JPH02161272A - Ice making structure of automatic ice machine - Google Patents

Ice making structure of automatic ice machine

Info

Publication number
JPH02161272A
JPH02161272A JP31445088A JP31445088A JPH02161272A JP H02161272 A JPH02161272 A JP H02161272A JP 31445088 A JP31445088 A JP 31445088A JP 31445088 A JP31445088 A JP 31445088A JP H02161272 A JPH02161272 A JP H02161272A
Authority
JP
Japan
Prior art keywords
ice
making
water
chamber
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31445088A
Other languages
Japanese (ja)
Inventor
Yasuo Hara
安夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP31445088A priority Critical patent/JPH02161272A/en
Publication of JPH02161272A publication Critical patent/JPH02161272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To block a supply hole and a discharge hole by an ice layer for growing in a space to make possible the production of a hollow globular ice before a solid lump of ice is produced in the ice forming space at the time of ice making operation by composing the pictured part of the ice making water supply hole and discharge hole drilled on the bottom part of a second ice making chamber of a good heat conductor. CONSTITUTION:Since a second ice making chamber 12 is composed of a good heat conductor, the drilled parts of a supply hole 12a and a discharge hole 12b is composed of a heat good conductor. Accordingly, an ice layer is produced on the inner face of the supply hole 12a and the discharge hole 12b together with the production of the ice layer in a first and a second ice making small chambers 13, 15. The ice layer growing in a globular space is combined with the other ice layer growing on the inner faces of the supply hole 12a and the discharge hole 12b to block the supply hole 12a and the discharge hole 12b. Thereby, a hollow globular ice 1 is produced in a globular space formed in both the ice making small chambers 13, 15.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば球体状や多面体状で中空の氷塊群を
、全自動で大量に製造し得る自動製氷機の製氷構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an ice-making structure of an automatic ice-making machine that can fully automatically produce large quantities of hollow ice cubes, for example, spherical or polyhedral.

従来技術 各種の産業分野で、サイコロ状の角氷や所要厚みの板氷
その他フレーク状の氷片等を大量に連続製造する自動製
氷機が、その用途に応じて好適に使い分けられている。
BACKGROUND OF THE INVENTION In various industrial fields, automatic ice making machines that continuously produce large quantities of dice-shaped ice cubes, ice sheets of a required thickness, and ice flakes are suitably used depending on the application.

例えば、前記の角氷を製造する製氷機として、 ■製氷室に下向きに多数画成した立方体状の製氷小室を
、その下方から水皿により開閉自在に閉成し、当該水皿
から製氷水を各製氷小室に噴射供給して、該製氷小室中
に角氷を徐々に形成するようにした所謂クローズドセル
方式や、 ■下方に開放する多数の立方体状の製氷小室に製氷水を
直接供給し、角氷を該製氷小室中に形成するようにした
所謂オープンセル方式が知られている。また、板氷や細
粒状のクラッシュアイスを連続製造する製氷機、その他
フレーク状の氷片を連続製造するオーガ式製氷機等も実
施されている。
For example, as an ice maker for producing ice cubes as described above, (1) A large number of cubic ice making compartments are defined downward in the ice making compartment, which can be opened and closed from below with a water tray, and ice making water is poured from the water tray. The so-called closed cell method, in which ice cubes are gradually formed in each ice-making chamber by injection water supply; A so-called open cell system is known in which ice cubes are formed in the ice making compartment. In addition, ice makers that continuously produce sheet ice or fine crushed ice, and auger-type ice makers that continuously produce ice flakes are also in use.

発明が解決しようとする課題 従来の各種製氷機により製造される氷は、前述した如く
、立方体状の角氷や板氷、その他フレーク状の氷片やク
ラッシュアイスが殆どである。これらの氷で所要の定形
を備え、そのまま飲料に浮かせたり、各種食材の冷却ベ
ツドに供したり出来るのは、僅かに前記の角氷があるに
過ぎない(板氷も定形は備えているが1通常そのままの
寸法では使用し得ない)。
Problems to be Solved by the Invention As mentioned above, most of the ice produced by various conventional ice making machines are cube-shaped ice cubes, sheet ice, other flaky ice pieces, and crushed ice. Only the above-mentioned ice cubes have the required shape and can be floated on drinks or used as a cooling bed for various foodstuffs (sheet ice also has a shape, but (Usually cannot be used with the same dimensions.)

しかるに最近の喫茶店やレストランその他の飲食施設で
は、同種営業に対し種々の面で優位に立って顧客を吸引
するべく、他社との差別化を図る懸命な努力が払われて
いる。その−環として、例えば、従来より広く普及して
いる角氷に替えてボール状(球体状)の氷塊を使用し、
これにより顧客に目先の新しい変化を提供しようとする
傾向がみ受けられる。
However, in recent years, coffee shops, restaurants, and other food and beverage establishments have been making strenuous efforts to differentiate themselves from other companies in order to gain an advantage over similar businesses in various ways and attract customers. As the ring, for example, a ball-shaped (spherical) block of ice can be used instead of the ice cubes that have been widely used in the past.
As a result, there is a tendency to try to provide immediate new changes to customers.

しかしこの球状水は、広く飲食に供されることから、空
気混入による白濁がなく、清澄な透明氷塊でなければ商
品価値は低下する。また大量に製造可能であることを必
要とするが、従来この種の要請を満たす球状水の自動製
氷機は存在しなかった。そこで本願の発明者は、透明で
清澄な球状水を大量に製造し得る製氷機の開発に従事し
、前記の要請を充分に満足する機構を得たので、その基
本概念につき昭和63年1月29日付けで、発明「自動
製氷機」として特許出願を行なった。
However, since this spherical water is widely used for eating and drinking, its commercial value will decrease unless it is clear and transparent ice cubes without cloudiness due to aeration. It also needs to be able to be produced in large quantities, but there has been no automatic ice-making machine for spherical water that meets this type of requirement. Therefore, the inventor of the present application engaged in the development of an ice making machine capable of producing a large amount of transparent and clear spherical water, and having obtained a mechanism that fully satisfies the above requirements, the inventor developed the basic concept in January 1988. On the 29th, he filed a patent application for his invention, an "automatic ice maker."

先の出願に係る製氷機は、■下方に114放す6第1製
氷小室を多数画成し、背面に蒸:R1器を備えた第11
氷室と、■上方に開放する第2製氷小室を多数画成した
第2製氷室とを基本的に備え、製氷運転に際し両製氷小
室が対応的に閉成して、その内部に球体等の異形氷を形
成する空間を画成するものである。
The ice making machine according to the previous application has a number of 6 first ice making chambers with 114 holes downward, and an 11th ice making chamber equipped with a steamer: R1 on the back side.
Basically, it is equipped with an ice chamber and a second ice-making chamber which has a number of second ice-making chambers that are open upwards, and both ice-making chambers are closed correspondingly during ice-making operation, and inside the second ice-making chamber there is an irregular shape such as a sphere. It defines the space in which ice forms.

ここで、当該製氷機で製造した球状水は勿論、前述した
従来技術に係る製氷機で製造した角氷等は、何れも中実
な氷塊であって、使用に際しては小さな氷片になるまで
冷却能力を有している。ところが、ジュースやアルコー
ル等の飲料に供される氷塊は、喫飲者が飲料を飲み干し
た後であっても、殆ど溶けることなく残っており、これ
らの氷塊は冷却能力があるにも拘らず全て廃棄される。
Here, not only the spherical water produced by this ice maker, but also the ice cubes produced by the ice maker according to the prior art described above are solid ice blocks, and when used, they are cooled until they become small ice pieces. have the ability. However, ice cubes served with drinks such as juice and alcohol remain unmelted even after the drinker has finished the drink, and despite their cooling capacity, all ice cubes remain unmelted. Will be discarded.

すなわち、このように短時間の冷却に使用される氷塊は
極めて僅かな部分しか利用されず、該氷塊を中実にする
ために費やした製氷水や電力等は浪費されており、極め
て不経済である。
In other words, only a very small portion of the ice cubes used for short-time cooling is used, and the ice-making water, electricity, etc. used to solidify the ice cubes are wasted, which is extremely uneconomical. .

このような短時間の冷却に供される氷塊に関し、ユーザ
ー側からの要求により、該氷塊を製氷水や電力の浪費が
少なく、しかも多量かつ連続的に製造し得る自動製氷機
を求める要請がある。そこで、小型の氷塊を製造し、こ
れを短時間の冷却に使用することも考えられるが、小型
の氷塊は、その表面積が小さいために冷却能力が低く、
シかも溶は易いと云う嬬点があり、ユーザー側の要求に
応え得るものではない。
Regarding the ice cubes that are used for short-time cooling, there is a demand from users for an automatic ice maker that can continuously produce large quantities of ice cubes with less wastage of ice making water and electricity. . Therefore, it is possible to produce small ice cubes and use them for short-term cooling, but small ice cubes have a low cooling capacity due to their small surface area.
It has the disadvantage that it is easy to dissolve, and it cannot meet the demands of users.

発明の目的 この発明は、前述した課題に鑑み、これを好適に解決す
るべく提案されたものであって、例えば短時間の冷却に
好適に供される中空の氷塊を、経済的にしかも効率よく
製造し得る新規な製氷端造を提供することを目的とする
Purpose of the Invention The present invention has been proposed in view of the above-mentioned problems and to suitably solve the problems. The purpose of the present invention is to provide a novel ice-making end product that can be manufactured.

課題を解決するための手段 前述した課題を克服し、所期の目的を好適に達成するた
め、製氷水を製氷室に噴射供給して該製氷室内に氷塊を
形成し、氷結するに到らなかった製氷水は再循環に供す
るようにした自動製氷機において、 背面に蒸発器を備えて機内に固定配置され、下方に開放
する所要形状の第1製氷小室を多数形成した第1製氷室
と、 この第1製氷室に対して接離自在に配設され、前記第1
製氷小室の夫々を下方から対応的に閉成し得る所要形状
の第2製氷小室を多数形成した第2製氷室とからなり。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, ice-making water is injected into the ice-making chamber to form ice blocks within the ice-making chamber, without causing freezing. The automatic ice making machine is configured to recirculate the ice making water, and includes a first ice making compartment with an evaporator on the back, fixedly arranged inside the machine, and having a number of first ice making compartments each having a desired shape and opening downward; The first ice maker is arranged so as to be able to come into contact with and separate from the first ice maker.
It consists of a second ice-making chamber in which a large number of second ice-making chambers each having a desired shape are formed so that each of the ice-making chambers can be closed correspondingly from below.

前記第2製氷室の底部に穿設される製氷水供給孔および
排出孔の画成部位を熱良導体で構成したことを特徴とす
る。
The ice making water supply hole and the discharge hole formed in the bottom of the second ice making chamber are formed of a good thermal conductor.

実施例 次に、本発明に係る自動製氷機の爬氷慴W?につき、好
適な実施例を挙げて、添付図面を参照しながら以下説明
する。第1図は本発明の好適な実施例に係る製氷構造の
要部を示す縦断面図、第2図は本発明に係る自動製氷機
の主要製氷構造を製氷状態で概略的に示す縦断面図であ
る。なお、本発明の実施例では、第11図(a)に示す
中空の球状水1を連続jJIF?する自動製氷機につき
説明するが、後述する製氷小室の内部形状を変更するだ
けで、第11図(b)に示す如きダイヤカット状の中空
多面体水2の製造にも容易に対応し得る。
Example Next, the automatic ice making machine according to the present invention will be described. Hereinafter, preferred embodiments will be described with reference to the accompanying drawings. FIG. 1 is a vertical cross-sectional view showing the main parts of an ice-making structure according to a preferred embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view schematically showing the main ice-making structure of an automatic ice-making machine according to the present invention in an ice-making state. It is. In the embodiment of the present invention, the hollow spherical water 1 shown in FIG. 11(a) is continuously jJIF? An automatic ice making machine will be described, but by simply changing the internal shape of the ice making chamber, which will be described later, it can easily be adapted to the production of diamond-cut hollow polyhedral water 2 as shown in FIG. 11(b).

(第1および第2II!氷室について)第1図および第
2図に概略的に示す如く、所要直径をなす多数の球状水
を製造する製氷室1oは、水平に配設した第1製氷室1
1と、この第1製氷室11を下方から開閉自在に閉成可
能な第2製氷室12とから基本的に構成される。すなわ
ち、製氷機筐体(図示せず)の内部上方に、熱伝導率の
良好な金属を材質とする矩形状の第1製氷室11が水平
に配設固定され、所要の整列パターンで第1製氷小室1
3が、この第1製氷室11に下向きで多数凹設されてい
る。各第11氷小室13は半球状の凹部として形成され
、−例として直径30、深さ1.5cmに設定されてい
る。第1製氷室11の上面には、冷凍系(図示せず)か
ら導出した蒸発器14が蛇行状に密着固定され、当該冷
凍系の運転により蒸発器14における気化冷媒の熱交換
が促進されて、第1製氷室11が氷点下にまで冷却され
る。
(Regarding the first and second II! ice chambers) As schematically shown in FIGS. 1 and 2, the ice making chamber 1o that produces a large number of spherical water having the required diameter consists of a first ice making chamber 1 which is arranged horizontally.
1, and a second ice-making compartment 12 that can freely open and close the first ice-making compartment 11 from below. That is, a rectangular first ice-making chamber 11 made of a metal with good thermal conductivity is arranged and fixed horizontally in the upper part of the inside of an ice-making machine housing (not shown), and the first ice-making chamber 11 is arranged and fixed horizontally in a predetermined alignment pattern. Ice making room 1
3 are downwardly recessed in the first ice making chamber 11. Each eleventh ice chamber 13 is formed as a hemispherical recess, and has a diameter of 30 cm and a depth of 1.5 cm, for example. An evaporator 14 led out from a refrigeration system (not shown) is tightly fixed in a meandering manner on the upper surface of the first ice-making compartment 11, and heat exchange of the vaporized refrigerant in the evaporator 14 is promoted by operation of the refrigeration system. , the first ice making chamber 11 is cooled down to below freezing point.

第1製氷室11の直下には、銅の如き熱良導性の金属を
材質とする第2製氷室12が後述の如く傾動内7Eに配
設さ九、その製氷運転に際して、該第1fR氷室11を
下方から閉成すると共に、除水運転に際して、該第1製
氷室11を開放し得るようになっている。すなわち、第
2製氷室12には、前記第1製氷室11に凹設した第1
製氷小室13と対応して、同じく半球状凹部からなる第
2製氷小室15が上向きに所要の整列パターンで多数凹
設されている。この第2製氷小室15の直径も、−例と
して31であり、四部の深さは1.5cn+に設定され
ている。従って、第1製氷室11に対し第2製氷室12
を下方から閉成すると1両製氷小室13.15が相互に
対応して各小室内に直径3a++の球状空間が画成され
る。
Immediately below the first ice making chamber 11, a second ice making chamber 12 made of a metal with good thermal conductivity such as copper is disposed in the tilting interior 7E as described later. 11 from below, and the first ice making chamber 11 can be opened during water removal operation. That is, the second ice-making compartment 12 includes a first ice-making compartment recessed in the first ice-making compartment 11.
Corresponding to the ice-making chambers 13, a large number of second ice-making chambers 15, also made of hemispherical recesses, are recessed upward in a desired alignment pattern. The diameter of this second ice making chamber 15 is also 31, for example, and the depth of the four parts is set to 1.5 cn+. Therefore, the second ice making compartment 12 is different from the first ice making compartment 11.
When the ice-making compartments 13 and 15 are closed from below, the ice-making compartments 13 and 15 correspond to each other, and a spherical space with a diameter of 3a++ is defined within each compartment.

第2製氷室12は、前述の如く銅等の熱良導金属を材質
とするブロック体として構成され、各第2製氷小室15
に製氷水を噴射供給するための水fllL38が、当該
第2製氷室12の外底部にボルト60を介して一体的に
固定されている。また水皿38は、その後端部が直角に
立上がって後部64が形成され、この後部64の開放端
において製氷機筐体(図示せず)の固定部位に、枢軸1
6により傾動旋回可能に枢支され、後述のアクチュエー
タモータAMによって第2製氷室12と共に回動付勢さ
れる。すなわち、第6図に示す如く時計方向に回動すれ
ば、水皿38に一体固定した第2製氷室12は第1g1
lj氷小室13を開放し、また反時計方向に回動すれば
、第2図に示す如く第2製氷室12は第1製氷小室13
を閉成する。
As described above, the second ice-making chamber 12 is configured as a block body made of a metal with good thermal conductivity such as copper, and each of the second ice-making chambers 15
A water fllL38 for injecting and supplying ice-making water to the ice-making chamber 12 is integrally fixed to the outer bottom of the second ice-making chamber 12 via a bolt 60. The rear end of the water tray 38 stands up at a right angle to form a rear portion 64, and the open end of the rear portion 64 is attached to a fixed portion of the ice maker housing (not shown) with a pivot shaft 1.
6 so that it can tilt and turn, and is urged to rotate together with the second ice making chamber 12 by an actuator motor AM, which will be described later. That is, by rotating clockwise as shown in FIG. 6, the second ice making chamber 12 integrally fixed to the water tray 38 moves to the first
If the lj ice chamber 13 is opened and rotated counterclockwise, the second ice making chamber 12 becomes the first ice making chamber 13 as shown in FIG.
Close.

水皿38の裏面には、各第2製氷小室15と連通ずる噴
水孔25が対応的に穿設され、これら噴水孔25に製氷
水を供給する分配管24が同じく水皿38の裏面に蛇行
配置されている。また水皿38の下方には、前記分配管
24に製氷水を供給するための製氷水タンク19が一体
的に設けられている。
On the back side of the water tray 38, fountain holes 25 communicating with each of the second ice making chambers 15 are correspondingly bored, and a distribution pipe 24 for supplying ice making water to these fountain holes 25 also meanders on the back side of the water tray 38. It is located. Further, below the water tray 38, an ice-making water tank 19 for supplying ice-making water to the distribution pipe 24 is integrally provided.

第154に示す如く、第2爬水室12における各第2製
氷小室15の底部に供給孔12aが穿設され、前記水皿
38と第2製氷室12とを固定した際に、各噴水孔25
が前記供給孔12aと対応−致するよう寸法設定されて
いる。そしてこの供給孔12aは、後述する製氷運転に
際し、両製氷小室13.15に画成された氷形成用空間
に製氷水を供給するべく機能する。また、各第2y5氷
小室15の供給孔12aに隣設して排出孔12bが穿設
され、この排出孔12bは、前記水皿38の各噴水孔2
5に隣接して穿設した戻り孔26にi+t! 桶してい
る。従って、前記供給孔12aを介して氷形成用空間に
供給され、該空間中で氷結するに到らなかった製氷水(
以下r米水結水」という)は、排出孔12bおよび戻り
孔26を介して製氷水タンク19に帰還される。
As shown in No. 154, a supply hole 12a is bored at the bottom of each second ice-making chamber 15 in the second ice-making chamber 12, and when the water tray 38 and the second ice-making chamber 12 are fixed, each fountain hole 25
The dimensions are set so as to correspond to the supply hole 12a. The supply hole 12a functions to supply ice-making water to the ice-forming space defined in both ice-making compartments 13.15 during the ice-making operation to be described later. Further, a discharge hole 12b is provided adjacent to the supply hole 12a of each 2y5 ice chamber 15, and this discharge hole 12b is connected to each water fountain hole 2 of the water tray 38.
i+t! in the return hole 26 drilled adjacent to 5. It's a bucket. Therefore, the ice-making water (
The ice-making water tank 19 is returned to the ice-making water tank 19 through the discharge hole 12b and the return hole 26.

なお、第2製氷室12は熱良導体で構成されているので
、後述する製氷運転に際し、両製氷小室13.15で氷
結するに到らなかった未氷結水は、前記排出孔12bを
介して排出されるが、製氷運転が進行して氷形成用空間
中に所定厚みで氷層が生成されると、供給孔12aおよ
び排出孔12bは氷層で閉塞されるに到る。これにより
、当該氷形成用空間中に、中空の球状水1が生成される
Since the second ice-making chamber 12 is made of a good thermal conductor, during the ice-making operation described later, unfrozen water that has not frozen in both ice-making chambers 13 and 15 is discharged through the discharge hole 12b. However, as the ice making operation progresses and an ice layer with a predetermined thickness is generated in the ice forming space, the supply hole 12a and the discharge hole 12b become blocked by the ice layer. Thereby, hollow spherical water 1 is generated in the ice forming space.

(水皿傾動機構と水循環系とについて)水皿38を傾動
させるアクチュエータモータAMは減速機を備え、その
回転軸にカムレバー17およびレバー片37が半径方向
に延出するよう固定され、前記カムレバー17の先端1
7aと水皿38の前方端部との間に、コイルスプリング
18が弾力的に係着されている。前記カムレバー17の
基部に形成したカム而17bは、水皿38の側部61の
上面にカム係合可能に寸法設定されている。また第1製
氷室11を支持する固定部位に切換スイッチS2が配設
され、除氷運転に伴なうモータAMの回転により前記レ
バー片37が回動すると、前記切換スイッチS2が切換
えられて、モータAMを停止させ、前記水皿38を傾動
状態で停止させる。また冷凍系の弁を切り換えて、前記
蒸発器14にホットガスを流通させる機能も果す。
(Regarding the water pan tilting mechanism and water circulation system) The actuator motor AM for tilting the water pan 38 is equipped with a speed reducer, and the cam lever 17 and the lever piece 37 are fixed to the rotating shaft thereof so as to extend in the radial direction. tip 1
A coil spring 18 is elastically engaged between 7a and the front end of the water tray 38. The cam lever 17b formed at the base of the cam lever 17 is dimensioned so as to be able to cam engage with the upper surface of the side portion 61 of the water tray 38. Further, a changeover switch S2 is disposed at a fixed portion that supports the first ice making chamber 11, and when the lever piece 37 is rotated by the rotation of the motor AM accompanying the deicing operation, the changeover switch S2 is changed over. The motor AM is stopped, and the water tray 38 is stopped in a tilted state. It also functions to switch the refrigeration system valve and circulate hot gas to the evaporator 14.

前記製氷水タンク19の底部側面から導出した給水管2
1は、給水ポンプ22を介してタンク側方に設けた圧力
室23に連通し、更に圧力室23から前記分配管24に
連通している。従って、製氷水タンク19からポンプ2
2を介して圧送される製氷水は、分配管24に穿設した
前記各噴水孔25および第2製氷小室15の底部に穿設
した前記供給孔12aを介して、各第2fRI氷小室1
5中に噴射供給されるものである。なお、製氷運転に際
し両製氷小室13.15で氷結するに到らなかった未氷
結水は、前記排出孔12bおよび水IIIL3)’3に
穿設した前記戻り孔26から製氷水タンク19に戻し得
るようになっている。
Water supply pipe 2 led out from the bottom side of the ice-making water tank 19
1 communicates with a pressure chamber 23 provided on the side of the tank via a water supply pump 22, and further communicates from the pressure chamber 23 with the distribution pipe 24. Therefore, from the ice making water tank 19 to the pump 2
The ice-making water pumped through 2 is supplied to each second fRI ice compartment 1 through the water fountain holes 25 drilled in the distribution pipe 24 and the supply hole 12a bored in the bottom of the second ice-making compartment 15.
It is injected into the tank. In addition, unfrozen water that has not been frozen in both ice-making chambers 13.15 during ice-making operation can be returned to the ice-making water tank 19 through the return hole 26 bored in the discharge hole 12b and the water IIIL3)'3. It looks like this.

更に、水皿38の前方には、前述の側部61より所定寸
法だけ低く設定した堰止め部62が配設され、この堰止
め部62の両端部は両側部61゜61に密着されている
。また水皿38には、第2製氷室12の前方側端部と堰
止め部62との間に所要径の排水孔63が穿設されてい
る。これにより水皿38の内部表面には、両側部61,
61.堰止め部62および前記後部64で囲繞された水
溜部65が形成される。そして該水溜部65に貯溜され
た水の一部は、前記排水孔63から製氷水タンク19に
流下し、他の水は堰止め部62の上端からオーバーフロ
ーして、水皿38の前方側よりタンク19に流入するよ
うにしである。なお、製氷水タンク19への給水は、外
部水道系に接続している給水管27の給水弁Wvを開放
することにより行なわれる。
Further, in front of the water tray 38, a dam part 62 is provided which is set to be lower than the side part 61 by a predetermined dimension, and both ends of this dam part 62 are in close contact with both side parts 61. . Further, a drainage hole 63 of a required diameter is bored in the water tray 38 between the front end of the second ice making chamber 12 and the damming part 62. As a result, the inner surface of the water tray 38 has both sides 61,
61. A water reservoir portion 65 surrounded by the dam portion 62 and the rear portion 64 is formed. A part of the water stored in the water reservoir 65 flows down from the drain hole 63 to the ice-making water tank 19, and the other water overflows from the upper end of the dam 62 and flows from the front side of the water tray 38. It is arranged so that it flows into the tank 19. Note that water is supplied to the ice-making water tank 19 by opening the water supply valve Wv of the water supply pipe 27 connected to the external water supply system.

(感温機構について) 第1製氷室11の上面における所定位置に、製氷完了検
知手段として機能する製氷検知サーモTh、の感温部(
プローブ)が配設され、また同じ第1製氷室上面の別位
置に、除水完了検知手段として機能する除水検知サーモ
Th、の感温部が配設されている。更に、第2製氷室1
2における所要の側部にサーモTh3の感温部が配設さ
れ、該サーモTh、の電気信号を発する本体は、水皿3
8の前記後部64に取付けられている。
(Regarding the temperature-sensing mechanism) A temperature-sensing section (
A temperature sensing portion of a water removal detection thermometer Th, which functions as water removal completion detection means, is also provided at a different position on the top surface of the first ice making chamber. Furthermore, the second ice making room 1
A temperature sensing part of a thermometer Th3 is disposed on a required side of the water tray 3, and the main body of the thermometer Th3 that emits an electric signal is a water tray 3.
8.

(水案内板について) 製氷水タンク19の下方には、製氷残水笠を受けて機外
へ排出するための排水皿69が配設され。
(About the water guide plate) A drain tray 69 is provided below the ice making water tank 19 to receive the ice making water and discharge it to the outside of the machine.

該排水皿69の上方に、軸68に固定した水案内板67
が臨んでいる。この水案内板67は、その製氷運転中に
おいて、筐体の固定部から延出垂下する位置決め部材7
0に当接して位置決めされ、第2図に示す如く、タンク
19の開放先端部に近接した位置で停止している。この
状態において、タンク19中の製氷水がオーバーフロー
すると、第5図に示すように、この水は前記水案内板6
7の裏面に沿って流下した後、前記排水皿69から機外
へ排出される。また除氷運転の際には、第6図に示す如
く、水案内板67が固定されているM汀記軸68を、図
示しない駆動手段により反時計方向に駆動すれば、この
水案内板67は傾動状態にある(後述)第2製氷室12
の上面に倒れ込み、各第2製氷小室15を塞ぐに到る。
A water guide plate 67 fixed to the shaft 68 above the drain tray 69
is coming. During the ice making operation, this water guide plate 67 has a positioning member 7 that extends and hangs down from the fixed part of the housing.
0, and is stopped at a position close to the open end of the tank 19, as shown in FIG. In this state, if the ice-making water in the tank 19 overflows, this water will flow to the water guide plate 6 as shown in FIG.
After flowing down along the back surface of the drain plate 7, it is discharged from the drain tray 69 to the outside of the machine. In addition, during deicing operation, as shown in FIG. is in a tilting state (described later).
It collapses onto the upper surface of the ice-making chamber 15 and blocks each of the second ice-making chambers 15.

そして第7図に示す如く、第1製氷室11から落下する
疎水を、この水案内板67において滑落させて貯水庫(
図示せず)へ円滑に案内する。
As shown in FIG. 7, the hydrophobic water falling from the first ice-making compartment 11 is caused to slide down on this water guide plate 67 and into the water storage tank.
(not shown).

なお、水皿38(第2製氷室)が原位置に復帰する際に
は、水案内板67は水平状態に復帰する水皿38により
押圧されて時計方向に旋回し、第1図に示す如く、前記
位置決め部材70に当接して停止する。この水案内板6
7は、軸68を支点にして重心の移動で傾動させられる
Note that when the water tray 38 (second ice making compartment) returns to its original position, the water guide plate 67 is pressed by the water tray 38 returning to the horizontal state and rotates clockwise, as shown in FIG. , comes into contact with the positioning member 70 and stops. This water guide plate 6
7 is tilted by moving the center of gravity using the shaft 68 as a fulcrum.

(第1および第2製氷室小室の変形例)第10図は、第
1および第2製氷小室の内部形状を変更したものであっ
て、第11図(c)の如き造形氷を製造することができ
る。すなわち、図に示す如く、第1製氷室11に凹設し
た第1製氷小室13は、断面において三角形状を呈し、
その底部を開放している。また、銅の如き熱良導性の金
属を材質とする第2製氷室12に凹設した第2製氷小室
15は、断面において矩形状に形成され。
(Modified example of the first and second ice-making compartments) Fig. 10 shows a modification of the internal shapes of the first and second ice-making compartments, which makes it possible to produce shaped ice as shown in Fig. 11(c). Can be done. That is, as shown in the figure, the first ice-making chamber 13 recessed in the first ice-making chamber 11 has a triangular shape in cross section,
Its bottom is open. Further, the second ice-making compartment 15, which is made of a metal with good thermal conductivity such as copper and is recessed in the second ice-making compartment 12, is formed to have a rectangular cross section.

その横幅寸法は5第11氷小室13の底面の幅寸法より
も短かく設定されている。
Its width dimension is set shorter than the width dimension of the bottom surface of the 5th and 11th ice compartments 13.

第21氷小室15の底部には、水皿38に穿設した噴水
孔25と連通ずる供給孔12aが穿設される。また、こ
の供給12aに隣接して排出孔12bが穿設され、この
排出孔12bは、前記水皿38の噴水孔25に隣接して
穿設した戻り孔26に連通している。これら供給孔12
aおよび排出孔12bの画成部位は熱良導体で構成され
ているので、当該製氷小室13.15内で氷塊を生成す
れば、第11図(c)に示す如き形状の中空の造形氷3
を容易に製造し得る。
A supply hole 12a is provided at the bottom of the twenty-first ice chamber 15 and communicates with a water fountain hole 25 formed in the water tray 38. Further, a discharge hole 12b is provided adjacent to the supply 12a, and this discharge hole 12b communicates with a return hole 26 provided adjacent to the fountain hole 25 of the water tray 38. These supply holes 12
Since the portion defining the discharge hole 12b and the ice-making chamber 13.15 are made of a good thermal conductor, if ice cubes are produced in the ice-making chamber 13.15, a hollow shaped ice 3 having a shape as shown in FIG. 11(c) is formed.
can be easily manufactured.

実施例の作用 次に、実施例に係る製氷構造の作用につき説明する。製
氷運転に際し、第2図に示す如く第2製氷室12は、第
1製氷室11を下方から閉成して、各第1製氷小室13
と各第2製氷小室15とを対応させ、内部に氷形成用空
間を画成している。この状態で自動製氷機の電源を投入
すると、製氷運転が開始され、第1製氷室11に設けた
蒸発器14に冷媒が循環供給され、当該第1製氷室11
の冷却がなされる。また製氷水タンク19からの製氷水
は分配管24にポンプ圧送され、該分配管24の各噴水
孔25および第2製氷小室15の供給孔12aを介して
5両製氷小室13.15に画成される球状空間中に噴射
される。
Function of the embodiment Next, the function of the ice making structure according to the embodiment will be explained. During the ice-making operation, as shown in FIG.
and each of the second ice-making chambers 15 to define an ice-forming space inside. When the automatic ice making machine is turned on in this state, ice making operation is started, and the refrigerant is circulated and supplied to the evaporator 14 provided in the first ice making compartment 11.
cooling is performed. The ice-making water from the ice-making water tank 19 is pumped to the distribution pipe 24, and is divided into five ice-making compartments 13.15 via each water fountain 25 of the distribution pipe 24 and the supply hole 12a of the second ice-making compartment 15. is injected into a spherical space.

噴射された製氷水は、第1製氷小室13の内面に接触し
て冷却され、下方の第2製氷小室15を潤した後、前記
複数の排出孔12bを介して前記球状空間から排出され
る。この未氷結水は、水皿38に穿設した前記戻り孔2
6を介して、製氷水タンク19に戻されて再度の循環に
供される。そして製氷水の@環が反復される内に、タン
ク19中に貯留される製氷水全体の温度が次第に低下す
ると共に、第2製氷小室15の温度も同様に次第に低下
する。
The injected ice-making water contacts the inner surface of the first ice-making chamber 13 and is cooled, moistens the second ice-making chamber 15 below, and is then discharged from the spherical space through the plurality of discharge holes 12b. This unfrozen water flows through the return hole 2 formed in the water tray 38.
6, it is returned to the ice-making water tank 19 and subjected to circulation again. As the cycle of ice-making water is repeated, the temperature of the entire ice-making water stored in the tank 19 gradually decreases, and the temperature of the second ice-making chamber 15 also gradually decreases.

そして、第1製氷小室13および第2製氷小室15の内
壁面で製氷水の一部が凍結して氷層が形成され始め(第
3図および第9図(a)′#照)、未氷結水は排出孔1
2bおよび戻り孔26からタンク19に帰還する運転を
重ねる間に、前記氷層の成長が更に進行する。前述した
如く、第2製氷室12は熱良導体で構成されているので
、該製氷室12に穿設した供給孔12aおよび排出孔1
2bの穿設部位も熱良導体である。従って、第1および
第2製氷小室13.15内に氷層が生成されるのに伴な
って、第9図(b)に示すように、該供給孔12aや排
出孔12bの内面にも氷層が生成される。そして、前記
球状空間中で成長する氷層と。
Then, a portion of the ice-making water begins to freeze on the inner wall surfaces of the first ice-making compartment 13 and the second ice-making compartment 15, and an ice layer begins to form (see FIGS. 3 and 9(a)'#), and the Water drain hole 1
2b and returning to the tank 19 from the return hole 26, the growth of the ice layer further progresses. As mentioned above, since the second ice-making compartment 12 is made of a good thermal conductor, the supply hole 12a and the discharge hole 1 formed in the ice-making compartment 12 are
The drilled portion 2b is also a good thermal conductor. Therefore, as an ice layer is generated in the first and second ice-making chambers 13.15, ice is also formed on the inner surfaces of the supply hole 12a and the discharge hole 12b, as shown in FIG. 9(b). layers are generated. and an ice layer growing in the spherical space.

供給孔12aおよび排出孔12bの内面で成長する氷層
とが相俟って、当該供給孔12aおよび排出孔12bは
閉塞されるに到る。これにより、第4図および第9図(
c)に示す如く、最終的に両製氷小室13.15に形成
される球状空間中に中空の球状氷1が生成される。
Together with the ice layer growing on the inner surfaces of the supply hole 12a and the discharge hole 12b, the supply hole 12a and the discharge hole 12b are blocked. As a result, Figures 4 and 9 (
As shown in c), hollow spherical ice 1 is finally generated in the spherical spaces formed in both ice-making compartments 13,15.

第5図に示す如く、前記供給孔12aが氷層で閉塞され
ると1球状空間中に製氷水が供給されなくなるので、製
氷水と第1製氷室11との熱交換が行なわれなくなり、
第1製氷室11は急速に温度低下を来たす。そして、第
1v5氷室11の温度が所要の温度域まで低下すると、
この温度低下を製氷検知サーモTh□が検知し、製氷水
の循環供給を停止すると共に、蒸発器14への冷媒の供
給を続行する。そして第5図に示す如く、給水弁Wvを
開放して、水皿38の表面に画成しである前記水溜部6
5に給水を開始する。給水6wvを介して供給される水
道水は、排水孔63からタンク19に流下する量に比べ
多量であるので、水溜部65での水位は次第に上昇し、
遂には水皿38の堰止め部62からオーバーフローする
に到る。オーバーフローする際の水溜部65の水面レベ
ルは、第2!!!氷室12の上端近傍に到来するよう設
定しておくことにより、常温の水道水は第2製氷室12
を主として加熱することができる。
As shown in FIG. 5, when the supply hole 12a is blocked by a layer of ice, ice-making water is no longer supplied into one spherical space, so heat exchange between the ice-making water and the first ice-making chamber 11 is no longer performed.
The temperature of the first ice making compartment 11 rapidly decreases. Then, when the temperature of the 1st v5 ice chamber 11 drops to the required temperature range,
This temperature drop is detected by the ice-making detection thermometer Th□, and the circulating supply of ice-making water is stopped, while the supply of refrigerant to the evaporator 14 is continued. Then, as shown in FIG. 5, the water supply valve Wv is opened and the water reservoir 6 defined on the surface of the water tray 38 is
Start water supply on 5th. Since the tap water supplied via the water supply 6wv is larger than the amount flowing down from the drain hole 63 to the tank 19, the water level in the water reservoir 65 gradually rises.
Eventually, the water will overflow from the damming part 62 of the water tray 38. The water surface level of the water reservoir 65 at the time of overflow is 2nd! ! ! By setting the temperature so that the water reaches near the upper end of the ice compartment 12, the tap water at room temperature flows into the second ice compartment 12.
can mainly be heated.

なお、中空氷の生成完了を検知する手段としては、前記
サーモTh1以外に各種の検知方法が採用可能である。
In addition, as a means for detecting the completion of generation of hollow ice, various detection methods other than the thermostat Th1 can be employed.

例えば、製氷小室13.15内に中空氷が生成されると
、該製氷小室内13.15内に製氷水が供給されなくな
る結果、前記ポンプ22の供給圧が高まる。そこで、ポ
ンプ22の供給圧の変化を検出することによって、製氷
完了を検知する方法も好適に使用し得る。
For example, when hollow ice is generated in the ice-making compartment 13.15, ice-making water is no longer supplied to the ice-making compartment 13.15, and as a result, the supply pressure of the pump 22 increases. Therefore, a method of detecting the completion of ice making by detecting a change in the supply pressure of the pump 22 may also be suitably used.

前記堰止め部62からのオーバーフロー水は、水皿38
の先端からタンク19内に流下する。この水皿先端部か
ら流入する水と、前記排水孔63から流下する水とによ
りタンク19内の水位は次第に上昇し、短時間でタンク
先端部から溢流してMI記待機位置にある水案内板67
に沿いつつ排水皿69から機外へ排出される。
The overflow water from the dam 62 is transferred to the water tray 38.
The water flows down into the tank 19 from the tip. The water level in the tank 19 gradually rises due to the water flowing in from the tip of this water dish and the water flowing down from the drain hole 63, and the water level in the tank 19 overflows from the tip of the tank in a short time, and the water guide plate is in the MI standby position. 67
It is discharged from the drain tray 69 to the outside of the machine along the same direction.

第2製氷室12は、水溜部65に流入する水道水で加熱
されて温度上昇し、第2製氷小室15の壁面と疎水との
氷結力が低下する。また、第1製氷室11との近接面に
形成された氷の固着力も弱まる。このように第2製氷室
12の温度が上昇すると、これを前記サーモTh、が検
出して、給水弁Wvを閉成すると共に、前記アクチュエ
ータモータAMが付勢されて、第2図において反時計方
向への同動を開始する。これにより、第6図に示す如く
、カムレバー17が回転し、その基部に形成したカム面
17bが水皿38の側部上面を強制的に下方に押圧する
。既に述べた如く、第2爬氷室12は水道水により加熱
されて、第1製氷室11と球状氷1との固着力は低下し
ているので、当該水皿38および第2製氷室12は、第
1製氷室11から強制剥離されて斜め下方に傾動し始め
る。
The second ice-making chamber 12 is heated by the tap water flowing into the water reservoir 65 and its temperature rises, and the freezing force between the wall surface of the second ice-making chamber 15 and the hydrophobicity decreases. Furthermore, the adhesion force of the ice formed on the surface adjacent to the first ice making chamber 11 is also weakened. When the temperature of the second ice-making compartment 12 rises in this way, the thermometer Th detects this and closes the water supply valve Wv, and the actuator motor AM is energized, counterclockwise in FIG. Begin co-movement in the direction. As a result, as shown in FIG. 6, the cam lever 17 rotates, and the cam surface 17b formed at its base forcibly presses the upper side surface of the water tray 38 downward. As already mentioned, the second ice-making compartment 12 is heated by tap water, and the adhesion force between the first ice-making compartment 11 and the spherical ice 1 is reduced, so the water tray 38 and the second ice-making compartment 12 are It is forcibly separated from the first ice making chamber 11 and begins to tilt diagonally downward.

この水皿38およびタンク19の傾動により、当該タン
ク19内の製氷水と水滴部内の水とは外部に廃棄される
By tilting the water tray 38 and the tank 19, the ice-making water in the tank 19 and the water in the water droplet are disposed of to the outside.

水ji1138の傾動途中において、軸68に一体的に
配設された反転レバー(図示せず)を水皿組の一部で押
すことにより前記の水案内板67が反転し、水皿38に
寄りかかった状態で傾動する。水皿38が最大限に傾動
したタイミングをもって、前記レバー片37が切換スイ
ッチS2を押圧付勢し。
During the tilting of the water ji 1138, by pushing a reversing lever (not shown) integrated with the shaft 68 with a part of the water tray assembly, the water guide plate 67 is reversed and moved toward the water tray 38. It tilts in the suspended state. At the timing when the water tray 38 is tilted to the maximum, the lever piece 37 presses and biases the changeover switch S2.

これによりモータΔMはその回転を停+hして水皿38
の傾動を停止させる。水案内板67は、先に述べた如く
、第2製氷室12の上面を輩って氷塊滑落用の円滑面を
提供している。
As a result, the motor ΔM stops its rotation +h and the water tray 38
stop tilting. As described above, the water guide plate 67 extends over the upper surface of the second ice making chamber 12 and provides a smooth surface for the ice cubes to slide down.

更に、前記スイッチ8つの切換えにより、凝縮器用ファ
ンモータ(図示せず)が停・止し、ホットガス弁(図示
せず)が開放して蒸発器14にホットガスが供給され、
第1製氷室11の加温がなされて、第1製氷小室13の
内面と球状氷1との氷結面の融解を開始する。なお第1
製氷室11は、前述の如く、水皿38が傾動開放するま
で冷却が続行されているので、球状氷1と第1製氷小室
13の内面との氷結力(固着力)は強く、第2製氷室1
2の開放時に球状氷1は、第6図に示すように、第1製
氷小室13に固着している。しかるに、蒸発器14には
先程よりホットガスが循環しているから、第1製氷室1
1は温度上昇中である。そして、第1製氷小室13が成
る程度加温されると、小室壁面と球状氷1との氷結が解
除されて自重落下し、第7図に示す如く、傾動待機して
いる前記水案内板67の表面に落着し貯水庫(図示せず
)に滑落回収される。
Further, by switching the eight switches, the condenser fan motor (not shown) is stopped, the hot gas valve (not shown) is opened, and hot gas is supplied to the evaporator 14.
The first ice-making chamber 11 is heated, and the frozen surface between the inner surface of the first ice-making chamber 13 and the spherical ice 1 starts to melt. Note that the first
As described above, since the ice making chamber 11 continues to cool until the water tray 38 is tilted open, the freezing force (adhesion force) between the spherical ice 1 and the inner surface of the first ice making chamber 13 is strong, and the ice making chamber 11 continues to cool until the water tray 38 is tilted open. Room 1
When the ice cube 2 is opened, the spherical ice 1 is firmly attached to the first ice making chamber 13, as shown in FIG. However, since hot gas has been circulating in the evaporator 14 since before, the first ice making compartment 1
1, the temperature is rising. When the first ice-making chamber 13 is heated to an extent that the spherical ice 1 is unfrozen from the chamber wall, it falls under its own weight, and as shown in FIG. It lands on the surface and is collected by sliding into a water storage (not shown).

このように、球状氷1が全て第1製氷小室13から離脱
する(第8図参照)と、第1製氷室11は蒸Ji! ’
a 14に循環しているホットガスにより一挙に温度上
昇する。この温度上昇を除氷検知サーモTh2が検知す
ると、除氷運転を完了させると共に、前記モータAMが
逆回転してカムレバー17を1駆動する。従って該レバ
ー17と水皿38との間に弾力的に係着したコイルスプ
リング18により、水皿38および製氷水タンク19を
反時計方向に回動付勢し、水平状態に復帰させることに
よって、第1製氷室11を再び下方から閉成する。
In this way, when all the spherical ice 1 leaves the first ice-making chamber 13 (see FIG. 8), the first ice-making chamber 11 becomes steamy! '
a The temperature rises all at once due to the hot gas circulating in 14. When the de-icing detection thermo Th2 detects this temperature rise, the de-icing operation is completed and the motor AM reversely rotates to drive the cam lever 17 by 1. Therefore, the coil spring 18 elastically engaged between the lever 17 and the water tray 38 urges the water tray 38 and the ice-making water tank 19 to rotate counterclockwise to return them to the horizontal state. The first ice making chamber 11 is closed again from below.

次いで、前記モータAMの逆回転によりカムレバー17
も逆回転し、前記切換えスイッチS2を抑圧付勢して前
記冷凍系の弁を切換え、前記蒸発器14へのホットガス
の供給を停止する。また、給水弁Wvを開放して、水位
の低下したタンク19に新たな製氷水を供給する。そし
て、製氷運転が再開されて前述した動作を繰り返す。
Next, the cam lever 17 is rotated by the reverse rotation of the motor AM.
The refrigeration system valve also rotates in the opposite direction, and the changeover switch S2 is suppressed and energized to switch the refrigeration system valve and stop the supply of hot gas to the evaporator 14. Furthermore, the water supply valve Wv is opened to supply new ice-making water to the tank 19 whose water level has decreased. Then, the ice making operation is restarted and the above-described operation is repeated.

発明の詳細 な説明した如く、本発明に係る製氷構造によれば、下方
に開放する第1製氷小室を備えた第1製氷室と、L方に
開放する第2製氷小室が画成された第2製氷室とを基本
的に備え1両製氷小室の閉成により内部画成される氷形
成用空間で氷塊を生成する製氷機に関連して、前記第2
製氷室における製氷水の供給孔および排出孔の穿設部位
を、銅金属の如き熱良導性材質で構成することにより、
製氷運転に際し前記氷形成用空間に中実な氷塊が生成さ
れる前に、該空間内で成長する氷層により供給孔および
排出孔が閉塞される。従って、氷形成用空間中に中空の
球状氷を製造することができる。このようにして得た中
空氷は、ジュースやアルコール等の飲料の短時間の冷却
に好適に使用し得る。しかも、該中空氷は浮力が大きい
ので、装飾を目的として水槽等に浮べることによって、
新たな氷の需要を換気させることもできる。
As described in detail, the ice-making structure according to the present invention has a first ice-making chamber including a first ice-making chamber that opens downward, and a second ice-making chamber that opens toward the L side. The above-mentioned second ice-making machine basically comprises two ice-making compartments and generates ice blocks in an ice-forming space internally defined by closing one ice-making compartment.
By constructing the ice-making water supply and discharge holes in the ice-making compartment from a material with good thermal conductivity, such as copper metal,
During ice making operation, before a solid ice block is generated in the ice forming space, the supply hole and the discharge hole are blocked by the ice layer growing in the space. Therefore, hollow spherical ice can be produced in the ice forming space. The hollow ice obtained in this way can be suitably used for short-term cooling of beverages such as juice and alcohol. Moreover, since the hollow ice has high buoyancy, it can be floating in an aquarium etc. for decorative purposes.
New ice demand can also be ventilated.

また、中空氷は、製氷水の消費量が少なくなると共に製
氷時間が短くなるから、製氷能力が極めて増大し、ラン
ニングコストを低減することができる。更に、−時的な
観賞用の造形氷(装飾を目的とするもの)は、中実にす
る必要がないので、このような造形氷も短時間で効率的
に製造し得る利点がある。
Furthermore, since hollow ice consumes less ice making water and takes less time to make ice, the ice making capacity can be greatly increased and running costs can be reduced. Furthermore, shaped ice for occasional viewing (for decorative purposes) does not need to be solid, so there is an advantage that such shaped ice can also be produced efficiently in a short time.

なお第2製氷室における供給孔および排出孔の穿設部位
を熱良導体で構成する点に関して、図示側以外の他の環
水方式も好適に実施可能である。
Note that other water circulation systems other than those shown in the drawings can also be suitably implemented in that the supply hole and discharge hole in the second ice making chamber are made of a good thermal conductor.

また球状氷の製造につき説明したが、本発明はこれに限
定されるものではなく、他の形状を有する多面体氷の製
造にも実施できることは勿論である。
Further, although the explanation has been made regarding the production of spherical ice, the present invention is not limited to this, and it goes without saying that it can be implemented to produce polyhedral ice having other shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の好適実施例に係る製氷構造を示すもので
あって、第1図は実施例に係る製氷構造の要部を示す縦
断面図、第2図〜第8図は、本発明の好適実施例に係る
製氷機構の概略もη成を夫々示す縦断面図であって、第
2図は第1製氷室に対し第2′g!5氷室を閉成して、
製氷運転を開始した初期の状態を示し、第3図は製氷が
進行して両製氷小室中に、供給孔および排出孔の部位に
のみ穴あき部がある中空の球状氷が形成された状態を示
し、第4図は略製氷が完了して両製氷小室中に完全な中
空の球状氷が形成された状態を示し、第5図は製氷が完
了して給水弁が開放し、水溜部での水位上昇により堰止
め部からオーバーフローした水が、水案内板の裏面に沿
って流下して排水皿から機外へ排出される状態を示し、
第6図はアクチュエータモータが付勢されて第2製氷室
を時計方向に傾動開放し、水案内板を第2製氷室の上面
に倒れ込ませて各第2製氷小室を塞いだ状態を示し、第
7図は第1m氷室から球状氷が落下して、その直下に傾
斜位置する水案内板を滑落する状態を示し。 第8図は除氷が完了して、第2製氷室が反時計方向に回
動復帰し始めると共に、水案内板も原位置に戻される状
態を夫々示し、第9図(a)〜(c)は。 第1製氷小室および第2製氷小室内で中空の球状氷が形
成される状態を経時的に示す説明図、第10図は第1製
氷小室および第2製氷小室の内部形状を変更した場合の
製氷機構の変形例を示す縦断面図、第11図(a)は中
空の球状氷を示す説明図、第11図(b)は中空の多面
状氷を示す説明図。 第11図(c)は中空の造形氷を示す説明図である。 11・・・第1製氷室  12・・・第2!Pl!氷室
12a・・・供給孔   12b・・・排出孔13・・
・第1製氷小室 14・・・蒸発器15・・・第2製氷
小室
The drawings show an ice-making structure according to a preferred embodiment of the present invention, and FIG. 1 is a longitudinal sectional view showing the main parts of the ice-making structure according to the embodiment, and FIGS. The ice making mechanism according to the preferred embodiment is also schematically shown in vertical cross-sectional view showing the η configuration, and FIG. 2 shows the 2′g! 5 Close the ice room,
Figure 3 shows the initial state when ice-making operation has started, and shows the state in which ice-making has progressed and hollow spherical ice with holes only at the supply and discharge holes has been formed in both ice-making chambers. Figure 4 shows a state in which ice making is approximately completed and complete hollow spherical ice is formed in both ice making compartments, and Figure 5 shows a state in which ice making is completed and the water supply valve is opened and water in the water reservoir section is shown. Water that overflows from the dam due to rising water level flows down along the back side of the water guide plate and is discharged from the drain tray to the outside of the machine.
FIG. 6 shows a state in which the actuator motor is energized to tilt and open the second ice-making chamber clockwise, and the water guide plate is collapsed onto the top surface of the second ice-making chamber to close each second ice-making chamber, FIG. 7 shows a state in which spherical ice falls from the 1m ice chamber and slides down the water guide plate located slanted directly below it. Figure 8 shows the state in which the second ice maker begins to rotate counterclockwise and return to its original position after deicing is completed, and the water guide plate is also returned to its original position, and Figures 9 (a) to (c) )teeth. An explanatory diagram showing the state in which hollow spherical ice is formed in the first ice-making compartment and the second ice-making compartment over time. Figure 10 shows ice making when the internal shapes of the first ice-making compartment and the second ice-making compartment are changed. A vertical cross-sectional view showing a modification of the mechanism, FIG. 11(a) is an explanatory view showing hollow spherical ice, and FIG. 11(b) is an explanatory view showing hollow multifaceted ice. FIG. 11(c) is an explanatory diagram showing hollow shaped ice. 11...1st ice making room 12...2nd! Pl! Ice chamber 12a...supply hole 12b...discharge hole 13...
・First ice making chamber 14...Evaporator 15...Second ice making chamber

Claims (1)

【特許請求の範囲】 製氷水を製氷室に噴射供給して該製氷室内に氷塊を形成
し、氷結するに到らなかった製氷水は再循環に供するよ
うにした自動製氷機において、背面に蒸発器(14)を
備えて機内に固定配置され、下方に開放する所要形状の
第1製氷小室(13)を多数形成した第1製氷室(11
)と、 この第1製氷室(11)に対して接離自在に配設され、
前記第1製氷小室(13)の夫々を下方から対応的に閉
成し得る所要形状の第2製氷小室(15)を多数形成し
た第2製氷室(12)とからなり、 前記第2製氷室(12)の底部に穿設される製氷水供給
孔(12a)および排出孔(12b)の画成部位を熱良
導体で構成した ことを特徴とする自動製氷機の製氷構造。
[Scope of Claims] An automatic ice maker in which ice making water is injected into an ice making chamber to form ice cubes in the ice making chamber, and the ice making water that has not frozen is recirculated. A first ice-making compartment (11) is provided with a container (14), is fixedly arranged in the machine, and has a number of first ice-making compartments (13) of a desired shape that open downward.
), and is arranged so as to be able to freely approach and separate from this first ice-making compartment (11),
a second ice-making compartment (12) formed with a large number of second ice-making compartments (15) each having a desired shape that can correspondingly close each of the first ice-making compartments (13) from below; (12) An ice-making structure for an automatic ice-making machine, characterized in that portions defining an ice-making water supply hole (12a) and a discharge hole (12b) formed in the bottom of the ice-making machine are made of a good thermal conductor.
JP31445088A 1988-12-13 1988-12-13 Ice making structure of automatic ice machine Pending JPH02161272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31445088A JPH02161272A (en) 1988-12-13 1988-12-13 Ice making structure of automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31445088A JPH02161272A (en) 1988-12-13 1988-12-13 Ice making structure of automatic ice machine

Publications (1)

Publication Number Publication Date
JPH02161272A true JPH02161272A (en) 1990-06-21

Family

ID=18053505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31445088A Pending JPH02161272A (en) 1988-12-13 1988-12-13 Ice making structure of automatic ice machine

Country Status (1)

Country Link
JP (1) JPH02161272A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144065A (en) * 2017-05-12 2017-09-08 青岛海尔股份有限公司 A kind of ice making mould and its ice making method
EP4123245A1 (en) * 2018-11-16 2023-01-25 LG Electronics Inc. Ice maker and refrigerator
US11578904B2 (en) 2018-11-16 2023-02-14 Lg Electronics Inc. Ice maker and refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144065A (en) * 2017-05-12 2017-09-08 青岛海尔股份有限公司 A kind of ice making mould and its ice making method
CN107144065B (en) * 2017-05-12 2020-08-28 青岛海尔股份有限公司 Ice making mold and ice making method thereof
EP4123245A1 (en) * 2018-11-16 2023-01-25 LG Electronics Inc. Ice maker and refrigerator
US11578904B2 (en) 2018-11-16 2023-02-14 Lg Electronics Inc. Ice maker and refrigerator

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH024185A (en) Promotion of ice making in automatic ice making machine
JPH02143070A (en) Ice removing structure of automatic ice making machine
JPH0544587B2 (en)
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH02176380A (en) Automatic ice making machine
JPH02161272A (en) Ice making structure of automatic ice machine
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH02161271A (en) Ice making structure of automatic ice machine
JPH02140576A (en) Ice removing structure in automatic ice making machine
JPH02143072A (en) Ice removing structure for automatic ice making machine
JPH02143069A (en) Water guiding structure of automatic ice making machine
JPH02143071A (en) Ice removing structure for automatic ice making machine
JPH0615279Y2 (en) Evaporator structure of automatic ice machine
JPH0551832B2 (en)
JPH02161273A (en) Abnormal cooling prevention device of automatic ice machine
JPH01234768A (en) Ice making structure of automatic ice making machine
JPH0543951B2 (en)
JPH02154962A (en) Deicing control method for automatic ice making machine
JPH01230968A (en) Mechanical construction of automatic ice making machine
JPH01196477A (en) Automatic ice making machine
JPH0551830B2 (en)
JPH0565780B2 (en)
JPH0554027B2 (en)