic perspective view of the second ice making chamber shown in FIG. 1 observed from the back side in a longitudinally sectional state; Fig. 10 is a circuit diagram of a general refrigeration system in an automatic ice maker, Fig. 11 is a circuit diagram showing an example of an ice making control circuit for controlling the operation of the ice maker according to the embodiment, and Fig. 12 is an ice making system according to the embodiment. A timing chart when the device is controlled by the ice-making control circuit shown in FIG. 11, FIG. 13a is an explanatory diagram showing spherical ice, FIG. 13b is an explanatory diagram showing multifaceted ice, and FIG. 13c is an explanatory diagram showing hollow spherical ice. 11...First ice making room, 12...Second ice making room, 1
3...First ice making compartment, 14...Evaporator, 15...
Second ice making room.

Claims (1)

【特許請求の範囲】[Claims] 1 下方に開放する第1製氷小室13を多数備
え、背面に蒸発器14を設けた第1製氷室11
と、上方に開放する第2製氷小室15を多数備
え、前記第1製氷室11を下方から閉成可能に配
設した第2製氷室12と、除氷運転に際して第2
製氷室12を加熱する加熱手段とからなる自動製
氷機において、前記第1および第2製氷小室1
3,15に画成される空間での氷塊の形成を検知
した後、第2製氷小室15を前記加熱手段により
加熱して、第1製氷小室13に氷塊が付着してい
る状態のまま第1製氷室11から前記第2製氷室
12を離脱させると共に、加熱手段を停止させ、
次いで冷凍系における冷媒循環系統の弁を切換
え、前記蒸発器14にホツトガスを循環供給して
第1製氷室11を加熱することにより、第1製氷
小室13から氷塊を融解離脱させることを特徴と
する自動製氷機の除氷制御方法。
1. A first ice-making chamber 11 equipped with a large number of first ice-making chambers 13 that open downward and an evaporator 14 on the back side.
and a second ice-making compartment 12 which is provided with a large number of second ice-making compartments 15 that open upwardly and which is arranged so that the first ice-making compartment 11 can be closed from below;
In an automatic ice making machine comprising heating means for heating an ice making compartment 12, the first and second ice making compartments 1
After detecting the formation of ice cubes in the space defined by ice cubes 3 and 15, the second ice making chamber 15 is heated by the heating means, and the second ice making chamber 15 is heated with the ice cubes attached to the first ice making chamber 13. removing the second ice-making compartment 12 from the ice-making compartment 11 and stopping the heating means;
Next, the valve of the refrigerant circulation system in the refrigeration system is switched, and hot gas is circulated and supplied to the evaporator 14 to heat the first ice-making chamber 11, thereby melting and detaching the ice block from the first ice-making chamber 13. Deicing control method for automatic ice maker.
JP30973188A 1988-12-06 1988-12-06 Deicing control method for automatic ice making machine Granted JPH02154962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30973188A JPH02154962A (en) 1988-12-06 1988-12-06 Deicing control method for automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30973188A JPH02154962A (en) 1988-12-06 1988-12-06 Deicing control method for automatic ice making machine

Publications (2)

Publication Number Publication Date
JPH02154962A JPH02154962A (en) 1990-06-14
JPH0551834B2 true JPH0551834B2 (en) 1993-08-03

Family

ID=17996615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30973188A Granted JPH02154962A (en) 1988-12-06 1988-12-06 Deicing control method for automatic ice making machine

Country Status (1)

Country Link
JP (1) JPH02154962A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968563B1 (en) 2011-07-15 2019-08-20 엘지전자 주식회사 Ice maker

Also Published As

Publication number Publication date
JPH02154962A (en) 1990-06-14

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH0532668B2 (en)
JPH0544587B2 (en)
JPH0541913B2 (en)
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH0544586B2 (en)
JPH0551834B2 (en)
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH0543951B2 (en)
JPH0543949B2 (en)
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH0551832B2 (en)
JPH0543948B2 (en)
JPH01234768A (en) Ice making structure of automatic ice making machine
JPH0551831B2 (en)
JPH0565780B2 (en)
JPH0554027B2 (en)
JPH0551830B2 (en)
JPH02161272A (en) Ice making structure of automatic ice machine
JPH061141B2 (en) Automatic ice machine
JPH0615279Y2 (en) Evaporator structure of automatic ice machine
JPH02143069A (en) Water guiding structure of automatic ice making machine
JPH02143072A (en) Ice removing structure for automatic ice making machine
JPH02143071A (en) Ice removing structure for automatic ice making machine
JPH0551835B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees